

Koichi Hamaguchi (University of Tokyo)

@MIAPP Dark MALT workshop, February 19, 2015

Koichi Hamaguchi (University of Tokyo)

@MIAPP Dark MALT workshop, February 19, 2015

partially based on..... KH, K.Mukaida (Wino DM from Q-ball), in preparation KH, K.Ishikawa (light Bino-like DM), in preparation M.Endo, KH, S.Iwamoto, T.Yoshinaga (DM + g-2), in preparation KH, M.Ibe, T.T.Yanagida, N.Yokozaki ((gravitino DM in) GMSB), 1403.1398

Plan

- 126 GeV Higgs and SUSY
- Wino DM (in heavy sfermion scenario)
- gravitino DM (in GMSB)

- light Bino-like DM (h/Z-resonant Bino)
- g-2 and DM

Plan

- 126 GeV Higgs and SUSY
- Wino DM (in heavy sfermion scenario)
- gravitino DM (in GMSB)

- light Bino-like DM (h/Z-resonant Bino)
- g-2 and DM

126 GeV Higgs

126 GeV Higgs

126 GeV Higgs

$$\rightarrow \begin{cases} \langle H \rangle^2 = \frac{m^2}{2 \lambda_{\rm H}} \\ m_{\rm Higgs}^2 = 2 m^2 \end{cases}$$

126 GeV Higgs

$$\rightarrow \begin{cases} \langle H \rangle^2 = \frac{m^2}{2 \lambda_{\rm H}} \quad \overset{\text{We knew.l}}{=} \frac{1}{2\sqrt{2} G_F} \simeq (174 \text{ GeV})^2 \\ \stackrel{\text{Fermi constant}}{=} \frac{1}{2\sqrt{2} G_F} \simeq 1.17 \times 10^{-5} \text{GeV}^{-2} \end{cases}$$

$$\int m_{\rm Higgs}^2 = 2 \ m^2$$

126 GeV Higgs

$$\rightarrow \begin{cases} \langle H \rangle^2 = \frac{m^2}{2 \lambda_{\rm H}} \quad \text{We} \stackrel{\text{knew.-1}}{=} \frac{1}{2\sqrt{2}G_F} \simeq (174 \text{ GeV})^2 \\ \\ m_{\rm Higgs}^2 = 2 m^2 \quad \text{Now we also know} \\ \simeq (126 \text{ GeV})^2 \end{cases}$$

126 GeV Higgs

 $V(H) = -m^2 (H^{\dagger}H) + \lambda_{\rm H} (H^{\dagger}H)^2$

$$= \frac{M^2}{2 \lambda_{\rm H}} \quad \overset{\text{we knew.}}{=} \frac{1}{2\sqrt{2} G_F} \simeq (174 \text{ GeV})^2$$

 $m_{
m Higgs}^2 = 2 \ m^2 \ \simeq (126 \ {
m GeV})^2$

126 GeV Higgs

$V(H) = -m^2 (H^{\dagger}H) + \lambda_{\rm H} (H^{\dagger}H)^2$ (89 GeV)² 0.13

completely determined !

Dark Matter = Lightest SUSY particle (with R-parity)

OK, then,.... What's the implications of 126 GeV Higgs for SUSY ??

126 GeV Higgs and SUSY $V(H) = -m^2(H^{\dagger}H) + \lambda_{\rm H}(H^{\dagger}H)^2$ (89 GeV)² 0.13 in SUSY...

126 GeV Higgs and SUSY $V(H) = -m^2 (H^{\dagger} H) + \lambda_{\rm H} (H^{\dagger} H)^2$ on the other hand $(89 \text{ GeV})^2$ 0.13 $=\lambda_{H_{\bullet}}^{\text{tree}} + \delta\lambda_{H_{\bullet}}^{\text{loop}}$ $-m^2 \simeq |\mu|^2 + m_{H_u}^{2 \text{ (tree)}} + \delta m_{H_u}^{2 \text{ (loop)}}$ $\frac{g^2 \cos^2 2\beta}{8 \cos^2 \theta_W} \simeq \mathbf{0.069} \, \cos^2 2\beta$ up to $\mathcal{O}\left(\frac{1}{\tan^2\beta}\right)$ large μ ----> fine-tuning. $\frac{3y_t^4}{16\pi^2} \left(\log \left(\frac{m_{\text{stop}}^2}{m_t^2} \right) + \alpha^2 - \frac{\alpha^4}{12} \right) + \cdots$ e.g., $\simeq (1000 \text{ GeV})^2 - (1004 \text{ GeV})^2$ for large $\tan \beta$. $(\alpha \simeq A_t/m_{\rm stop})$ for $|\mu| \simeq 1$ TeV requires Light Higgsino ...requires heavy stop to avoid a fine-tuning. and/or large A-term

