

Recent Highlights from IceCube

— with a focus of Dark Matter Searches —

Matthias Danninger, University of British Columbia

Overview

IceCube at the South Pole

IceCube at the South Pole

IceCube at the South Pole

- Charged particles produce radiation from ionizations and stochastics in ice
- DOMs digitize the PMT waveforms of photoelectrons
- Arrival time and recorded charge information used to reconstruct events

PMT: Hamamatsu, 10"

Digitizers:

ATWD: 3 channels; sampling 300MHz, capture 400ns

FADC: sampling 40 MHz, capture 6.4 µs

Flasher board:

12 controllable LEDs at 0 or 45 degrees

Dark Noise rate ~ 400 Hz

Local Coincidence rate ~ 15 Hz

Deadtime < 1%

Timing resolution \leq 2-3 ns

Power consumption: 3W

Flavour identification (tracks & showers-cascades)

(direct vs scattered photons)

$CC \nu_{\mu}$ interaction create μ

can travel kilometres

Angular reconstruction

• can be as good as ~ 0.2°

Energy reconstruction

- only lower bound;
- most energy deposited outside the detector

$\mathbf{CC} \ \mathbf{v}_{\tau,\mathbf{e}}$ interaction & $\mathbf{NC} \ \mathbf{v_x}$ interaction

- τ,**e** travel short distances
- NC: Hadron showers + ν

Angular reconstruction

more difficult, more accurate with higher energy

Energy reconstruction

• ~10% for deposited E; less than E_y if NC

Calibration

UBC

Physical Review D89 (2014) 102004

Calibration Sources:

- LED Flasher on each DOM
- In-Ice Calibration Laser
- Cosmic Ray Energy Spectrum
- Moon Shadow
- Atmospheric Neutrino Energy
 Spectrum
- Minimum-Ionizing Muons

Moon Shadow in Cosmic Ray muons in IceCube (14 σ)

Resolution

Shadow profile vs. angular distance from the Moon

Cosmic Ray Background in IceCube

(neutrino signal examples for illustration only)

Results from Dark Matter Searches with IceCube & DeepCore

Indirect Search with IceCube (Overview)

(Image: M.Strassler)

Dwarf spheroidal Galaxies:

IceCube-59 limits

Clusters of Galaxies:

IceCube-59 limits

(arXiv:1210.3557, accepted PRD)

Galactic Halo:

- IceCube-22 limits (PRD 84 (2011) 022004)
- IceCube-79 limits

Galactic Center:

• IceCube-40 limits (arXiv:1210.3557 2012)

Local sources (Sun & Earth):

- IceCube-79 limits (PRL 110 (2013) 131302)
- Specific models & Global fits (JCAP 11 (2012) 057)

- Searching for DM-annihilations is in low energy regime for IceCube. (~10 GeV-TeV)
- Consider "extrema" to bracket possible neutrino spectrum. e.g. hard (W+W-) and soft (bb)

Solar Dark Matter Search with IceCube

- All processes depend on WIMP mass
- Annihilation channel (branching ratios)
- Annihilation cross-section
- Capture (scattering)
 - → Scattering cross-sections (SI & SD)

Proposed by:

Silk, Olive & Srednicki '85, Gaisser & Tilav 86, Freese '86, Krauss, Srednicki & Wilzcek '86

Details about Capture Process (e.g.):

Press & Spergel '85, Gould '88, Peter 2008 Sivertsson & Edsjö, PRD85 (2012) 123514

Solar Dark Matter Search - results

Expected sens. vs. observed result

details on systematic uncertainties, see *PRL 110 (2013) 131302*

Solar Dark Matter Search - results

- most stringent SD cross-section limit for most models
- complementary to direct detection search efforts
- different astrophysical & nuclear form-factor uncertainties
- Expect new results on Moriond time-scale
- Multi-year combined results later this summer

Solar Dark Matter Search - astrophysical uncertainties

Interactive Tools to visualize astrophysical uncertainties in Solar WIMP searches

(C. Rott & M.D. doi:10.1016/j.dark.2014.10.002)

Included: local DM density, local Sun velocity, dark-disk fraction, and choice of Halo model

Not included: Solar composition & nuclear form-factor uncertainties

New SUSY analysis...

