

Search for pair-produced vector-like quarks of charge -1/3 decaying to bH using boosted Higgs jet-tagging in pp collisions at $\sqrt{s} = 8$ TeV

Jui-Fa Tsai (National Taiwan University), On behalf of the CMS Collaboration

Fat jet

ub-jets

Higgs jet

♠ 1. Introduction

- Motivation
 - * The 4th generation quarks, t' and b' (charges +2/3 & -1/3), may represent an extra generation in SM, or consist of fermions with symmetric chiralities in SU(2) ("vector-like").
 - * The VLQs mass is independent of coupling to the Higgs.
 - * Solutions to the hierarchy problem in SM or various BSM models propose the existence of VLQs.

Strategy

* Fully-hadronic b'→bH decay has a much higher sensitivity as

2. Signal and background assumption

- * $pp \rightarrow b'\bar{b}'$ with BR($b' \rightarrow bH$) = 100%
- * Background = multi-jet + tt jets

✤ 3. Event selection

- * Hight level trigger H_T > 750 GeV
- * Good primary vertex
- * H_T = Σ|p_T(AK5 jets)| > 950 GeV
- * At least one b-tagged AK5 jet
- * At least one Higgs-tagged CA8 jet
 - p_T > 300 GeV

- compared to searches in Higgs leptonic final states.
- * Use boosted Higgs-tagging to develop this analysis.

• Boosted Higgs tag

- * For the high-mass b', the Higgs boson decay to b jets has high Lorentz boost and results in a merged fat jet.
- 5. Background estimation closure test
 - * Use zero b jet data control sample.
 - * Good agreement in the predicted and true background H_T distributions.

- 90 < Pruned mass < 140 GeV
- ---- N-subjettiness < 0.5
- b tagging in both subjets
- * Separate two categories with multiplicities of b-tagged AK5 jet.
 - One and \geq two b-tagged AK5 jets.

4. Background estimation

* Main background is multi-jets, the smaller background is tt+jets.
* Estimate multi-jets from data with ABCD method.

♠ 6. Systematic uncertainties

- * Background estimation uncertainties
 - Propagate from statistics of sideband region (A, C and D).
 - Include $t\bar{t}$ +jets MC statistical and systematic uncertainties.
- * MC samples systematic uncertainties
 - Jet energy corrections.
 - b-tagging sale factors.
 - CA8 jets selection scale factors.
 - $t\bar{t}+jets : Q^2$, matching scale factor and top quark p_T weighting.
 - PDF, pile up and luminosity.
- 7. Results of data and background
 - * Multi-jet is from data driven ABCD method, tt+jets is from MC.
 - * Background = (N^A_{Data}-N^A_{tījets})*N^D_{Data}/N^C_{Data} + N^B_{tījets} = multi-jets + tī jets

824.92 (+46.96/-51.74)

860

- * Good agreement in event yields and $H_{\rm T}$ distribution.
- * No excess of events is found over the estimated background.

Higgs tagged jets

В

Anti-Higgs tagged jets

C A

D

0 80 90 140 Pruned Mass (GeV)

- * Use "Higgs package" with
 binned likelihood fit H_T shape and
 the Bayesian algorithm.
- * Include all systematic uncertainties in each different mass of signal MC and background.

- 0-4					
10	600	800	1000	1200	
			M(b')	M(b') [GeV]	

• 9. Conclusion

8. Upper limit

* Boosted Higgs-tagging has enhanced sensitivity in high b' mass.
* The multijets background is evaluated entirely from the data while the tt+jets background is obtained from MC simulations.
* Cross section limits on the pp→b' b', BR(b'→bH) = 100%, √s = 8TeV
— Exclude b' quarks for masses below 846 GeV at 95% CL.
— Expected upper limit is 81 1GeV.

10. Reference

46.35 (+4.46/-11.30)

43

* CMS-PAS-B2G-14-001

Jui-Fa Tsai jui-fa.tsai@cern.ch

871.67 (+49.12/-54.62)

903

Data-driven bkg.

Data

National Taiwan University