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Fig. 6.— Left: The rotation curve shape of DG1 and DG2 as well as the 7 THINGS dwarf galaxies. The dark matter rotation curves (corrected for
baryons as shown in Fig. 4) are scaled with respect to the rotation velocity V0.3 at R0.3 where the logarithmic slope of the curve is dlogV/dlogR = 0.3
(Hayashi & Navarro 2006). The small dots indicate the NFW model rotation curves with V200 ranging from 10 to 90 km s−1. See text for further
details. The best fitted pseudo-isothermal halo models (denoted as ISO) are also overplotted. See Section 4.2 for more details. Right: The scaled
dark matter density profiles of DG1 and DG2 as well as the 7 THINGS dwarf galaxies. The profiles are derived using the scaled dark matter rotation
curves in the left panel. The small dots represent the NFW models (α∼−1.0) with V200 ranging from 10 to 90 kms−1. The dashed lines indicate
the best fitted pseudo-isothermal halo models (α∼0.0). See Section 4.3 for more details.

estimate M200 as follows,
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where H0 is the Hubble constant (70.6 kms−1Mpc−1;
Suyu et al. 2010), G is the gravitational constant (4.3×
10−3 pcM−1

# km2 s−2) and V200 in km s−1 is the rotation
velocity at radius R200 as given in Eq. 1. However, the
NFW halo model fails to fit the dark matter rotation
curves of the THINGS dwarf galaxies, giving negative
(or close to zero) c values (Oh et al. 2011). To circum-
vent the unphysical fits, we instead fit the NFW model to
the rotation curves with only V200 as a free parameter af-
ter fixing c to 5 which is lower than typical values (e.g.,
8–9; McGaugh et al. 2003) predicted from ΛCDM cos-
mology. The fitted V200 values of some galaxies are larger
than their measured maximum rotation velocities. This
is because the rotation curves are still rising at the last
measured points. Moreover, as a larger c value induces
a smaller V200 and hence lower halo mass, our choice
of a low c will provide a robust upper limit for our de-
rived halo mass, as indicated by the arrows in Fig. 5. As
shown in Fig. 5, despite the uncertainties remaining in
these estimates, the stellar masses of DG1 and DG2 at
their given halo masses are consistent with those of real
galaxies. Both the real galaxies and the simulations de-
viate from the extrapolated line from the Mstar−Mhalo
relation in Guo et al. (2010) at low halo masses. How-
ever, as discussed in Trujillo-Gomez et al. (2010), there
still remain uncertainties for dwarfs in the sense that the
observational data suffer from small number statistics

and the results of abundance matching are incomplete in
the low-luminosity tail of the luminosity function.

4.2. The rotation curve shape

The rotation curve reflects the total potential (dark
matter + baryons) of the galaxy and thus it is directly
related to the radial matter distribution in the galaxy
(and vice versa). Consequently, the cusp–like dark mat-
ter distributions in the CDM halos impose a unique shape
on the rotation curves, which steeply rise at the inner
regions. Therefore, a relative comparison of galaxy ro-
tation curves between the simulations and observations
can serve as a useful constraint for testing the ΛCDM
simulations.
In this context, we compare the rotation curves of DG1

and DG2 with those of the THINGS dwarf galaxies. In
order to accentuate their inner shapes, we scale the ro-
tation curves of both the simulations and the THINGS
dwarf galaxies with respect to the velocity V0.3 at the
radius R0.3 where the logarithmic slope of the curve is
dlogV/dlogR = 0.3 (Hayashi & Navarro 2006). At the
scaling radius R0.3, the rotation curves of both simula-
tions and the observations are well resolved, which allows
any differences between them to show up.
The scaled rotation curves, with the kinematic contri-

bution of baryons subtracted, are shown in the left panel
of Fig. 6. We overplot the scaled rotation curves of NFW
CDM halos (dark-matter-only) with different maximum
rotation velocities ranging from 10 to 350 km s−1. We
choose c values of ∼9 and ∼8 for dwarf and disk galaxies
respectively, which in turn provide V200 values ranging
from ∼10 to ∼90 km s−1, and ∼100 to ∼350 km s−1,
respectively. Considering that the rotation velocities of
DG1, DG2 and the THINGS dwarf galaxies at the out-
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Boylan-Kolchin, Kaplinghat, and Bullock (2010) 

The Milky Way’s bright satellites in ΛCDM 9

Figure 6. Left : Observed luminosity functions for the Milky Way and M31 (thick solid lines) compared to abundance matching predictions

based on the Aquarius simulations (thin lines, with Aq-E plotted in magenta; M�/LV = 2 is assumed). Right : Values of Vmax computed

in Sec. 4.1 for the nine luminous Milky Way dwarf spheroidals (square symbols with errors), along with Vmax(z = 0) values of the

subhalos with MV < −8 (magnitudes are assigned by abundance matching) from the halo that best reproduces the luminosity function

in the left panel (Aq-E). While numerical simulations combined with abundance matching reproduces the luminosity function of MW

satellites, the structure of the dwarf spheroidals hosts’ in this model does not match observations: the simulated subhalos are much more

massive (have larger values of Vmax) than the dSphs.

are systematically higher than those of the MW dSphs. It
is therefore not possible to simultaneously match the abun-

dance and structure of the MW dSphs in standard galaxy
formation models based on dissipationless ΛCDM simula-
tions. While there are many subhalos that match the struc-

ture of the bright MW dSphs, these are not the subhalos

that are predicted to host such galaxies in ΛCDM.

The observed densities of MW satellites are very diffi-

cult to reconcile with ΛCDM-based galaxy formation mod-

els, where the stellar content of a galaxy is strongly cou-

pled to Vinfall. To highlight the problem, we plot the in-

ferred star formation efficiency – �� ≡ M�/(fb Minfall), where

fb = Ωb/Ωm is the universal baryon fraction – as a function

of Minfall in Fig. 7. The ellipses show 1σ uncertainties (note

that the direction of the ellipses is due to the inverse cor-

relation between �� and Minfall at fixed M�). This relation

is well-constrained at z = 0 in the context of abundance

matching for M� > 10
8.3 M⊙ (approximately the complete-

ness limit of the Li & White (2009) stellar mass function,

corresponding to Mhalo = 6 × 10
10 M⊙). The relation for

M� lower than the SDSS completeness limit is extrapolated

using a power law (dashed portion of abundance matching

lines).

The M� −Mhalo relation cannot be tested statistically

on mass scales relevant for the dSphs at present, but it is

immediately apparent that galaxy formation must proceed

differently at Mhalo � 10
10 M⊙ than for larger systems if

simulated subhalos accurately reflect the densities of the

halos of dSphs as they exist the Universe. For example, the

most luminous dSph of the MW, Fornax, has an inferred star

formation efficiency of �� ≈ 0.2, a value that is approached

only at the scale of MW-mass halos. Ursa Minor and Draco,

which are ∼ 40 − 80 times less luminous than Fornax, sit

in halos that are comparable or slightly more massive, and

therefore have inferred efficiencies of closer to �� = 0.002.

5 DISCUSSION

Sections 3 and 4 have demonstrated that the structure and

abundance of bright Milky Way satellites are not consis-

tent with populating the most massive subhalos in hosts of

Mvir ≈ (1− 2)× 10
12 M⊙. In this Section, we discuss some

possible remedies for this problem, ranging from downward

revisions of the MW’s dark matter halo mass (Sec. 5.1) to

changes to ΛCDM (Sec. 5.4).

5.1 Mass of the Milky Way

The simulated halos used in this paper range from Mvir =

9.5 × 10
11

to Mvir = 2.2 × 10
12 M⊙. The true mass of the

Milky Way is still a matter of significant uncertainty, how-

ever. The apparent lack of massive subhalos might be under-

standable if the Milky Way is significantly less massive than

this simulated range. Here we summarize recent estimates

of the Milky Way halo mass.

