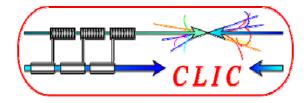


CLIC physics/detector studies status + plans

CLIC website:

http://clic-study.web.cern.ch/CLIC-Study/


CLIC07 workshop, October 2007

http://cern.ch/CLIC07Workshop

CLIC08 workshop, October 14-17 2008

http://project-clic08-workshop.web.cern.ch/project-clic08-workshop/

CLIC CDR foreseen for 2010 CLIC TDR foreseen for 2014

Detector Specifications

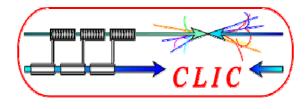
hep-ph/0412251 ; CERN-2004-005

Detector	CLIC			
Vertexing	$15 \mu m \oplus rac{35 \mu m GeV/c}{p \sin^{3/2} heta}$			
	$15 \mu m \oplus rac{35 \mu m GeV/c}{p \sin^{5/2} heta}$			
Solenoidal Field	B = 4 T			
Tracking	$rac{\delta p_t}{p_t{}^2}=5. imes 10^{-5}$			
E.m. Calorimeter	$rac{\delta E}{E(GeV)}=0.10rac{1}{\sqrt{E}}\oplus 0.01$			
Had. Calorimeter	$rac{\delta E}{E~(GeV)}=0.40rac{1}{\sqrt{E}}\oplus 0.04$			
μ Detector	Instrumented Fe yoke			
	$rac{\delta p}{p}\simeq 30\%$ at $100~GeV/c$			
Energy Flow	$rac{\delta E}{E~(GeV)}\simeq 0.3rac{1}{\sqrt{E}}$			
Acceptance	$ \cos heta < 0.98$			
mask	120 mrad			
beampipe	3 cm			
small angle tagger	$ heta_{min}=40{\sf mrad}$			

CLIC Report 2004: Starting point: the TESLA TDR detector adapted to CLIC environment

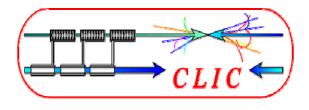
-Based on previous CLIC parameters

Conclusions: -No significant differences required between TESLA and CLIC detector


- Greater need for time-stamping of events

• Following visit of Barry @ CERN (Nov 07) http://www.linearcollider.org/newsline/archive/2007/20071213.html

> Independently of US/UK financial crisis, but even more desirable now

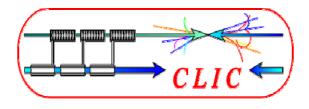

- CLIC-ILC Collaboration meeting (Feb 08) http://indico.cern.ch/conferenceDisplay.py?confId=27435
- GDE/ACFA Meeting at Sendai/Japan (March 08) http://www.awa.tohoku.ac.jp/TILC08/

ILC-CLIC working groups

ILC-CLIC working groups	
Торіс	Conveners
Civil Engineering and Conventional Facilities (CFS)	Claude Hauviller (CERN), John Osborne (CERN), Vic Kuchler (FNAL)
Beam Delivery Systems and Machine Detector Interface	Brett Parker (BNL), Daniel Schulte (CERN) , Andrei Seryi (SLAC), Emmanuel Tsesmelis (CERN)
Detectors	Lucie Linssen (CERN), Francois Richard (LAL), Dieter Schlatter (CERN), Sakue Yamada (KEK)
Cost & Schedule	John Carwardine (ANL), Katy Foraz (CERN), Peter Garbincius (FNAL), Tetsuo Shidara (KEK), Sylvain Weisz (CERN)
Beam Dynamics	Andrea Latina (FNAL), Kiyoshi Kubo (KEK), Daniel Schulte (CERN), Nick Walker (DESY)

First working group meeting was held on 13/5/2008

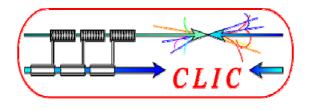
Topics for CLIC-ILC physics/detector


Extracted from 8 Feb 08 meeting summary:

1) Define a CLIC detector concept at 3 TeV.

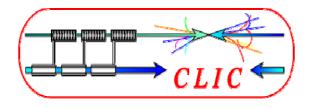
(update of 2004 CLIC Study) based on ILC detector concepts.

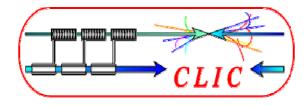
2) Detector simulations


- Simulation tools to be used by ILC and CLIC (WWS software panel)
- Validation ILC detector options for CLIC at high energy, different time structure and different backgrounds
- 1 TeV benchmark studies to provide overlap
- compare performance using defined benchmark physics processes
 (e.g. WW/ZZ separation)

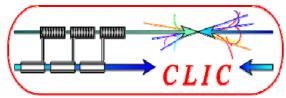
Work plan

• Preparation for the CLIC CDR 2010


- Physics motivations/simulations
- Perform simulation studies to define a valuable CLIC detector concept
 - Based on ILC detector concepts and tools
- Detailed implementation of the CLIC forward regions, including the assessment of the main engineering aspects
- Provide overlap with ILC detector studies for comparison (0.5 TeV or 1 TeV?)
- Identify critical areas for detector R&D, which are not yet covered by R&D for ILC

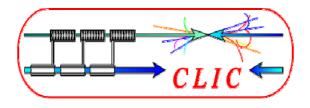

CERN has now allocated some (minimal) resources for the CLIC detector/physics studies.