Fine-tuning worse than 1% seems unavoidable in MSSM.

(MSSM = Minimal SUSY Standard Model)

Fine-tuning worse than 1% seems unavoidable in MSSM.

(MSSM = Minimal SUSY Standard Model)

What does it imply ??

1. No SUSY ?

2. (It's anyway fine-tuned, then....)
Very heavy SUSY ? (10-100 TeV, or even higher...)

3. (still.....)

O(0.1-1) TeV SUSY ? (fine-tuned, but better than 1. and 2. ...)

Fine-tuning worse than 1% seems unavoidable in MSSM. (MSSM =Minimal SUSY Standard Model)

Plan

- 126 GeV Higgs and SUSY
- Wino DM (in heavy sfermion scenario)
- gravitino DM (in GMSB)

- light Bino DM (h/Z-resonant Bino)
- g-2 and DM

Plan

- 126 GeV Higgs and SUSY Wino DM (in heavy sfermion scenario)
 - gravitino DM (in GMSB)

- light Bino DM (h/Z-resonant Bino)
- g-2 and DM

heavy sfermion scenario and Wino DM

heavy sfermion scenario and Wino DM

$$m_{H}^{2} = 4\lambda_{H} \langle H \rangle^{2}$$

$$\rightarrow \lambda_{H} \simeq 0.13$$

$$= \underbrace{\lambda_{H}^{\text{tree}}}_{0.07 \cos^{2} 2\beta} + \underbrace{\delta \lambda_{H}^{\text{loop}}}_{\sim \log(m_{\text{stop}}^{2})}$$

heavy sfermion scenario and Wino DM

(It's anyway fine-tuned, then....) Very heavy SUSY

- consistent with 126 GeV Higgs
- No cosmological gravitino problem

 $au_{
m gravitino} = 0.03 \, \sec \left(\frac{m_{
m gravitino}}{100 \, {
m TeV}} \right)^{-3}$...decays before BBN.

- Also, **no Polonyi problem** since gaugino masses can be induced without singlet (Anomaly-mediation).
- coupling unification is OK, and DM is OK!

Many many related works recently..... (too many to list all...)

Ibe,Yanagida'11, Ibe,Matsumoto,Yanagida'12, Bhattacherjee,Feldstein,Ibe,Matsumoto,Yanagida'12, Hall,Nomura'11, Hall,Nomura,Shirai'12, Giudice,Strumia'11, Arvanitaki,Craig,Dimopoulos,Villadoro'12 Arkani-Hamed,Gupta,Kaplan,Weiner,Zorawski'12, Ibanez,Valenzuela'13, Jeong,Shimosuka,Yamaguchi'11, Hisano,Ishiwata,Nagata'12, Sato,Shirai,Tobioka'12, Moroi,Nagai'13, McKeen,Pospelov,Ritz'13, Hisano,Kuwahara,Nagata'13, Hisano,Kobayashi,Kuwahara,Nagata'13, etc etc.....

['98 Giudice,Luty,Murayama,Rattazzi, '98 Randall,Sundram]

Fig. from M.Ibe's talk at KIAS workshop 2014.

Relic abundance:

M ~ 3 TeV if thermal relic. [Hisano-Matsumoto-Nagai-Saito-Senami'06]

LSP DM = (typically) Wino !! direct (anomaly-mediation)

Indirect detection: is very interesting !!