• halo tracers
Xue et al. (2008) used blue horizontal-branch stars from

the Sloan Digital Sky Survey, combined with mock obser-

vations of hydrodynamical simulations of Milky Way-like

galaxies, to find Mvir,MW = 1.0+0.3
−0.2 × 10

12 M⊙, and M(<

c� 2012 RAS, MNRAS 000, 1–17
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How to improve structures ? 
•  Supernova feedback (blows out gas, no stars) 
•  Tidal effects (strips out small halos) 

•  Low star-formation (small halos have less stars) 
•  … several astrophysical solutions... 

•  May be a particle physics solution? 
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Flattening due to  
self-interactions 

DM ‒ DM scattering before they fall into the cusp redistributes 
DM in phase space so that in they are very isotropic in velocity. 
 
This leads to shallower density profiles. 
 
The size of the core is where optical depth becomes order 1. 

ρ

mχ
σTL = 1

σT

mχ
≈ (0.1− 1)cm2g−1

Spergel and Steinhardt (1999) 

Put values of ρ and L 
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Power at small-scales cut-
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The DM “freestreaming” length determines the size of the smallest 
halo that can exist. DM scattering on relativistic particles keeps 
them in kinetic equilibrium and can delay decoupling when 
freestreaming length is large. This happens at a temperature 
called kinetic decoupling temperature. 

T

mχ
nrel.σ � H

Mcut � 109M⊙

�
Tkd

0.5 keV

�−3

Boehm, Fayet, and Schaeffer (2001); Loeb and Zaldarriaga (2005) 



Pretty old game … 
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Spergel , Steinhardt (2000); Kamionkowski , Liddle (2000); Boehm, 
Fayet, Schaeffer (2001); Sigurdson, Kamionkowski (2003); 
Kaplinghat (2005); Borzumati, Bringmann, Ullio (2007); Feng, 
Kaplinghat, Yu (2009); Feng, Kaplinghat, Tu, Yu (2009); Bezrukov, 
Hettmannspurger, Lindner (2009); Loeb, Weiner (2010); … 

But, again, not both mechanisms together 
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Flattening due to  
self-interactions 

Power at small-scales cut-
off by kinetic decoupling 

Core-Cusp problem 
and Too Big to Fail 
problem solved by 
halo flattening 

Missing Satellites problem 
solved using late kinetic 
decoupling 
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A “ ν ” Connection 

vanDen Aarssen, Bringmann, Pfrommer (2012)  
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Figure 1: Interaction processes that set the DM relic density
and may lead to observable neutrino annihilation products
today (left), change the inner velocity and density profile of
dwarf halos (middle) and induce a comparatively large cutoff
in the spectrum of primordial density perturbations (right).

‘too big too fail problem’ [44], without being in conflict
with the strong constraints for models with constant σT .
We also note that σT drops with larger v such that for
galaxy clusters only the very central density profile at
r � O(1 − 10) kpc will be smoothed out, matching ob-
servational evidence (from improved lensing and stellar
kinematic data [51]) for a density cusp in A383 that is
slightly shallower than expected for standard CDM.

For our discussion, the astrophysically important
quantities are the velocity v

2
max = g

2
χmV /(2π2

mχ) at
which σT v becomes maximal and σ

max
T ≡ σT (vmax) =

22.7m−2
V . In particular, vmax should not be too differ-

ent from the typical velocity dispersion σv ∼ O(10) km/s
encountered in dwarf galaxies if one wants to make any
contact to potential problems with standard structure
formation at these scales. On the other hand, the value
of σmax

T is constrained by various astrophysical measure-
ments, see Ref. [44] for a compilation of current bounds.

Fixing gχ by the relic density requirement, there is a
one-to-one correspondence between the particle physics
input (mχ,mV ) and the astrophysically relevant param-
eters (vmax,σ

max
T ). As demonstrated in Fig. 2, a so-

lution to the aforementioned small-scale problems (2)
and (3) may then indeed be possible for DM masses
of mχ � 600GeV and a mediator mass in the (sub-)
MeV range. We also display the strongest astrophysi-
cal bounds on large DM self-interaction rates [43]. For
mχ � 4TeV, they arise from collisions with particles from
the dwarf parent halo, while at larger mχ an imminent
gravothermal catastrophe is more constraining.

The small-scale cutoff.— For small kinetic decou-
pling temperatures Tkd, acoustic oscillations [52] are
more efficient than free streaming effects to suppress the
power spectrum [4, 53]. The resulting exponential cutoff
can be translated into a smallest protohalo mass of

Mcut ≈
4π

3

ρχ

H3

���
T=Tkd

= 1.7× 108
�
Tkd

keV

�−3

M⊙ , (4)

where H is the Hubble rate and we assumed late kinetic
decoupling such that the effective number of relativistic
degrees of freedom geff = 3.37. For scattering with rela-
tivistic neutrinos, c.f. Eq. (3), the analytic treatment of
kinetic decoupling given in Ref. [54] is valid. Extending
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Figure 2: The white area corresponds to DM and mediator
masses that may solve the ‘cusp vs. core’ problem. The crosses
indicate two benchmark models for which detailed simulations
[44] have found a solution to the ‘too big to fail’ problem.
Dashed and solid lines show contours of the astrophysical rel-
evant quantities σT

max and vmax. See text for further details.
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Figure 3: This plane shows the mediator mass mV vs. the
coupling strength gν . Large values of gν and small values of
mV lead to late kinetic decoupling and thus a large mass Mcut

of the smallest protohalos. Mcut � 5 × 1010M⊙ is excluded
by Ly-α data while Mcut � 109M⊙ may solve the small-scale
abundance problems of ΛCDM cosmology.

those expressions to allow for Tν �= T , we find

Tkd =
0.062 keV

N
1
4
ν (gχgν)

1
2

�
T

Tν

� 1
2

kd

�
mχ

TeV

� 1
4
�
mV

MeV

�
, (5)

where Nν is the number of neutrino species coupling to
V . Combining this with Eq. (2) we therefore expect that
Tkd, and thus Mcut, is essentially independent of gχ and
mχ.

Using for definiteness Nν = 3 and Tν = (4/11)
1
3Tγ , we

show in Fig. 3 contours of constant Mcut in the (gν ,mV )
plane. We find that the result of the full numerical
calculation [4, 5] is indeed extremely well described by
Eqs. (4,5) for gν � 10−7 (assuming mχ ∼ 1TeV and
mV ∼ 1MeV; this value is even lower for larger mχ and

DM and Neutrinos share a common new interaction 

Relic Annihilation Self-Scattering Late-Decoupling 
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Neutrinos vs. Steriles 
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Figure 1: Interaction processes that set the DM relic density
and may lead to observable neutrino annihilation products
today (left), change the inner velocity and density profile of
dwarf halos (middle) and induce a comparatively large cutoff
in the spectrum of primordial density perturbations (right).

‘too big too fail problem’ [44], without being in conflict
with the strong constraints for models with constant σT .
We also note that σT drops with larger v such that for
galaxy clusters only the very central density profile at
r � O(1 − 10) kpc will be smoothed out, matching ob-
servational evidence (from improved lensing and stellar
kinematic data [51]) for a density cusp in A383 that is
slightly shallower than expected for standard CDM.

For our discussion, the astrophysically important
quantities are the velocity v

2
max = g

2
χmV /(2π2

mχ) at
which σT v becomes maximal and σ

max
T ≡ σT (vmax) =

22.7m−2
V . In particular, vmax should not be too differ-

ent from the typical velocity dispersion σv ∼ O(10) km/s
encountered in dwarf galaxies if one wants to make any
contact to potential problems with standard structure
formation at these scales. On the other hand, the value
of σmax

T is constrained by various astrophysical measure-
ments, see Ref. [44] for a compilation of current bounds.

Fixing gχ by the relic density requirement, there is a
one-to-one correspondence between the particle physics
input (mχ,mV ) and the astrophysically relevant param-
eters (vmax,σ

max
T ). As demonstrated in Fig. 2, a so-

lution to the aforementioned small-scale problems (2)
and (3) may then indeed be possible for DM masses
of mχ � 600GeV and a mediator mass in the (sub-)
MeV range. We also display the strongest astrophysi-
cal bounds on large DM self-interaction rates [43]. For
mχ � 4TeV, they arise from collisions with particles from
the dwarf parent halo, while at larger mχ an imminent
gravothermal catastrophe is more constraining.