Scott, Savage, Edsjö & the IceCube Coll., JCAP 11, 057 (2012)

Specific model (IceCube unbinned likelihood)

$$\mathcal{L} = \mathcal{L}_{\text{num}}(n|\theta_{\text{signal+BG}}) \prod_{i=1}^{n} \mathcal{L}_{\text{spec},i} \mathcal{L}_{\text{ang},i}$$

Include IceCube event level data in

- Model exclusion analysis
- Global statistical fit (parameter estimation)

Global SUSY fit analysis

$$\mathcal{L} = \mathcal{L}_{\text{num}}(n|\theta_{\text{signal}+BG}) \prod_{i=1}^{n} \mathcal{L}_{\text{spec},i} \mathcal{L}_{\text{ang},i}$$

- Energy resolution (energy estimated by number of DOM hits)
- Angular resolution (incl. PSF of individual events)
- Systematic uncertainty included in effective area
- For initial publication, we calculated all quantities at neutrino level, as we looked at v-energies above ~60 GeV.
- Good approximation that production angle (Φ_{μ}) between ν and μ is less than PSF
- DeepCore sensitive to ν -energies down to ~10 GeV.
- Data release in preparation for all IceCube-79 solar WIMP event selection
 —> including detector responses

Model exclusion example (MSSM-25)

Ref: P.Scott, C.Savage, J. Edsjö & the IceCube Coll., JCAP11,057 (2012) & H.Silverwood et.al., arXiv:1210.0844

Details: 25-dim. parameter space (MSSM-25) using scanning based on importance sampling

Galactic Dark Matter Searches

(equatorial coordinates)

Galactic Dark Matter Searches (IceCube-79)

(IceCube results shown for NFW profile)

Search for many interesting potential annihilation channels: (Various DM-Halo models tested)

$$χχ$$
 $\begin{cases} νν, μμ, ττ, WW, bb \\ zz, zγ \end{cases}$

Galactic Dark Matter Searches (IceCube-79)

21

<u>IceCube-59</u> Dwarf galaxy searches:

- Source stacking analysis
- Optimized size of search window

<u>IceCube-59</u> Galaxy cluster analysis:

- Extended point source search
- Optimized size of search window
- Substructures taken into account

 $m_{_Y}$ [GeV]

The High-Energy Tail Searching for a signal above the atmospheric neutrino background

Cosmic rays - a 100 year old puzzle

Discovered by Victor Hess

Extraordinary particle accelerators **somewhere**, but still **not identified** after 101 years:

- Supernova remnants?
- Active galactic nuclei?
- Gamma ray bursts?

Astrophysical messenger

24

General search strategy

Point like v sources

Promising for:

- rare bright sources (e.g. GRB)
- transient sources
- galactic sources

Diffuse v fluxes

• more abundant extragalactic

Matthias Danninger MIAPP, February 2015

Summary of diffuse neutrino fluxes

- Precise measurement of atmospheric V_{μ} spectrum (arxiv:1409.4535)
- First measurement of atmospheric V_e spectrum at high energies (PRL 110 (2013) 151105)

All flavour - all Sky - starting event analysis

IceCube discovers excess events at high energies using contained events

• Significant (5.7 σ) excess above the background-only expectation

Cut-off at PeV?

Skymap

Other searches:

- Galactic plane correlation (+-2.5 degrees, motivated by TeV γ observations)
- Time clustering / GRB

Not significant!

see also:

Science, 342 (2013) 1242856 Phys. Rev. Lett. 113, 101101

Quantifying the excess:

- Data is fit to a mixture of non-prompt atm., prompt atm. and astrophysical neutrinos
- In the range 60 TeV < E < 2 PeV, spectrum consistent with an E⁻² spectrum
 - \rightarrow E² $\phi \sim 0.95 \pm 0.3*10^{-8}$ GeV/cm²/s/sr per flavor
- E⁻² spectrum predicts too may neutrinos above ~2 PeV
 - → Cutoff or softer spectrum needed

Northern Sky through going analysis

- Analysis of through-going events from the northern sky using 2 years of data— ν_{μ} charged current only, above ~1 TeV (publication in preparation)
- ullet Excess over atmospheric background of 3.9 σ
- Best fit astrophysical flux is compatible with 3yr HESE results
- Flavor Ratio of Astrophy. Neutrinos above 35 TeV in IceCube (arxiv:1502.03376)

Could this be Heavy Dark Matter?

