LHCC Poster Session - CERN, 4 March 2015

Searches for heavy long-lived charged particles with the ATLAS detector in *p*-*p* collisions at $\sqrt{s} = 8$ TeV

Reference: ATLAS Collaboration, JHEP 1501 (2015) 068

Abstract

Selection

Searches for heavy long-lived charged particles (LLP) were performed on a 19.1 fb^{-1} data sample from p-p collisions at $\sqrt{s} = 8 \text{TeV}$ collected by the ATLAS detector at the LHC. No excess is observed above the estimated background and limits are placed on the mass of the LLPs in various supersymmetric models: R-hadrons, directly produced charginos, stable sleptons produced directly or in cascade decays in GMSB and LeptoSUSY models.

Motivation & Signal Regions

Heavy LLPs are predicted in many extensions to the Standard Model. This analysis studies different SUSY LLP scenarios where R-parity is conserved

R-hadrons

• Event selection: Good primary vertex & triggered by either Muon or MET trigger

- **Candidate selection**: Reconstruction quality cuts, $p_T \eta$, β , p and consistency of $\beta / \beta \gamma$
- The candidate selection is constructed and tuned per search
- Division into signal-regions and β , $\beta\gamma$ and mass cuts per SR
- Mass cuts in all searches are model dependent (In R-hadrons also the cuts on β , $\beta\gamma$,p)

Sleptons

Reconstructed mass, background estimation & expected signal:

C00	
$\begin{bmatrix} 5 & 0 & 0 \\ 0 & 0 $	
$\int_{-\infty}^{\infty} - \sqrt{s} = 8 \text{ TeV}, 19.1 \text{ fb}^{-1}$	

- Long-lived \tilde{g} , \tilde{t} or \tilde{b} bound to colored SM particles to form R-Hadron
- Cuts on β , $\beta\gamma$, **p** depend on LLP mass Signal regions:
- Full detector search (SR-RH-FD). MS info may or may not be found
- MS-Agnostic search (SR-RH-MA). Track information from ID+Calo

Charginos

- $\tilde{\chi}_1^{\pm}$ nearly mass degenerate with $\tilde{\chi}_1^0$ (LSP)
- $\tilde{\chi}_1^{\pm} \tilde{\chi}_1^{\pm} 33\%$ expected 2 LLPs (muon like)
- $\tilde{\chi}_1^0 \tilde{\chi}_1^{\pm} 67\%$ expected 1 LLP + MET Signal regions:
- Loose two-candidates (SR-CH-2C)
- Loose one-candidate+ MET(SR-CH-1LC)
- Tight one-candidate (SR-CH-1C)

Sleptons

GMSB:

- The $\tilde{\tau}$ is the NLSP, the \tilde{G} is the LSP
- Due to small coupling to the \tilde{G} , the NLSP is long-lived
- EW ($\tilde{\chi}_1^{\pm}$, $\tilde{\chi}_1^0 \rightarrow \tilde{l} \rightarrow \tilde{\tau}$) & direct Slepton production ($\tilde{l} \rightarrow \tilde{\tau}$ or DY $\tilde{\tau}$) were considered LeptoSUSY:

Search	Signal regions	LLP mass [GeV]	$N_{ m cand}$	Momentum [GeV]	$ \eta $	$E_{\mathrm{T}}^{\mathrm{miss}}$ [GeV]	β	$\beta\gamma$
Sleptons	SR-SL-2C	175 - 510	2	$p_{\rm T} > 70$	< 2.5		< 0.95	consistency
	SR-SL-1C	175 - 510	1	$p_{\mathrm{T}} > 70$	< 2.5		< 0.85	consistency
Charginos	SR-CH-2C	100-800	2	$p_{\mathrm{T}} > 70$	< 2.5		< 0.95	consistency
	SR-CH-1LC	100-800	1	$p_{\mathrm{T}} > 70$	< 1.9	$> 100^{***}$	< 0.95	consistency
	SR-CH-1C	100-800	1	$p_{\mathrm{T}} > 70$	< 1.9		< 0.85	consistency
R-hadrons	SR-RH-MA	400–1700	≥ 1	$p > 140 - 200^*$	< 1.65		< 0.88 - 0.74	< 2.3 – 1.15
	SR-RH-FD	400 - 1700	≥ 1	$p > 140-200^*$	$< 1.65^{**}$		< 0.88 - 0.74	< 2.3 - 1.15
$^{*}\Delta R_{ m jet, p_{T} > 40 GeV} > 0.3, \Delta R_{ m track, p_{T} > 10 GeV} > 0.25$				"" only for ID+CALORIMETER candidates			$^{\tt mmm}\Delta\phi_{\rm LLP, E_T^{miss}} > 1.0$	

Limits Summary Lower mass limit [GeV] Search GMSB sleptons $\tan \beta = 10, 20, 30, 40, 50$ 440, 440, 430, 410, 385 · direct ℓ production $(m_{\tilde{\ell}} - m_{\tilde{\tau}_1} = 2.7-93 \,\text{GeV})$ 377 - 335direct $\tilde{\tau}_1$ production 289 $\cdot \tilde{\chi}_1^0 \tilde{\chi}_1^{\pm}$ decaying to stable $\tilde{\tau}_1$ 537 LeptoSUSY 1500, 1360 $\cdot \tilde{q}, \tilde{g}$ Charginos

Cross-section upper limits:

- \tilde{g}/\tilde{q} , decaying to jets and multiple leptons to a final state with stable \tilde{l}
- Two muon-like LLPs are expected Signal regions:
- Loose two-candidates (SR-SL-2C)
- Tight one-candidate (SR-SL-1C)

Analysis Strategy

- Track information is used to calculate the candidate mass: $m = \frac{P}{R_{W}}$:
- p derived from the candidate track
- β calculated from measured ToF
- $\beta \gamma$ deduced from Pixel dE/dx
- The background estimation for all searches is based on data:
- Mostly μ 's of high-p_T and miss-measured β

- (Tile+Lar, RPCs and MDTs)

Results & Limits on LLP cross-sections (CLs based)

Charginos

Reconstructed mass, background estimation & expected signal:

Reconstructed mass, background estimation & expected signal:

3000

2500

q̃ mass [GeV]

 $\tilde{\tau}_1$ mass [GeV]

ATLAS

 $\sqrt{s} = 8$ TeV, 19.1 fb

----- $\pm 1\sigma_{\text{theory}}^{\text{SUSY}}$

----- $\pm 1\sigma_{exp}$

2000

— Observed Limit

— Expected Limit

Revital Kopeliansky, for the ATLAS Collaboration