The small-scale cutoff.— For small kinetic decou-
pling temperatures Tkd, acoustic oscillations [52] are
more efficient than free streaming effects to suppress the
power spectrum [4, 53]. The resulting exponential cutoff
can be translated into a smallest protohalo mass of

Mcut ≈
4π

3

ρχ

H3

���
T=Tkd

= 1.7× 108
�
Tkd

keV

�−3

M⊙ , (4)

where H is the Hubble rate and we assumed late kinetic
decoupling such that the effective number of relativistic
degrees of freedom geff = 3.37. For scattering with rela-
tivistic neutrinos, c.f. Eq. (3), the analytic treatment of
kinetic decoupling given in Ref. [54] is valid. Extending
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Figure 3: This plane shows the mediator mass mV vs. the
coupling strength gν . Large values of gν and small values of
mV lead to late kinetic decoupling and thus a large mass Mcut

of the smallest protohalos. Mcut � 5 × 1010M⊙ is excluded
by Ly-α data while Mcut � 109M⊙ may solve the small-scale
abundance problems of ΛCDM cosmology.

those expressions to allow for Tν �= T , we find

Tkd =
0.062 keV

N
1
4
ν (gχgν)

1
2

�
T

Tν

� 1
2

kd

�
mχ

TeV

� 1
4
�
mV

MeV

�
, (5)

where Nν is the number of neutrino species coupling to
V . Combining this with Eq. (2) we therefore expect that
Tkd, and thus Mcut, is essentially independent of gχ and
mχ.

Using for definiteness Nν = 3 and Tν = (4/11)
1
3Tγ , we

show in Fig. 3 contours of constant Mcut in the (gν ,mV )
plane. We find that the result of the full numerical
calculation [4, 5] is indeed extremely well described by
Eqs. (4,5) for gν � 10−7 (assuming mχ ∼ 1TeV and
mV ∼ 1MeV; this value is even lower for larger mχ and

Sterile nus anyway benefit from an interaction ‒ they 
become cosmologically viable. 
 
Same interaction rescues DM. 

Self-Scattering Late-Decoupling 

Dasgupta and Kopp (2014) 

Also, Bringmann, Hasenkamp, Kersten (2014) and Ko, Tang (2014) 
Dasgupta and Kopp (2014) 
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is the DM-sterile neutrino scattering cross section.
Quantitatively [39],

Mcut

MSun
≃ 3.2 × 1013α3=2

χ

!
Ts

Tγ

"
9=2

kd

!
TeV
mχ

"
3=4

!
MeV
M

"
3

: (7)

In previous literature, the exponent of Ts=Tγ in Eq. (7) is
sometimes incorrectly given as 3=2 [41]. We find the cutoff
can be raised toMcut ¼ 109–1010MSun, as required to solve
themissing satellitesproblem.Thenumberof sterileneutrino
generations Ns, assumed to be 1 here, only weakly impacts
the result asMcut ∝ N3=4

s . Note that in contrast to Ref. [39],
we obtain a small Ts=Tγ , from decays of heavy standard
model particles after the decoupling of the sterile sector.
In Fig. 2, we show the region of parameter space favored

by these considerations. We see that it is possible to
simultaneously mitigate the cusp versus core problem,
too big to fail problem, as well as the missing satellites
problem, while remaining consistent with the cluster
constraint and simultaneously suppressing sterile neutrino
production to evade BBN and CMB constraints. The
potentially interesting solution to all of the enduring
problems with small-scale structures was first shown in
a scenario with active neutrinos [39], which has since been
constrained using laboratory data, BBN, and large-scale
structure [42–44]. A qualitative extension to sterile

neutrinos was suggested therein, and we see here that such
a scenario may be realized with no conflict with cosmology.
The DM relic abundance may be produced by

Sommerfeld-enhanced annihilations of DM into A0 pairs
that decay to sterile neutrinos, or alternatively through an
asymmetry. However, unlike in Ref. [39], we do not use
separate couplings of DM and ν to do this, so this should
identify the preferred value for DM mass in the range
mχ ∼ 1–100 TeV. As long as DM chemical freeze-out
happens well above Tγ ∼ GeV and the sterile neutrinos
have time to rethermalize with ordinary neutrinos (and
photons) via high-scale interactions, our scenario remains
unaltered by DM annihilation.

Discussion and summary.—We now discuss the possible
originof anewgauge force in the sterile neutrino sector andon
further phenomenological consequences. In Ref. [45],
Pospelov has proposed amodel with sterile neutrinos charged
under gauged baryon number. He has argued that themodel is
consistent with low energy constraints, in particular, the one
from K → ππνν, even for κ2 sin θ=M2 ∼ 1000GF. This is
precisely the parameter region in which sterile neutrino
production in the early Universe is suppressed, as we have
demonstrated above. In Refs. [45–47], the phenomenological
consequences of this model have been investigated, and it has
been shown that strong anomalous scattering of solar neu-
trinos inDMdetectors is expected.Asan alternative togauged
baryonnumber, sterileneutrinoscouldalsobechargedunder a
gauge force that mixes kinetically with the photon [46].
In this case, M ≳ 10 MeV is preferred unless the coupling
constants are extremely tiny. Once again, in this model
interesting solar neutrino signals in DM detectors can occur.
Finally,whilewehavefocusedhereonnewgauge interactions,
it is also conceivable that the new interaction is instead
mediated by a scalar [48,49]. However, in this case
σχs ∝ m2

νs , which is too small, and the missing satellite
problem cannot be solved.
In summary, we have shown that eV-scale sterile

neutrinos can be consistent with cosmological data from
BBN, CMB, and large-scale structure if we allow them to
be charged under a new gauge interaction mediated by a
MeV-scale boson. In this case, sterile neutrino production
in the early Universe is suppressed due to the thermal MSW
potential generated by the mediator and by sterile neutrinos
themselves. Our proposed scenario leads to a small frac-
tional number of extra relativistic degrees of freedom in the
early Universe, which may be experimentally testable in the
future. If the considered boson also couples to DM, it could
simultaneously explain observed departures of small-scale
structures from the predictions of cold DM simulations.

We are grateful to Torsten Bringmann, Xiaoyong Chu,
Maxim Pospelov, and Georg Raffelt for useful discussions.
J. K. would like to thank the Aspen Center for Physics,
funded by the U.S. National Science Foundation under
Grant No. 1066293, for kind hospitality and support during
part of this work.
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the requirements that the self-interaction in galaxy clusters is
small, i.e., hσTi=mχ ≲ 1 cm2=g, and that production of 1 eV
sterile neutrinos is suppressed, i.e., sin2 2θm ≲ 10−3 at
Tγ ¼ 1 MeV. We also show the favored parameter region for
mitigating the cusp versus core and too big to fail problems,
i.e., hσTi=mχ ¼ 0.1–1 cm2=g in dwarf galaxies, and solve the
missing satellites problem (Mcut ¼ 109–10MSun). The kink in the
σT contours is from an approximate treatment of the regime
between the Born and classical limits.
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A “Pas de Deux” – Dark Radiation Fattens and Puffs-up Dark Matter Halos
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We show that a scalar and a fermion charged under a global U(1) symmetry can not only explain
the existence and abundance of dark matter (DM) and dark radiation (DR), but also imbue DM
with improved scattering properties at galactic scales, while remaining consistent with all other
observations. Delayed DM-DR kinetic decoupling eases the missing satellites problem, while scalar-
mediated self-interactions of DM ease the cusp vs. core and too big to fail problems. In this scenario,
DM is expected to be pseudo-Dirac and have a mass 100 keV � mχ � 10GeV. The predicted DR
may be measurable using the primordial elemental abundances from big bang nucleosynthesis (BBN),
and using the cosmic microwave background (CMB).