Atmospheric neutrino Oscillations analyses

Neutrino oscillations

– disappearance analysis:

Survival probability of ν_{μ}

$$P(\nu_{\alpha} \to \nu_{\beta}) = \sin^2(2\theta) \sin^2(1.27\Delta m^2 L/E)$$

Oscillation parameters: θ and Δm^2 (in eV²)

Variables: L (distance traveled in km) and E (neutrino energy in GeV)

Neutrino oscillations - results

33

\mathbf{V}_{μ} – disappearance analysis:

- current analysis: Fit for zenith angle and energy
- High statistics and low energy threshold (3 years of data)
- Reduced systematic uncertainties, compared to first analysis

Actual fit is simultaneously performed in 2 dimensions (energy+zenith)

Neutrino oscillations - results

V_{μ} – disappearance analysis:

- current analysis: Fit for zenith angle and energy
- High statistics and low energy threshold (3 years of data)
- Reduced systematic uncertainties, compared to first analysis

Results for normal hierarchy:

$$\sin^2(\theta_{23}) = 0.53^{+0.09}_{-0.12}$$

$$|\Delta m^2_{32}| = 2.72^{+0.19}_{-0.20} \times 10^{-3} \text{eV}^2$$

Best fit values and 90% confidence interval

Looking ahead - PINGU (LOI: arXiv:1401.2046)

Precision IceCube Next Generation Upgrade:

- Higher DOM density, lower energy threshold (few GeV)
- 20 40 (+) strings with ~ 20 m spacing
- 60 100 Optical Modules per string

Main Physics Topic:

neutrino mass hierarchy

-> see LOI for details

PINGU — Dark Matter sensitivity

Sensitivity study based on current IceCube & DeepCore techniques:

- assume complete rejection of down going atm. muon Bg through veto techniques
- current reconstruction techniques used
- simplified analysis (Onsource search window of 10 degrees)
- 1 year live time

PINGU's higher DOM density allows for inclusion of Cascade channel —> improved sensitivity

PINGU — Dark Matter sensitivity

Sensitivity study based on current IceCube & DeepCore techniques:

- assume complete rejection of down going atm. muon
 Bg through veto techniques
- current reconstruction techniques used
- simplified analysis (Onsource search window of 10 degrees)
- 1 year live time

Conclusions — Dark Matter searches

- Competitive & Complementary searches for Dark Matter with IceCube (Sun & Galaxy)
- Searches for Kaluza Klein Dark Matter (PRD 81 (2010) 057101)
- Multiyear datasets from full detector being analyzed —> expect new results soon
- PINGU will allow to extend searches to very low WIMP masses (~few GeV)

Searches from the Earth (work in progress):

- Earth capture dominated by resonances with heavy elements
- interesting for WIMP masses below ~100GeV
- Background estimates from MC & extrapolations only (no On-Off-source search possible)

IceCube's physics program is very diverse:

Cosmic Rays. Atmospheric neutrinos, Particle Physics, Astronomy, Applied Science & Cosmology

Recent highlight:

Observation of Astrophys. v v-Oscillation measurements

The Future

39

An upgraded IceCube detector for high energies - in addition to low energies (PINGU)

• PINGU

- O(40) densely packed strings
- Neutrino mass hierarchy, dark matter, neutrino physics
- High-Energy Upgrade (no name yet)
 - IceCube is optimized for ~1TeV -> focus on a threshold of ~30TeV
 - O(100) strings, ~10km³
 - Identify astrophysical sources of neutrinos (and CR's), neutrino and particle physics

Additional slides

Flavor identification (showers-cascades)

Waveform examples from modules at various positions in the detector:

Starting event analysis - veto definition

(Image: A. Karle)

Starting event analysis

Look both up and down

PeV neutrinos absorbed in Earth; seen only horizontally or from above

Atmospheric self veto for down-going events

Largest sensitivity to v_e CC:

All energy deposited inside the detector

Smaller sensitivity for $\mathbf{v_{\tau}}$ and $\mathbf{v_{\mu}}$ CC:

muon and tau decay products carry out part of the initial neutrino energy

Smallest sensitivity to NC interactions:

Significant fraction of the total energy disappears with the neutrino

First hints in IceCube analyses (partial detector)