Fig. from A.Hryczuk, I.Cholis, R.Iengo, M.Tavakoli, P.Ullio, 14

SM

particle

Figure 16. Combination of the 95% CL upper limits for the Wino DM mass. The black vertical line shows the position of the peak of the resonance. For a given channel different shaded regions correspond to limits derived using different assumptions. For antiprotons (\vec{p}) this is related to the diffusion zone thickness, leptons (e^+) the local DM density and energy density in the ISRF and magnetic field, low latitude γ -rays (γ LL) the radiation field in the inner galaxy and interstellar gas, high latitude γ -rays (γ HL) the extragalactic DM substructures, for dwarf spheroidal galaxies (γ dSph) the J-factor and foreground emission, for γ -line the DM profile in the inner 1° and in the case of the CMB constraints different combinations of data sets. See text and sections corresponding to its given channel for details.

DM

SM

particle

collider

Can be probed/excluded by several channels ! (Fermi-LAT, GAMMA-400, CTA, AMS-02,.....)

8 TeV bound:

m(Wino) > 270 (260) GeV ATLAS:1310.3675 (CMS:1411.6006) 14 TeV discovery @300fb⁻¹ (3000fb⁻¹) if m(Wino) < 500 (650) GeV

Wino Wino indirect DM DM Disappearing track collide • antiproton @ AMS-02 @ 14 TeV LHC • gamma-line @ CTA • continuum gamma @ Fermi.. < 500-600 GeV SM SM particle particle

-> requires non-thermal production.

• by Q-ball decay [Fujii-KH,'01'02, KH-Mukaida, in preparation]

• by Q-ball decay [Fujii-KH,'01'02, KH-Mukaida, in preparation]

Non-thermal Wino Dark Matter

from Q-ball decay [Fujii-KH, hep-ph/0110072, 0205044 KH-Mukaida, in preparation]

<u>step 1</u>: Affleck-Dine baryogenesis.

• ϕ = a linear combination of squark fields, and flat direction in MSSM. (e.g., UDD flat direction)

step 1: Affleck-Dine baryogenesis.

- ϕ = a linear combination of squark fields, and flat direction in MSSM. (e.g., UDD flat direction)
- ϕ can have a large VEV during inflation.

step 1: Affleck-Dine baryogenesis.

- ϕ = a linear combination of squark fields, and flat direction in MSSM. (e.g., UDD flat direction)
- ϕ can have a large VEV during inflation.
- after inflation, ϕ rotates in the field space, if B-violation exists. (e.g., W = (UDD)³/M².)

step 1: Affleck-Dine baryogenesis.

- ϕ = a linear combination of squark fields, and flat direction in MSSM. (e.g., UDD flat direction)
- ϕ can have a large VEV during inflation.
- after inflation, ϕ rotates in the field space, if B-violation exists. (e.g., W = (UDD)³/M².)

<u>step 2:</u> ϕ field (= squark field) fragments into non-topological solitons, Q-balls.

step 1: Affleck-Dine baryogenesis.

- ϕ = a linear combination of squark fields, and flat direction in MSSM. (e.g., UDD flat direction)
- ϕ can have a large VEV during inflation.
- after inflation, ϕ rotates in the field space, if B-violation exists. (e.g., W = (UDD)³/M².)
- <u>step 2:</u> ϕ field (= squark field) fragments into non-topological solitons, Q-balls.

step 3: late time Q-ball decay leads to non-thermal DM production.

step 1: Affleck-Dine baryogenesis.

- ϕ = a linear combination of squark fields, and flat direction in MSSM. (e.g., UDD flat direction)
- ϕ can have a large VEV during inflation.
- after inflation, ϕ rotates in the field space, if B-violation exists. (e.g., W = (UDD)³/M².)
- <u>step 2:</u> ϕ field (= squark field) fragments into non-topological solitons, Q-balls.

step 3: late time Q-ball decay leads to non-thermal DM production.

Non-thermal Wino Dark Matter from Q-ball decay [Fujii-KH, hep-ph/0110072, 0205044

KH-Mukaida, in preparation]

Kawasaki-Yamada [1209.5781]

Kamada-Kawasaki-Yamada [1211.6813]

- large squark mass (heavy sfermion scenario)
- Sommerfeld enhancement of Wino annihilation.

- this effect,
- Iarge squark mass (heavy sfermion scenario)
- Sommerfeld enhancement of Wino annihilation.