PACS numbers: 95.35.+d

Introduction.– Cosmological and astrophysical data
now firmly point towards the existence of new nonrela-
tivistic particles, dubbed dark matter (DM), and there is
a vigorous experimental program underway to discover
these particles and measure their properties. Dark radi-
ation (DR), on the other hand, refers to new relativis-
tic particles that contribute to the cosmological energy
density but are otherwise decoupled from ordinary mat-
ter and radiation. There is neither clear evidence nor
a definitive exclusion, but several independent analyses
of cosmological data show tantalizing hints for DR [1–5],
most recently to reconcile the results from Planck [6] with
those from BICEP2 [7].

Candidate particles for DR have been motivated by ex-
perimental results, e.g., additional neutrinos that explain
oscillation anomalies, or to address conceptual problems
in the visible sector, e.g., thermal axions that solve the
strong CP problem. On the other hand, DR may have
little to do with the observed particles in the Universe
and instead may simply be light particles in the dark sec-
tor, e.g., as in refs. [8–12]. Weinberg recently presented a
set-up [13], where the Goldstone bosons of a global sym-
metry in the dark sector lead to dark radiation, while
the residual symmetry provides stability to a fermionic
DM candidate. Its phenomenology has been explored in
subsequent works [14–19]. In this Letter, we show that if
DM and DR share this common origin, it may naturally
solve long-standing problems in DM structure-formation.

A weakly interacting massive particle explains the cos-
mological abundance of DM, but there are hints from
observations of dwarf galaxies and the Milky-Way that
something may be lacking in this description. N-body
simulations of collisionless cold DM [20] predict numer-
ous dwarf satellite galaxies of the Milky-Way, that are
not seen, viz., the missing satellites problem [21]. They
also predict cuspy halos in dwarf galaxies where cores
are observed [22, 23], viz. the cusp vs. core problem, and

highly massive subhalos of Milky-Way-type galaxies that
would be expected to host stars, but which aren’t ob-
served, viz., the too big to fail problem [24]. It has been
considered that inclusion of more detailed astrophysi-
cal processes [25–29], e.g., supernova feedback, low star-
formation, tidal effects, etc., or new DM physics [30–34],
e.g., self-interactions, warm DM, decays/annihilations,
or DM-“baryon” coupling etc., can solve some of these
problems. Exotic interactions between DM and ordinary
matter, e.g., neutrinos [35] or sterile neutrinos [36] may be
able to address all these persistent problems. However,
almost all models invoke additional physics specifically
to address the small-scale problems.

We show that (i) DM scattering off the DR bath, com-
posed of the Goldstone bosons of the global symmetry,
leads to delayed kinetic decoupling that erases the least
massive DM halos, which can mitigate the missing satel-
lites problem, and (ii) DM self-scattering mediated by
the scalar mode leads to smoothening of the inner cusps
of small galactic halos, which alleviates the cusp vs. core
and too big to fail problems. Together, they can ease
all tensions between observations and cold DM simula-
tions, with no need for any other particles or interactions.
Simultaneously, the observed DM density and all other
constraints can be satisfied, which predicts an observable
abundance of DR and the viable DM mass-range.

In the following, we demonstrate the above mechanism.
We show how the small-scale problems may be addressed,
and elaborate the consequences for DR and DM. We out-
line the phenomenology of this scenario, and conclude
with a discussion and a summary of our results.

Dark Matter and Dark Radiation.– We consider
the Lagrangian for the dark sector [13, 15],

Ldark � ∂µφ
∗∂µφ+ µ2

φ|φ|
2 − λφ|φ|

4

+ iχ̄γµ∂µχ−M χ̄χ− (
fd√
2
φχTCχ+ h.c.), (1)

Complex Scalar 

Fermion 

On spontaneous symmetry breaking  

2

where φ is a complex scalar and χ is a 4-component
fermion, both charged under a global U(1) symmetry.
After symmetry-breaking, φ ≡ (vφ + ρ + iη)/

√
2 has a

vacuum expectation value vφ. Its CP-odd component
η becomes a massless Goldstone field while its CP-even
component ρ remains. At the same time, the last term in
Eq. (1) splits the fermion field into two mass eigenstates
χ± with massesmχ

±
= |M±fdvφ|. The obvious Z2 resid-

ual symmetry, i.e., χ± → −χ± and (ρ, η) → (ρ, η), guar-
antees that the lighter mass eigenstate, which we take to
be χ

−
, is stable, and therefore a viable DM candidate.

Relativistic dark particles, e.g., the massless Goldstone
mode η, yield DR.

We will be interested in DM and DR scattering pro-
cesses mediated by the χ−φ interaction in Eq. (1), which,
after symmetry breaking, is rewritten as
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)− fd
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We will show that when χ
−
and χ

+
are quasi-degenerate,

i.e., mχ
+
−mχ

−
≡ ∆mχ � mχ, the scattering processes

can be appreciable and important. However, before we
get to that, let’s consider the cosmological abundance of
DR and DM in this scenario.

The temperatures of the dark and the visible sectors
are defined to be the temperatures of the bath of η and
photons (denoted by γ), respectively. We will assume
that T� is a temperature above which the dark sector was
in thermal equilibrium with the visible sector. This may
have been through processes common to both sectors at
high-scale, e.g., inflaton decay. Below this temperature,
the two sectors are decoupled but the conservation of
entropy relates the temperatures in the two sectors as

Tη =

�
g
∗
d(T�)

g
∗
d(Tη)

g
∗
v(Tγ)

g
∗
v(T�)

�1/3

Tγ , (3)

where g
∗(T ) are the effective number of relativistic de-

grees of freedom in the dark (d) and visible (v) sectors,
respectively, at their temperatures T . Typically, the fac-
tor in brackets is slightly smaller than 1, and Tη � Tγ .

The DR density is given by relativistic particles in
the dark sector, i.e., ρDR = π

2
g
∗
dT

4
η /30, which is con-

veniently parametrized as an additional number of neu-
trinos species,

∆Nν ≡ ρDR

ρν
=

4g∗d
7

�
Tη

Tν

�4

, (4)

using the known energy density ρν of a single flavor of
an active neutrino at temperature Tν .

The DM density is set by its chemical freeze-out. In
the regime of our interest (where ∆mχ � mχ) the DM
chemical freeze-out is determined by the co-annihilation
process χ

+
χ

−
→ ρ η, with the co-annihilation cross sec-
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Figure 1. DM-DR scattering via u, s, and t channels.

tion approximately given by [15],

�σv� � α
2
dπ

m
2
χ

, (5)

where αd = f
2
d/(4π). The contribution from all other

channels are p-wave suppressed and subleading. The ob-
served DM fraction ΩDM = 0.11h−2 is obtained, depend-
ing on the details of g∗d,v at the temperature of freeze-

out, for �σv� � (2 − 5) × 10−26 cm3
/s [37]. We take

�σv� = 3×10−26 cm3
/s as an illustrative value. Note that

the observed ΩDM needs fd � 1, which self-consistently
motivates the smallness of ∆mχ (≡ 2fdvφ), without fine-
tuning.

Scattering in the Dark Sector.– The DM particle
χ

−
scatters with DR, i.e., the massless pseudoscalar η,

through the processes shown in Fig. 1. The cross section
for DM-DR scattering is

σηχ
−
=

8πα2
dω

4

∆m
6
χ

�
1 +

16∆m
2
χ

3m2
ρ

+
8∆m

4
χ

m
4
ρ

�
, (6)

in the limit of ∆mχ � mχ and where ω is the energy of
η in the center-of-mass frame, roughly Tη. One can see
that a small ∆mχ enhances the DM-DR scattering.

