Heavy quarks: physics motivation

- Heavy quarks are produced in hard scattering processes in the initial stages of the collisions → they are an excellent probe to study the medium created in heavy-ion collisions.
- They lose energy via: gluon radiation and elastic collisions in the medium
- Colou-charge and mass-dependent energy loss → $\Delta E_g > \Delta E_{el} > \Delta E_{med}$[1]
- To quantify D-meson production we evaluate the nuclear modification factor:

 $$R_{AA} = \frac{dN_{AA}/dpt}{(T_{AA}) d\sigma_{pp}/dpt}$$

 where (T_{AA}) is the average nuclear overlap function from the Glauber model.

The ALICE experiment

D+ $\rightarrow K^-\pi^+\pi^+$ reconstruction

D+ fully reconstructed through their hadronic decays (B.R. $\sim 9.1\%$) displaced by few hundred μm from the primary vertex.

Require excellent capabilities in:
- Vertex reconstruction to separate primary and secondary vertices
- Tracking for the impact parameter and p_T resolution
- Particle identification to reduce the huge combinatorial background

PID approach: 3σ compatibility cut between measured signals in TOF and TPC and expected values for the particle species

Analysis strategy: optimization of topological cuts, in particular distance between primary and secondary vertices

References

Summary

- D-meson production suppressed by a factor of 3 in $p_T \sim 10$ GeV/c in Pb-Pb semi-central collisions.
- R_{AA} is compatible for all three D-meson species over the full p_T range.
- Several theoretical models can reproduce D-meson R_{AA} reasonably well.
- D-meson suppression increases going from peripheral to central collisions.
- Similar suppression observed for D mesons and charged pions.
- Indication of a difference in suppression of D mesons and non-prompt J/Ψ (measured by CMS [4]) as expected from theoretical models including mass-dependent energy loss.

Systematic uncertainties

- Efficiency: Correction factor obtained from MC simulations to take into account the acceptance of the detector, the tracking efficiency and the selection cut applied.
- B feed-down subtraction: Contribution of D^+ mesons from B decay evaluated from FONLL prediction [2]. Hypothesis on non-prompt, $R_{AA} \sim 2R_{AA}$ prompt, systematic uncertainty evaluated varying the hypothesis in the range $1 < R_{AA}(\text{non-prompt})/R_{AA}(\text{prompt}) < 3$

- Yield extraction: variation of fit range, background function (polynomial) and signal extraction technique (bin counting after background subtraction or fit integral).
- Topological selection: analysis repeated with different values for topological cuts.
- Tracking efficiency: different track selection criteria.
- PID efficiency: analysis repeated without PID.
- Normalization uncertainty on pp reference and T_{AA}.

Corrections

- Efficiency:
 - Correction factor obtained from MC simulations to take into account the acceptance of the detector, the tracking efficiency and the selection cut applied.
- B feed-down subtraction:
 - Contribution of D^+ mesons from B decay evaluated from FONLL prediction [2]. Hypothesis on non-prompt, $R_{AA} \sim 2R_{AA}$ prompt, systematic uncertainty evaluated varying the hypothesis in the range $1 < R_{AA}(\text{non-prompt})/R_{AA}(\text{prompt}) < 3$

- Yield extraction:
 - Variation of fit range, background function (polynomial) and signal extraction technique (bin counting after background subtraction or fit integral).
- Topological selection:
 - Analysis repeated with different values for topological cuts.
- Tracking efficiency:
 - Different track selection criteria.
- PID efficiency:
 - Analysis repeated without PID.
- MC p_T shape:
 - Efficiency evaluated using different D-meson p_T distributions.
- Normalization uncertainty on pp reference and T_{AA}.