RESULT (for an example model point, preliminary)

[model point]: udd -flat direction with $W \propto (udd)^2$. $\underline{m_{\rm Wino} \simeq 600~{\rm GeV}} \ < \ m_{\rm Bino}, m_{\rm gluino} \ \ll \ m_{\rm Higgsino}, m_{\rm squark}, m_{\rm slepton} \sim 10~{\rm TeV}$ \implies In order to obtain $\Omega_{\text{Wino}}^{\text{non-thermal}} \simeq \Omega_{\text{CDM}} \rightarrow T_{\text{Q-ball decay}} \sim 300 \text{ MeV}.$ \implies Q-ball charge $Q \sim 10^{24}$ (new effect taken into account) \implies initial amplitude of AD-field $\phi_0 \sim 0.03 M_P ~(\sim 7Q^{1/2}m_{\phi})$ \implies correct baryon asymmetry is obtained by, e.g., $\delta_{\rm eft} \sim 10^{-3}$ and $T_R \sim 10$ GeV.

It works !

X It requires very low TR

or entrapy production. (in contrast to Leptogenesis)

- 126 GeV Higgs and SUSY
- Wino DM (in heavy sfermion scenario)
- gravitino DM (in GMSB)

- light Bino-like DM (h/Z-resonant Bino)
- g-2 and DM

- 126 GeV Higgs and SUSY
- Wino DM (in heavy sfermion scenario) gravitino DM (in GMSB)

- light Bino-like DM (h/Z-resonant Bino)
- g-2 and DM

Mass (GeV/c2)

Collider signature: (... IF NLSP is charged (stau))

= long-lived charged track !

... but 126 GeV Higgs suggests

O(> TeV) SUSY particles in GMSB (where A-term is small).

Is it still possible to see it ?

- 126 GeV Higgs and SUSY
- Wino DM (in heavy sfermion scenario)
- gravitino DM (in GMSB)

- light Bino-like DM (h/Z-resonant Bino)
- g-2 and DM

• 126 GeV Higgs and SUSY

light Bino-like DM (h/Z-resonant Bino)

g-2 and DM

126 GeV Higgs and SUSY

light Bino-like DM (h/Z-resonant Bino)

[KH, K.Ishikawa, in preparation]

Suppose M_1 , μ << [all other SUSY particle masses]

-> Only 3 relevant parameters: M_1 , μ , tan β

	(M1	$-m_Z s_W \mathbf{c}_{\boldsymbol{\beta}}$	$m_Z s_W \mathbf{s}_{\beta}$
$M_{\rm neutralino} =$	$-m_Z s_W \mathbf{c}_{\boldsymbol{\beta}}$	0	$-\mu$
	$m_Z s_W \mathbf{s}_{\beta}$	$-\mu$	0 /

= One of the "well-tempered" scenarios.

[N.Arkani-Hamed, A.Delgado, G.F.Giucice, 0601041]

light Bino-like DM (h/Z-resonant Bino)

[KH, K.Ishikawa, in preparation]

Suppose M_1 , μ << [all other SUSY particle masses]

light Bino-like DM (h/Z-resonant Bino)

[KH, K.Ishikawa, in preparation]

Suppose M_1 , μ << [all other SUSY particle masses]

[KH, K.Ishikawa, in preparation]

Suppose M_1 , μ << [all other SUSY particle masses]

covered by XENONIT and/or LHC.

Plan

• 126 GeV Higgs and SUSY

light Bino-like DM (h/Z-resonant Bino)

g-2 and DM

Plan

• 126 GeV Higgs and SUSY

light Bino-like DM (h/Z-resonant Bino) g-2 and DM

Plan

• 126 GeV Higgs and SUSY

$$a_{\mu}^{\text{EXP}} - a_{\mu}^{\text{SM}} = (26.1 \pm 8.0) \cdot 10^{-10}$$

> 3 σ deviation !

FIG. 3. Positron time spectrum overlaid with the fitted 10 parameter function (χ^2 /dof= 3818/3799). The total event sample of 0.95 × 10⁹ e⁺ with $E \ge 2.0$ GeV is shown.

from hep-ph/0102017

@Hokkaido Winter School 2013

g-2
$$a_{\mu}^{\text{EXP}} - a_{\mu}^{\text{SM}} = (26.1 \pm 8.0) \cdot 10^{-10}$$

> **3** σ deviation !

muon

New experiments also planned.