DM remains in kinetic equilibrium with DR until the
momentum exchange rate due to this process becomes
smaller than the Hubble expansion rate [33, 38], i.e.,
(Tη/mχ)nη�σηχ

−
� ∼ H(Tγ) , where nη = 3ζ(3)T 3

η /(4π
2)

is the DR number density. The above condition de-
termines the temperature of kinetic decoupling, Tkd ≡
Tγ |kd. We have

Tkd � 0.5 keV
δ

10−4.5

�
mχ

GeV

�7/6�10−4

αd

�1/3

ξ
−4/3
kd , (7)

where δ ≡ ∆mχ/mχ is the fractional mass difference, and
ξkd ≡ (Tη/Tγ)|kd, which is in the range of (0.5 − 0.8).
DM-DR scattering can lower Tkd, which enhances the
acoustic damping cutoff, Mcut, in the structure power
spectrum. Quantitatively [39], we have Mcut � 1.7 ×
108 (Tkd/keV)

−3
M⊙, such that Tkd � 0.5 keV, ensures

the smallest DM halos are larger than about 109M⊙,
which eases the missing satellites problem [40].

DM particles can scatter with each other via χ
−
χ

−
↔

χ
−
χ

−
, mediated by the scalar ρ. The t and u channel

amplitudes dominate the self-scattering due to the small-
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are defined to be the temperatures of the bath of η and
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that T� is a temperature above which the dark sector was
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have been through processes common to both sectors at
high-scale, e.g., inflaton decay. Below this temperature,
the two sectors are decoupled but the conservation of
entropy relates the temperatures in the two sectors as

Tη =

�
g
∗
d(T�)

g
∗
d(Tη)

g
∗
v(Tγ)

g
∗
v(T�)

�1/3

Tγ , (3)

where g
∗(T ) are the effective number of relativistic de-

grees of freedom in the dark (d) and visible (v) sectors,
respectively, at their temperatures T . Typically, the fac-
tor in brackets is slightly smaller than 1, and Tη � Tγ .

The DR density is given by relativistic particles in
the dark sector, i.e., ρDR = π

2
g
∗
dT

4
η /30, which is con-

veniently parametrized as an additional number of neu-
trinos species,

∆Nν ≡ ρDR

ρν
=

4g∗d
7

�
Tη

Tν

�4

, (4)

using the known energy density ρν of a single flavor of
an active neutrino at temperature Tν .

The DM density is set by its chemical freeze-out. In
the regime of our interest (where ∆mχ � mχ) the DM
chemical freeze-out is determined by the co-annihilation
process χ

+
χ

−
→ ρ η, with the co-annihilation cross sec-

χ− χ−

η η

χ+ χ+

χ− χ−

η η

χ− χ−

η η

ρ

Figure 1. DM-DR scattering via u, s, and t channels.

tion approximately given by [15],

�σv� � α
2
dπ

m
2
χ

, (5)

where αd = f
2
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channels are p-wave suppressed and subleading. The ob-
served DM fraction ΩDM = 0.11h−2 is obtained, depend-
ing on the details of g∗d,v at the temperature of freeze-

out, for �σv� � (2 − 5) × 10−26 cm3
/s [37]. We take

�σv� = 3×10−26 cm3
/s as an illustrative value. Note that

the observed ΩDM needs fd � 1, which self-consistently
motivates the smallness of ∆mχ (≡ 2fdvφ), without fine-
tuning.

Scattering in the Dark Sector.– The DM particle
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−
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in the limit of ∆mχ � mχ and where ω is the energy of
η in the center-of-mass frame, roughly Tη. One can see
that a small ∆mχ enhances the DM-DR scattering.

DM remains in kinetic equilibrium with DR until the
momentum exchange rate due to this process becomes
smaller than the Hubble expansion rate [33, 38], i.e.,
(Tη/mχ)nη�σηχ
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where δ ≡ ∆mχ/mχ is the fractional mass difference, and
ξkd ≡ (Tη/Tγ)|kd, which is in the range of (0.5 − 0.8).
DM-DR scattering can lower Tkd, which enhances the
acoustic damping cutoff, Mcut, in the structure power
spectrum. Quantitatively [39], we have Mcut � 1.7 ×
108 (Tkd/keV)

−3
M⊙, such that Tkd � 0.5 keV, ensures

the smallest DM halos are larger than about 109M⊙,
which eases the missing satellites problem [40].
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−
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↔
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−
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−
, mediated by the scalar ρ. The t and u channel

amplitudes dominate the self-scattering due to the small-

Residual Z2 symmetry ensures χ- = DM is stable  

Also η = DR 

Weinberg (2013) 

Garcia-Cely, Ibarra, Molinaro (2013) 
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where φ is a complex scalar and χ is a 4-component
fermion, both charged under a global U(1) symmetry.
After symmetry-breaking, φ ≡ (vφ + ρ + iη)/

√
2 has a

vacuum expectation value vφ. Its CP-odd component
η becomes a massless Goldstone field while its CP-even
component ρ remains. At the same time, the last term in
Eq. (1) splits the fermion field into two mass eigenstates
χ± with massesmχ

±
= |M±fdvφ|. The obvious Z2 resid-

ual symmetry, i.e., χ± → −χ± and (ρ, η) → (ρ, η), guar-
antees that the lighter mass eigenstate, which we take to
be χ

−
, is stable, and therefore a viable DM candidate.

Relativistic dark particles, e.g., the massless Goldstone
mode η, yield DR.
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served DM fraction ΩDM = 0.11h−2 is obtained, depend-
ing on the details of g∗d,v at the temperature of freeze-

out, for �σv� � (2 − 5) × 10−26 cm3
/s [37]. We take

�σv� = 3×10−26 cm3
/s as an illustrative value. Note that

the observed ΩDM needs fd � 1, which self-consistently
motivates the smallness of ∆mχ (≡ 2fdvφ), without fine-
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in the limit of ∆mχ � mχ and where ω is the energy of
η in the center-of-mass frame, roughly Tη. One can see
that a small ∆mχ enhances the DM-DR scattering.

DM remains in kinetic equilibrium with DR until the
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where δ ≡ ∆mχ/mχ is the fractional mass difference, and
ξkd ≡ (Tη/Tγ)|kd, which is in the range of (0.5 − 0.8).
DM-DR scattering can lower Tkd, which enhances the
acoustic damping cutoff, Mcut, in the structure power
spectrum. Quantitatively [39], we have Mcut � 1.7 ×
108 (Tkd/keV)−3

M⊙, such that Tkd � 0.5 keV, ensures
the smallest DM halos are larger than about 109M⊙,
which eases the missing satellites problem [40].

DM particles can scatter with each other via χ
−
χ

−
↔

χ
−
χ

−
, mediated by the scalar ρ. The t and u channel

amplitudes dominate the self-scattering due to the small-

2

with cosmological observations, and testable in the near

future.

Explain why this is new: A minimal model where one

doesn’t even need the SM for explaining DM properties.

The DM simply scatters off a bath of the force mediator

itself. Compare with previous results. Explain why this

is important: There is a lot of experimental effort to make

more precise measurements of Neff and the model could

be testable. It solves many problems all at once, without

having many free parameters. Explain why this affects

a wide audience: It affects cosmology and astrophysics,

as well as DM particle physics. Explain the plan of the

paper.

Dark Matter and Dark Radiation.– The La-

grangian of Weinberg’s model is written as
1

L � ∂µφ
∗∂µφ+ µ2

φ|φ|2 − λφ|φ|4

+ iχ̄γµ∂µχ−M χ̄χ− (
f√
2
φχ̄χc

+ h.c.), (1)

where φ and χ are a complex scalar and a Dirac fermion,

respectively. At this stage, we neglect the possible mixing

of the SM Higgs and φ field.

After φ obtains a vev, i.e. vφ, to break the global U(1),

its CP-odd component η becomes a massless Goldstone

field while its CP-even component ρ remains. At the

same time, the last term in Eq. (1) splits the Dirac

fermion field into two mass eigenstates, φ− and φ+. The

interaction terms now are given by

− f

2
· ρ(χ̄+χ+ − χ̄−χ−)−

f

2
· η(χ̄+χ− + χ̄−χ+). (2)

The obvious Z2 residual symmetry gurantees that the

lighter mass eigenstate (say χ−, denoted as χ below) is

stable, and therefore a valid dark matter candidate.

Meanwhile, the residual of massless η yields dark radi-

ation. The existence of extra radiation has been a long-

standing suspicion based on several experimental mea-

surements, although the latest Planck results have put a

stringent bound on it. Recall that from Planck []

Neff = 3.36+0.68
−0.64 (95%; Planck +WP + hightL). (3)

It means that even extra physical degrees of freedom of

0.3 (or equivalently, ∆Neff ∼ 0.57 at recombination time)

is still allowed.