- 1 Doctoral student, 1 Fellow, 1 PDSA (2009)
- Part time availability of several staff members
- Resources (subsistence) to pay for visitors for the CLIC simulations



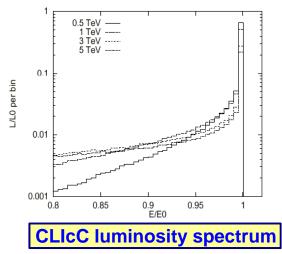
- CLIC physics/detector studies are starting again
- Many similarities with ILC detector studies
- Good exchange and collaboration with ILC experts is fundamental
- Your participation is most welcome

Let's get started

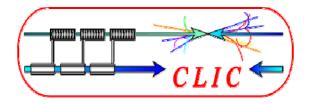

Spare slides


CLIC main parameters

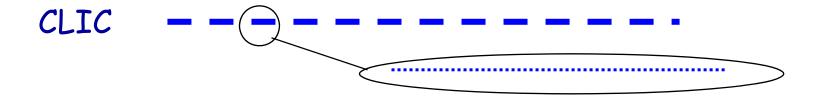
http://clic-meeting.web.cern.ch/clic-meeting/clictable2007.html


Center-of-mass energy	3 TeV			
Peak Luminosity	7⋅10 ³⁴ cm ⁻² s ⁻¹			
Peak luminosity (in 1% of energy)	2-10 ³⁴ cm ⁻² s ⁻¹			
Repetition rate	50 Hz			
Loaded accelerating gradient	100 MV/m			
Main linac RF frequency	12 GHz			
Overall two-linac length	42 km			
Bunch charge	3.72·10 ⁹			
Bunch separation	0.5 ns			
Beam pulse duration	156 ns			
Beam power/beam	14 MWatts			
Hor./vert. normalized emittance	660 / 20 nm rad			
Hor./vert. IP beam size bef. pinch	40 / ~1 nm			
Total site length	48 km			
Total power consumption	322 MW			

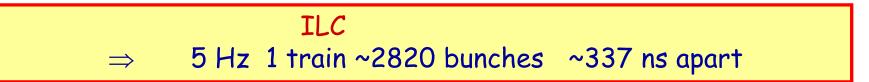
Luminosity and Background Values

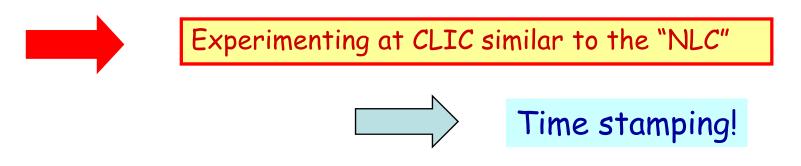


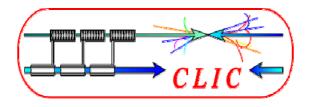
unavoidable at Linear Colliders in general: small beam sizes -> large beamstrahlung


		CLIC	CLIC	CLIC	ILC	NLC
E_{cms}	[TeV]	0.5	1.0	3.0	0.5	0.5
f_{rep}	[Hz]	100	50	50	5	120
N	$[10^9]$	3.7	3.7	3.7	20	7.5
ϵ_y	[nm]	20	20	20	40	40
L_{total}	$10^{34} cm^{-2} s^{-1}$	2.2	2.2	5.9	2.0	2.0
$L_{0.01}$	$10^{34} cm^{-2} s^{-1}$	1.4	1.1	2.0	1.45	1.28
n_{γ}		1.2	1.5	2.2	1.30	1.26
$\Delta E/E$		0.08	0.15	0.29	0.024	0.046
N_{coh}	10^{5}	0.03	37.0	3.8×10^3	—	—
E_{coh}	$10^3 TeV$	0.5	1080	2.6×10^5	—	—
n_{incoh}	10^{6}	0.05	0.12	0.3	0.1	n.a.
E_{incoh}	$[10^6 GeV]$	0.28	2.0	22.4	0.2	n.a.
n_{\perp}		12.5	17.1	45	28	12
n_{had}		0.14	0.56	2.7	0.12	0.1

- Target is to have about one beamstrahlung photon per beam particle
 - similar effect to initial state radiation
 - \Rightarrow average energy loss is larger in CLIC than ILC
- Note: shorter bunches increase the photon energy but not the number




Time structure of the beam


Train repetition rate 50 (100) Hz

1 train = 312 bunches 0.5 nsec apart

Major revision of CLIC parameters made 2007

(final parameter optimization still ongoing)

Basic changes

30 GHz -> 12 GHz RF frequency

close to old NLC frequency (11.424 GHz)

easier to adapt NLC work and experience

lower frequency allows more relaxed alignment tolerances

150 MV/m -> 100 MV/m

reduces breakdown rate and surface damages in RF accelerating structures

50 km long LINAC allows 2 x 1.5 TeV = 3 TeV CM energy (was 5 TeV)

0.5 ns bunch spacing, 312 bunches (= 156 ns bunch trains), 50 Hz (3 TeV)

optimized for maximum luminosity

was subject of various changes in the past: 0.667 ns -> 0.267 ns -> 0.667 ns -> 0.5 ns

Aim for feasibility and conceptual design report in 2010