FermiLab Muon g-2

J-PARC g-2/EDM

... can be explained by SUSY.

... if smuon and chargino/neutralino are O(100 GeV).

[M.Endo, KH, S.Iwamoto, T.Yoshinaga,

in preparation]

Idea: take slices of parameter space motivated by each physics (not scatter plot!) and study DM detection, LHC, ILC.....

Х

DM

- pure Wino (≈ 3 TeV)
- pure Higgsino (≈ 1 TeV)
- Bino-slepton coann.
- h/Z-resonant Bino

 $\Delta a_{\mu}(\tilde{W}, \tilde{H}, \tilde{\nu}_{\mu}) = \frac{\alpha_2}{4\pi} \frac{m_{\mu}^2}{M_2 \mu} \tan \beta \cdot f_C\left(\frac{M_2^2}{m_z^2}, \frac{\mu^2}{m_z^2}\right),$ $\Delta a_{\mu}(\tilde{W}, \tilde{H}, \tilde{\mu}_{L}) = -\frac{\alpha_{2}}{8\pi} \frac{m_{\mu}^{2}}{M_{2}\mu} \tan\beta \cdot f_{N}\left(\frac{M_{2}^{2}}{m_{\tilde{\mu}_{L}}^{2}}, \frac{\mu^{2}}{m_{\tilde{\mu}_{L}}^{2}}\right),$ $\Delta a_{\mu}(\tilde{B}, \tilde{H}, \tilde{\mu}_L) = \frac{\alpha_Y}{8\pi} \frac{m_{\mu}^2}{M_1 \mu} \tan \beta \cdot f_N\left(\frac{M_1^2}{m_{\tilde{\mu}_L}}, \frac{\mu^2}{m_{\tilde{\mu}_L}}\right),$ $\Delta a_{\mu}(\tilde{B}, \tilde{H}, \tilde{\mu}_{R}) = -\frac{\alpha_{Y}}{4\pi} \frac{m_{\mu}^{2}}{M_{1}\mu} \tan\beta \cdot f_{N} \left(\frac{M_{1}^{2}}{m_{\mu}^{2}}, \frac{\mu^{2}}{m_{\mu}^{2}}\right),$ $\Delta a_{\mu}(\tilde{\mu}_{L}, \tilde{\mu}_{R}, \tilde{B}) = \frac{\alpha_{Y}}{4\pi} \frac{m_{\mu}^{2} M_{1} \mu}{m_{\tilde{\mu}_{L}}^{2} m_{\tilde{\mu}_{L}}^{2}} \tan \beta \cdot f_{N} \left(\frac{m_{\tilde{\mu}_{L}}^{2}}{M_{1}^{2}}, \frac{m_{\tilde{\mu}_{R}}^{2}}{M_{1}^{2}}\right)$

$$f_C(x,y) = xy \left[\frac{5 - 3(x+y) + xy}{(x-1)^2(y-1)^2} - \frac{2\log x}{(x-y)(x-1)^3} + \frac{2\log y}{(x-y)(y-1)^3} \right]$$

$$f_N(x,y) = xy \left[\frac{-3 + x + y + xy}{(x-1)^2(y-1)^2} + \frac{2x\log x}{(x-y)(x-1)^3} - \frac{2y\log y}{(x-y)(y-1)^3} \right]$$

Idea: take slices of parameter space motivated by each physics (not scatter plot!) and study DM detection, LHC, ILC.....

$f_C(x,y) = xy$	$\frac{5-3(x+y)+xy}{(x-1)^2(y-1)^2}$	$-\frac{2\log x}{(x-y)(x-1)^3}$	$+\frac{2\log y}{(x-y)(y-1)^3}$
$f_N(x,y) = xy$	$\left[\frac{-3+x+y+xy}{(x-1)^2(y-1)^2} + \right.$	$\frac{2x\log x}{(x-y)(x-1)^3} -$	$\left\lfloor \frac{2y\log y}{(x-y)(y-1)^3} \right\rfloor$

Idea: take slices of parameter space motivated by each physics (not scatter plot!) and study DM detection, LHC, ILC....