Review the model in detail and say everything that

has been done by Weinberg and Ibarra, and how this is

interesting.

Talk about the cosmological evolution of the model

and show how it gives DR and how are the temperatures

related.

1
Here we adopt the formulae used in [? ].

Mention that if dark sector decouples from SM par-

ticles after dark matter freeze-out, the bound on Fig.10

in [? ] applies. However, another possibility which was

missing is that dark sector decouples before, and under-

goes its own reheating processes when massive dark par-

ticles become non-relativistic. This possibility naturally

leads to ∆Neff around 0.3 – 0.5.
2

Dark Matter Freeze-Out.–In the freeze-out sce-

nario, if the two Majorana fermions are nearly de-

generate, the DM relic density is determined the co-

annihilation channel χ+ χ− → ρ η, with the co-

annihilation cross section approximates to

�σv� � f4

16πm2
χ

(4)

at the limit of both mχ+ ∼ mχ− =̂ mχ and mρ/mχ → 0.

This is the parameter region this paper is concerned with.

Although the dark sector may have its own tempera-

ture T �
different from Tγ , T �/Tγ at later time needs to

be larger than ∼ 0.7 as long as one wants a detectable

extra radiation. Therefore, the value of �σv� required for

the observed ΩDM is close to 1 pb (see footnote. 2).

Scattering of Dark Matter .– In this scenario, dark

matter particles scatter with each other via the mediating

scalar ρ, see , see Fig. 1. Among the three inequivalent

Feynman diagrams, t-and u-channel dominate the self-

interaction due to the smallness of the energy transfer.
3

At non-relativistic limit, the squared-matrix element is
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Figure 1. t, u, s-channel self-scattering diagrams.
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Moreover, at nonrelativistic limit this interaction is bet-

ter described by an attractive Yukawa potential in the

form of

V (r) = − f2
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whose cross section has been studied extensively in the

literature [? ]. For instance, in the Born regime
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where φ is a complex scalar and χ is a 4-component
fermion, both charged under a global U(1) symmetry.
After symmetry-breaking, φ ≡ (vφ + ρ + iη)/

√
2 has a

vacuum expectation value vφ. Its CP-odd component
η becomes a massless Goldstone field while its CP-even
component ρ remains. At the same time, the last term in
Eq. (1) splits the fermion field into two mass eigenstates
χ± with massesmχ

±
= |M±fdvφ|. The obvious Z2 resid-

ual symmetry, i.e., χ± → −χ± and (ρ, η) → (ρ, η), guar-
antees that the lighter mass eigenstate, which we take to
be χ

−
, is stable, and therefore a viable DM candidate.

Relativistic dark particles, e.g., the massless Goldstone
mode η, yield DR.

We will be interested in DM and DR scattering pro-
cesses mediated by the χ−φ interaction in Eq. (1), which,
after symmetry breaking, is rewritten as
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We will show that when χ
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and χ
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are quasi-degenerate,
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≡ ∆mχ � mχ, the scattering processes

can be appreciable and important. However, before we
get to that, let’s consider the cosmological abundance of
DR and DM in this scenario.

The temperatures of the dark and the visible sectors
are defined to be the temperatures of the bath of η and
photons (denoted by γ), respectively. We will assume
that T� is a temperature above which the dark sector was
in thermal equilibrium with the visible sector. This may
have been through processes common to both sectors at
high-scale, e.g., inflaton decay. Below this temperature,
the two sectors are decoupled but the conservation of
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grees of freedom in the dark (d) and visible (v) sectors,
respectively, at their temperatures T . Typically, the fac-
tor in brackets is slightly smaller than 1, and Tη � Tγ .

The DR density is given by relativistic particles in
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using the known energy density ρν of a single flavor of
an active neutrino at temperature Tν .

The DM density is set by its chemical freeze-out. In
the regime of our interest (where ∆mχ � mχ) the DM
chemical freeze-out is determined by the co-annihilation
process χ

+
χ

−
→ ρ η, with the co-annihilation cross sec-
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Figure 1. DM-DR scattering via u, s, and t channels.

tion approximately given by [15],
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where αd = f
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d/(4π). The contribution from all other

channels are p-wave suppressed and subleading. The ob-
served DM fraction ΩDM = 0.11h−2 is obtained, depend-
ing on the details of g∗d,v at the temperature of freeze-

out, for �σv� � (2 − 5) × 10−26 cm3
/s [37]. We take

�σv� = 3×10−26 cm3
/s as an illustrative value. Note that

the observed ΩDM needs fd � 1, which self-consistently
motivates the smallness of ∆mχ (≡ 2fdvφ), without fine-
tuning.

Scattering in the Dark Sector.– The DM particle
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−
scatters with DR, i.e., the massless pseudoscalar η,

through the processes shown in Fig. 1. The cross section
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in the limit of ∆mχ � mχ and where ω is the energy of
η in the center-of-mass frame, roughly Tη. One can see
that a small ∆mχ enhances the DM-DR scattering.

DM remains in kinetic equilibrium with DR until the
momentum exchange rate due to this process becomes
smaller than the Hubble expansion rate [33, 38], i.e.,
(Tη/mχ)nη�σηχ

−
� ∼ H(Tγ) , where nη = 3ζ(3)T 3

η /(4π
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is the DR number density. The above condition de-
termines the temperature of kinetic decoupling, Tkd ≡
Tγ |kd. We have

Tkd � 0.5 keV
δ

10−4.5

�
mχ

GeV

�7/6�10−4

αd

�1/3

ξ
−4/3
kd , (7)

where δ ≡ ∆mχ/mχ is the fractional mass difference, and
ξkd ≡ (Tη/Tγ)|kd, which is in the range of (0.5 − 0.8).
DM-DR scattering can lower Tkd, which enhances the
acoustic damping cutoff, Mcut, in the structure power
spectrum. Quantitatively [39], we have Mcut � 1.7 ×
108 (Tkd/keV)

−3
M⊙, such that Tkd � 0.5 keV, ensures

the smallest DM halos are larger than about 109M⊙,
which eases the missing satellites problem [40].

DM particles can scatter with each other via χ
−
χ

−
↔

χ
−
χ

−
, mediated by the scalar ρ. The t and u channel

amplitudes dominate the self-scattering due to the small-

3

ness of the energy transfer. In the nonrelativistic limit,
the squared-matrix element is approximately |iM|2 �
4m4

χ/m
4
ρ, and the interaction is better described by

an attractive Yukawa potential V (r) = −(αd/r)e
−rmρ ,

whose cross section has been studied extensively in the
literature [41–43]. For instance, in the Born regime,
αdmχ/mρ � 1, the scattering cross section in the center
of mass frame, σT =

�
dΩ (dσ/dΩ)(1 − cos θ), is given

by [42]
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with R ≡ vrelmχ/mρ. Here, vrel is the relative velocity
of the two colliding DM particles. We use σT in the
nonperturbative and resonant regimes from ref. [43].

The self-scattering of DM can address the other two
small-scale problems of DM. N-body simulations show
that �σT �/mχ ∼ (0.1 − 1) cm2/g at vrel ∼ 10 km/s leads
to smoothening of the inner ∼ 1 kpc of DM halos in
dwarf galaxies and mitigates the cusp vs. core prob-
lem [44, 45]. Here, �...� denotes an average over the ve-
locity distribution, which we take to be of the Maxwell-
Boltzmann form with dispersion vrel. The same effect
also tends to make the inner region of dwarf-sized dark
matter halos less dense, and is able to alleviate the too
big too fail problem [45, 46]. On the other hand, obser-
vations of colliding galaxy clusters, e.g., the Bullet clus-
ter, do not show evidence for DM-DM interactions and
thus require �σT �/mχ < 1 cm2/g at typical velocities of

vrel ∼ 103 km/s therein [47]. An ab initio calculation, in-
cluding the above effects, will provide a more detailed
and quantitative prediction of the small-scale structure.

