Search for monotops at the LHC
Michaël Buttignol, on behalf of the CMS collaboration
GRPHE/IPHC Strasbourg

Flavor Changing Neutral Current (FCNC)

- V: vector invisible BSM particle (DM candidate)

Theoretical context

- Monotop = top + missing transverse energy (MET)
- Monotop production modes via an effective theory

Phenomenology

Delphes fast simulation (CMS-like detector) at $\sqrt{s} = 8\text{TeV}$ assuming 20 fb$^{-1}$ of collisions.

Hadronic channel

- Event selection:
 - Jets: 2 or 3 lights, 1 b-tagged
 - Veto on isolated μ or e
 - $M_{(W)} \in [50, 105]\text{GeV}$
 - Missing $E_T > 150\text{GeV}$
 - Top mass reconstruction (bj_{jj}): $\Delta m (\text{miss. p}_T; bj_{jj}) \in [1.5]$
 - $M_{(bj_{jj})} \in [140, 195]$

Leptonic channel

- Event selection:
 - 1 muon or electron
 - Jets: 1 b-tagged
 - $P_T \text{(leading jet)} > 75\text{GeV}$
 - $M_{(W)} > 115\text{GeV}$
 - Cut on missing E_T optimized per benchmark

Search @ 8 TeV

- Hadronic channel with 19.7 fb$^{-1}$ of pp collisions at $\sqrt{s} = 8\text{TeV}$.

Online trigger: $MET > 150\text{GeV}$

Event selection

- Jets: $p_T (\text{3 leading jets}) > 60, 60, 40\text{GeV}$ with one b-tagged
- Veto on event with isolated (iso < 0.2) muon or electron
- $M(bj_{jj}) < 250\text{GeV}$
- Missing $E_T > 350\text{GeV}$

Main backgrounds

- $t\bar{t}$ where a charged lepton from the W decay fails the selection or the detection.
- QCD where mis-reconstructed jets induce large missing E_T.
- $Z +$ jets where the Z boson decays into a pair of neutrinos.

Results

- V+jets background contamination is estimated from data in its μ-enriched region.
- QCD-multijets background is also estimated from data using a control region with zero b-tagged jets.

Remaining backgrounds are then compared to the data in a region where the signal is expected to live.

A cut&count experiment is proceeded to set limits at 95% Confidence Level (CL).

References

Interpretation: vector DM candidates with masses below 600 GeV can be excluded even with a moderate coupling strength $a = 0.1$ for both channels.

Interpretation: vector DM candidates with masses below 650 GeV are excluded for hadronic channel (with $a = 0.1$).