Idea: take slices of parameter space motivated by each physics (not scatter plot!) and study DM detection, LHC, ILC.....

Х

For example,... DM

- pure Wino (≈ 3 TeV)
- pure Higgsino (≈ 1 TeV)
- Bino-slepton coann.
- h/Z-resonant Bino
- • • •

•

g-2

$$\begin{split} \Delta a_{\mu}(\tilde{W}, \tilde{H}, \tilde{\nu}_{\mu}) &= \frac{\alpha_{2}}{4\pi} \frac{m_{\mu}^{2}}{M_{2}\mu} \tan \beta \cdot f_{C} \left(\frac{M_{2}^{2}}{m_{\tilde{\nu}}^{2}}, \frac{\mu^{2}}{m_{\tilde{\nu}}^{2}} \right), \\ \Delta a_{\mu}(\tilde{W}, \tilde{H}, \tilde{\mu}_{L}) &= -\frac{\alpha_{2}}{8\pi} \frac{m_{\mu}^{2}}{M_{2}\mu} \tan \beta \cdot f_{N} \left(\frac{M_{2}^{2}}{m_{\tilde{\mu}_{L}}^{2}}, \frac{\mu^{2}}{m_{\tilde{\mu}_{L}}^{2}} \right), \\ \Delta a_{\mu}(\tilde{B}, \tilde{H}, \tilde{\mu}_{L}) &= \frac{\alpha_{Y}}{8\pi} \frac{m_{\mu}^{2}}{M_{1}\mu} \tan \beta \cdot f_{N} \left(\frac{M_{1}^{2}}{m_{\tilde{\mu}_{L}}}, \frac{\mu^{2}}{m_{\tilde{\mu}_{L}}} \right), \\ \Delta a_{\mu}(\tilde{B}, \tilde{H}, \tilde{\mu}_{R}) &= -\frac{\alpha_{Y}}{4\pi} \frac{m_{\mu}^{2}}{M_{1}\mu} \tan \beta \cdot f_{N} \left(\frac{M_{1}^{2}}{m_{\tilde{\mu}_{R}}^{2}}, \frac{\mu^{2}}{m_{\tilde{\mu}_{R}}^{2}} \right), \\ \Delta a_{\mu}(\tilde{\mu}_{L}, \tilde{\mu}_{R}, \tilde{B}) &= \frac{\alpha_{Y}}{4\pi} \frac{m_{\mu}^{2}M_{1}\mu}{m_{\tilde{\mu}_{L}}^{2} m_{\tilde{\mu}_{R}}^{2}} \tan \beta \cdot f_{N} \left(\frac{M_{1}^{2}}{M_{1}^{2}}, \frac{m_{\mu}^{2}}{M_{1}^{2}} \right), \end{split}$$

$$f_C(x,y) = xy \left[\frac{5 - 3(x+y) + xy}{(x-1)^2(y-1)^2} - \frac{2\log x}{(x-y)(x-1)^3} + \frac{2\log y}{(x-y)(y-1)^3} \right]$$

$$f_N(x,y) = xy \left[\frac{-3 + x + y + xy}{(x-1)^2(y-1)^2} + \frac{2x\log x}{(x-y)(x-1)^3} - \frac{2y\log y}{(x-y)(y-1)^3} \right]$$

Idea: take slices of parameter space motivated by each physics (not scatter plot!) and study DM detection, LHC, ILC.....

Idea: take slices of parameter space motivated by each physics (not scatter plot!) and study DM detection, LHC, ILC.....

Idea: take slices of parameter space motivated by each physics (not scatter plot!) and study DM detection, LHC, ILC.....

Idea: take slices of parameter space motivated by each physics (not scatter plot!) and study DM detection, LHC, ILC.....

Idea: take slices of parameter space motivated by each physics (not scatter plot!) and study DM detection, LHC, ILC.....

Idea: take slices of parameter space motivated by each physics (not scatter plot!) and study DM detection, LHC, ILC.....

- Higgs mass 126 GeV has a significant impact on SUSY.
- It may imply (some of) SUSY particles are (much) heavier than TeV scale...
- **SUSY DM** is still interesting, and testable in many ways!