In Fig. 2, we show the parameter space where the ob-
served DM abundance is obtained through its chemi-
cal freeze-out and all the small-scale problems of DM
structure-formation are solved simultaneously. For a
given DM mass, the relic density fixes αd (shown on the
top x-axis). To solve the cusp vs. core and too big to fail
problems, one needs �σT �/mχ ∼ (0.1−1) cm2/g at vrel ∼
10 km/s, which determines mρ in terms of mχ (shaded
band). The oscillatory behavior comes from resonances
in the DM scattering. To mitigate the missing satel-
lites problem the DM-DR scattering must be enhanced
through a near-degeneracy of the masses of χ±. The
corresponding value of δ, which leads to Tkd = 0.5 keV
and hence to Mcut � 109 M⊙, is shown through a color-
gradient inside the band. We also show the constraint
from the galaxy clusters that �σT �/mχ < 1 cm2/g for

vrel ∼ 103 km/s (hatched region at the bottom is ruled
out), and that the theory for the complex scalar φ is
perturbative, i.e., λφ/(4π) � 1 (below dashed line).

Some comments are in order about the scenario we
identify above. If mχ � 100 keV, DM is no longer a truly
cold relic, and δ is no longer small. Also, mρ becomes
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Figure 2. Solution of all small-scale problems of DM. For
a DM mass mχ, the coupling αd (top x-axis) is determined
by the relic density. Small-scale problems are solved within
the band. Three thin solid lines in the band correspond
to �σT �/mχ ∼ 0.1, 1, 10 cm2/g, respectively (top-down), at
vrel ∼ 10 km/s, addressing the cusp vs. core and too big to
fail problems. The color-gradient inside shows the common
logarithm of δ ≡ ∆mχ/mχ, which leads to Tkd = 0.5 keV
and solves the missing satellites problem. The hatched re-
gion at the bottom shows the constraint from galaxy clusters,
�σT �/mχ � 1 cm2/g at vrel ∼ 103 km/s, while the dashed line
indicates the largest mρ for which the scalar potential for φ
is perturbative.

light enough that it directly contributes to DR around
Tkd. On the other hand, ifmχ � 10GeV the potential for
φ is no longer perturbative. We therefore find 100 keV �
mχ � 10GeV to be best-motivated.

Predictions and Constraints.– The previous con-
siderations show that the complete scenario is specified in
terms of the DM mass if we require that the small-scale
problems of DM be resolved. This has two interesting
and generic consequences – (i) DR leads to an observ-
able prediction for ∆Nν , and (ii) mχ is predicted in the
100 keV - 10GeV range, which may be testable at collid-
ers and direct detection experiments aimed at light DM.

Fig. 3 shows the prediction for ∆Nν in BBN and CMB
epochs. ∆Nν increases with a later decoupling, i.e., lower
T�, because the decaying SM particles heat up the dark
sector as well. This is most apparent for T� � 0.2GeV,
i.e., below the QCD crossover. There is also a signature
step-like dependence on mχ, because of energy injection
in the dark sector from mχ and mρ decays. If mχ > T�,
then DM freeze-out heats up both the visible and dark
sectors and effectively lowers ∆Nν . On the other hand,
if mχ and/or mρ � 10−3mχ � TBBN � 1MeV, then
the DR bath is heated up by their annihilations/decays,
increasing ∆Nν at BBN. These effects lead to sharp
changes in ∆Nν across the mass thresholds. Such an
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where φ is a complex scalar and χ is a 4-component
fermion, both charged under a global U(1) symmetry.
After symmetry-breaking, φ ≡ (vφ + ρ + iη)/

√
2 has a

vacuum expectation value vφ. Its CP-odd component
η becomes a massless Goldstone field while its CP-even
component ρ remains. At the same time, the last term in
Eq. (1) splits the fermion field into two mass eigenstates
χ± with massesmχ

±
= |M±fdvφ|. The obvious Z2 resid-

ual symmetry, i.e., χ± → −χ± and (ρ, η) → (ρ, η), guar-
antees that the lighter mass eigenstate, which we take to
be χ

−
, is stable, and therefore a viable DM candidate.

Relativistic dark particles, e.g., the massless Goldstone
mode η, yield DR.

We will be interested in DM and DR scattering pro-
cesses mediated by the χ−φ interaction in Eq. (1), which,
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We will show that when χ
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and χ
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are quasi-degenerate,

i.e., mχ
+
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≡ ∆mχ � mχ, the scattering processes

can be appreciable and important. However, before we
get to that, let’s consider the cosmological abundance of
DR and DM in this scenario.

The temperatures of the dark and the visible sectors
are defined to be the temperatures of the bath of η and
photons (denoted by γ), respectively. We will assume
that T� is a temperature above which the dark sector was
in thermal equilibrium with the visible sector. This may
have been through processes common to both sectors at
high-scale, e.g., inflaton decay. Below this temperature,
the two sectors are decoupled but the conservation of
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∗(T ) are the effective number of relativistic de-

grees of freedom in the dark (d) and visible (v) sectors,
respectively, at their temperatures T . Typically, the fac-
tor in brackets is slightly smaller than 1, and Tη � Tγ .

The DR density is given by relativistic particles in
the dark sector, i.e., ρDR = π
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using the known energy density ρν of a single flavor of
an active neutrino at temperature Tν .

The DM density is set by its chemical freeze-out. In
the regime of our interest (where ∆mχ � mχ) the DM
chemical freeze-out is determined by the co-annihilation
process χ
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where αd = f
2
d/(4π). The contribution from all other

channels are p-wave suppressed and subleading. The ob-
served DM fraction ΩDM = 0.11h−2 is obtained, depend-
ing on the details of g∗d,v at the temperature of freeze-

out, for �σv� � (2 − 5) × 10−26 cm3
/s [37]. We take

�σv� = 3×10−26 cm3
/s as an illustrative value. Note that

the observed ΩDM needs fd � 1, which self-consistently
motivates the smallness of ∆mχ (≡ 2fdvφ), without fine-
tuning.

Scattering in the Dark Sector.– The DM particle
χ

−
scatters with DR, i.e., the massless pseudoscalar η,

through the processes shown in Fig. 1. The cross section
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in the limit of ∆mχ � mχ and where ω is the energy of
η in the center-of-mass frame, roughly Tη. One can see
that a small ∆mχ enhances the DM-DR scattering.

DM remains in kinetic equilibrium with DR until the
momentum exchange rate due to this process becomes
smaller than the Hubble expansion rate [33, 38], i.e.,
(Tη/mχ)nη�σηχ

−
� ∼ H(Tγ) , where nη = 3ζ(3)T 3
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is the DR number density. The above condition de-
termines the temperature of kinetic decoupling, Tkd ≡
Tγ |kd. We have

Tkd � 0.5 keV
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where δ ≡ ∆mχ/mχ is the fractional mass difference, and
ξkd ≡ (Tη/Tγ)|kd, which is in the range of (0.5 − 0.8).
DM-DR scattering can lower Tkd, which enhances the
acoustic damping cutoff, Mcut, in the structure power
spectrum. Quantitatively [39], we have Mcut � 1.7 ×
108 (Tkd/keV)

−3
M⊙, such that Tkd � 0.5 keV, ensures

the smallest DM halos are larger than about 109M⊙,
which eases the missing satellites problem [40].

DM particles can scatter with each other via χ
−
χ

−
↔

χ
−
χ

−
, mediated by the scalar ρ. The t and u channel

amplitudes dominate the self-scattering due to the small-
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where φ is a complex scalar and χ is a 4-component
fermion, both charged under a global U(1) symmetry.
After symmetry-breaking, φ ≡ (vφ + ρ + iη)/
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2 has a

vacuum expectation value vφ. Its CP-odd component
η becomes a massless Goldstone field while its CP-even
component ρ remains. At the same time, the last term in
Eq. (1) splits the fermion field into two mass eigenstates
χ± with massesmχ

±
= |M±fdvφ|. The obvious Z2 resid-

ual symmetry, i.e., χ± → −χ± and (ρ, η) → (ρ, η), guar-
antees that the lighter mass eigenstate, which we take to
be χ

−
, is stable, and therefore a viable DM candidate.