- Diffuse searches sum up muon neutrino flux from all directions
- Excess in high energy tail: 1.8σ

Diffuse cascade search IC40

• Excess in high energy tail: 2.1σ

Cosmogenic (GZK) search

Analysis strategy:

Select starting events with a high number of PE in the detector (>60000 PE, depending on zenith) Makes analysis sensitive to E_V > PeV

We found:

2 events in 616 days of livetime between May 2010- May 2012

Expected background: 0.08 ± 0.05 events $\rightarrow 2.8\sigma$ excess (Bg-only hypothesis)

See also PRL 111, 021103 (2013)

Cosmogenic (GZK) search

Analysis strategy:

Select starting events with a high number of PE in the detector (>60000 PE, depending on zenith) Makes analysis sensitive to E_V > PeV

We found:

2 events in 616 days of livetime between May 2010- May 2012

Expected background: 0.08 ± 0.05 events $\rightarrow 2.8\sigma$ excess (Bg-only hypothesis)

See also PRL 111, 021103 (2013)

Starting event analysis

Atmospheric µ bg

Determined from data:

Define a second veto layer and tag events, which pass the first layer

$$6 + / - 3.4$$

Atmospheric \mathbf{v} bg

Based on MC & previous IceCube measurements (including prompt flux measurement = $0 + \sigma$)

$$4.6 + 3.7 - 1.2$$

Charge threshold 6000 p.e.

Maximum likelihood analysis

ICECUBE

The observed angle to the Sun is fitted with signal and background pdf:s

Evaluate shape fit with loglikelihood rank (FC) to construct CI for the number of signal events μ_s

$$R(\mu) = \frac{\mathcal{L}(\mu)}{\mathcal{L}(\hat{\mu})}$$

L(µ) is the pdf product over the final sample

(Angle between event track & direction from the Sun)

$$\mu_j = \mu \frac{T_{\text{live}}^{j} V_{\text{eff}}^{j}}{T_{\text{live}}^{1} V_{\text{eff}}^{1} + T_{\text{live}}^{2} V_{\text{eff}}^{2}}$$

(scale to multiple datasets)

Solar Dark Matter Search - results

Expected sens. vs. observed result

details on systematic uncertainties, see *PRL 110 (2013) 131302*

Galactic Dark Matter Searches

Galactic Dark Matter Searches (IceCube-79)

(IceCube results shown for NFW profile)

Search for many interesting potential annihilation channels: (Various DM-Halo models tested)

$$\chi\chi$$
 $\begin{cases} vv, \mu\mu, \tau\tau, WW, bb \\ zz, z\gamma \end{cases}$

Galactic Dark Matter Searches (IceCube-79)

<u>IceCube-79</u> Galactic Center analysis:

- First IceCube analysis looking at GC for low WIMP masses (< 100 GeV)
- Up to 4 orders of magnitude improved sensitivity @ 100 GeV
- Results are compatible with background only

Galactic Dark Matter Searches (IceCube-79)

natural scale

<u>IceCube-59</u> Dwarf galaxy searches:

10⁻²⁶

10¹

- Source stacking analysis
- Optimized size of search window

<u>IceCube-59</u> Galaxy cluster analysis:

† interpreted for DM [Meade et al. (2010)]

10⁴

54

Extended point source search

10³

 $m_{_Y}$ [GeV]

- Optimized size of search window
- Substructures taken into account

10²

Neutrino oscillations - first analysis

ICECUBE

(PRL accepted, arXiv:1305.3909)

 Significant zenith angle deviation in Low-energy sample

low-energy samplehigh-energy sample

Analysis strategy - mass hierarchy

- ullet Atm. neutrinos oscillations with resonant $oldsymbol{v}$ e conversion in high electron densities in the Earths core
- Measurement looks for difference between patterns A & B

 $\cos \theta_{z}$

Matthias Danninger MIAPP, February 2015 56

 $\cos \theta_{z}$

Analysis strategy - mass hierarchy

ullet Atm. neutrinos oscillations with resonant ${f v}$ e conver densities in the Earths core

Measurement looks for difference between patt

 $\frac{\varphi(\nu)}{\varphi(\nu_{atm})} \sum_{\varphi(anti-\nu_{atm})} \varphi(anti-\nu_{atm})$

= [pattern A]

hout ability to NowA*B! · from

= [pattern B]