Relativistic dark particles, e.g., the massless Goldstone
mode η, yield DR.
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can be appreciable and important. However, before we
get to that, let’s consider the cosmological abundance of
DR and DM in this scenario.

The temperatures of the dark and the visible sectors
are defined to be the temperatures of the bath of η and
photons (denoted by γ), respectively. We will assume
that T� is a temperature above which the dark sector was
in thermal equilibrium with the visible sector. This may
have been through processes common to both sectors at
high-scale, e.g., inflaton decay. Below this temperature,
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using the known energy density ρν of a single flavor of
an active neutrino at temperature Tν .

The DM density is set by its chemical freeze-out. In
the regime of our interest (where ∆mχ � mχ) the DM
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served DM fraction ΩDM = 0.11h−2 is obtained, depend-
ing on the details of g∗d,v at the temperature of freeze-

out, for �σv� � (2 − 5) × 10−26 cm3
/s [37]. We take
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/s as an illustrative value. Note that

the observed ΩDM needs fd � 1, which self-consistently
motivates the smallness of ∆mχ (≡ 2fdvφ), without fine-
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in the limit of ∆mχ � mχ and where ω is the energy of
η in the center-of-mass frame, roughly Tη. One can see
that a small ∆mχ enhances the DM-DR scattering.

DM remains in kinetic equilibrium with DR until the
momentum exchange rate due to this process becomes
smaller than the Hubble expansion rate [33, 38], i.e.,
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where δ ≡ ∆mχ/mχ is the fractional mass difference, and
ξkd ≡ (Tη/Tγ)|kd, which is in the range of (0.5 − 0.8).
DM-DR scattering can lower Tkd, which enhances the
acoustic damping cutoff, Mcut, in the structure power
spectrum. Quantitatively [39], we have Mcut � 1.7 ×
108 (Tkd/keV)−3

M⊙, such that Tkd � 0.5 keV, ensures
the smallest DM halos are larger than about 109M⊙,
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ness of the energy transfer. In the nonrelativistic limit,
the squared-matrix element is approximately |iM|2 �
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4
ρ, and the interaction is better described by

an attractive Yukawa potential V (r) = −(αd/r)e
−rmρ ,

whose cross section has been studied extensively in the
literature [41–43]. For instance, in the Born regime,
αdmχ/mρ � 1, the scattering cross section in the center
of mass frame, σT =

�
dΩ (dσ/dΩ)(1 − cos θ), is given

by [42]

σT � 8πα2
d

m2
χv

4
rel

�
log(1 +R2)− R2

1 +R2

�
, (8)

with R ≡ vrelmχ/mρ. Here, vrel is the relative velocity
of the two colliding DM particles. We use σT in the
nonperturbative and resonant regimes from ref. [43].

The self-scattering of DM can address the other two
small-scale problems of DM. N-body simulations show
that �σT �/mχ ∼ (0.1 − 1) cm2/g at vrel ∼ 10 km/s leads
to smoothening of the inner ∼ 1 kpc of DM halos in
dwarf galaxies and mitigates the cusp vs. core prob-
lem [44, 45]. Here, �...� denotes an average over the ve-
locity distribution, which we take to be of the Maxwell-
Boltzmann form with dispersion vrel. The same effect
also tends to make the inner region of dwarf-sized dark
matter halos less dense, and is able to alleviate the too
big too fail problem [45, 46]. On the other hand, obser-
vations of colliding galaxy clusters, e.g., the Bullet clus-
ter, do not show evidence for DM-DM interactions and
thus require �σT �/mχ < 1 cm2/g at typical velocities of

vrel ∼ 103 km/s therein [47]. An ab initio calculation, in-
cluding the above effects, will provide a more detailed
and quantitative prediction of the small-scale structure.

In Fig. 2, we show the parameter space where the ob-
served DM abundance is obtained through its chemi-
cal freeze-out and all the small-scale problems of DM
structure-formation are solved simultaneously. For a
given DM mass, the relic density fixes αd (shown on the
top x-axis). To solve the cusp vs. core and too big to fail
problems, one needs �σT �/mχ ∼ (0.1−1) cm2/g at vrel ∼
10 km/s, which determines mρ in terms of mχ (shaded
band). The oscillatory behavior comes from resonances
in the DM scattering. To mitigate the missing satel-
lites problem the DM-DR scattering must be enhanced
through a near-degeneracy of the masses of χ±. The
corresponding value of δ, which leads to Tkd = 0.5 keV
and hence to Mcut � 109 M⊙, is shown through a color-
gradient inside the band. We also show the constraint
from the galaxy clusters that �σT �/mχ < 1 cm2/g for

vrel ∼ 103 km/s (hatched region at the bottom is ruled
out), and that the theory for the complex scalar φ is
perturbative, i.e., λφ/(4π) � 1 (below dashed line).

Some comments are in order about the scenario we
identify above. If mχ � 100 keV, DM is no longer a truly
cold relic, and δ is no longer small. Also, mρ becomes

10�4 10�3 10�2 10�1 100 101 102 103
10�6

10�5

10�4

10�3

10�2

10�1

100

101
10�8 10�7 10�6 10�5 10�4 10�3 10�2

m Χ�GeV�

m
Ρ
�GeV

�
Αd

Excluded by
cluster bound

Nonperturbative

So
lut
ion
of
sm
all�
sca
le p
rob
lem
s

�1

�2

�3

�4

�5

�6

�7

log10∆

Figure 2. Solution of all small-scale problems of DM. For
a DM mass mχ, the coupling αd (top x-axis) is determined
by the relic density. Small-scale problems are solved within
the band. Three thin solid lines in the band correspond
to �σT �/mχ ∼ 0.1, 1, 10 cm2/g, respectively (top-down), at
vrel ∼ 10 km/s, addressing the cusp vs. core and too big to
fail problems. The color-gradient inside shows the common
logarithm of δ ≡ ∆mχ/mχ, which leads to Tkd = 0.5 keV
and solves the missing satellites problem. The hatched re-
gion at the bottom shows the constraint from galaxy clusters,
�σT �/mχ � 1 cm2/g at vrel ∼ 103 km/s, while the dashed line
indicates the largest mρ for which the scalar potential for φ
is perturbative.

light enough that it directly contributes to DR around
Tkd. On the other hand, ifmχ � 10GeV the potential for
φ is no longer perturbative. We therefore find 100 keV �
mχ � 10GeV to be best-motivated.

Predictions and Constraints.– The previous con-
siderations show that the complete scenario is specified in
terms of the DM mass if we require that the small-scale
problems of DM be resolved. This has two interesting
and generic consequences – (i) DR leads to an observ-
able prediction for ∆Nν , and (ii) mχ is predicted in the
100 keV - 10GeV range, which may be testable at collid-
ers and direct detection experiments aimed at light DM.

Fig. 3 shows the prediction for ∆Nν in BBN and CMB
epochs. ∆Nν increases with a later decoupling, i.e., lower
T�, because the decaying SM particles heat up the dark
sector as well. This is most apparent for T� � 0.2GeV,
i.e., below the QCD crossover. There is also a signature
step-like dependence on mχ, because of energy injection
in the dark sector from mχ and mρ decays. If mχ > T�,
then DM freeze-out heats up both the visible and dark
sectors and effectively lowers ∆Nν . On the other hand,
if mχ and/or mρ � 10−3mχ � TBBN � 1MeV, then
the DR bath is heated up by their annihilations/decays,
increasing ∆Nν at BBN. These effects lead to sharp
changes in ∆Nν across the mass thresholds. Such an
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Evidence for DM is overwhelming, but …  
… particle identity a mystery 
 
Small-scale Structure may be providing us hints about what the 
leading non-gravitational DM interactions could be 
 
One proposal is that DM self interacts and interacts with a 
radiation-like species 
 
Uncertain and challenging, but we are on an exciting hunting 
expedition! 
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