

FIRST OBSERVATION AND MEASUREMENT OF THE BRANCHING FRACTION FOR THE DECAY BOS -> DS* K

Lorenzo Sestini, on behalf of the LHCb collaboration LHCC, 4 march 2015

MOTIVATION

γ is the least well known parameter of the CKM matrix. It can be extracted by a timedependent analysis of channel like $B_s^0 \to D_s^{(*)}$ K. The sensitivity to γ depends on the interference between b \rightarrow c and b \rightarrow u transitions that occur through B_s^0 mixing.

OUR MEASUREMENT

We observed for the first time the $B_s^0 \to D_s^* K$ decay and we measured the ratio:

$$\mathcal{R}^* \equiv \frac{\mathcal{B}(B_s^0 \to D_s^{*\mp} K^{\pm})}{\mathcal{B}(B_s^0 \to D_s^{*-} \pi^+)} = \frac{N_{K^{\pm}}}{N_{\pi^+}} \frac{\varepsilon_{\pi^+}}{\varepsilon_{K^{\pm}}}$$

SELECTION

- $^{\bullet}$ D_s mesons are reconstructed through the decay D_s → K K π.
- \bullet D_s candidates are combined with a photon to form a D_s*. A cut on the variable $\Delta_{M} = M(D_{s}^{*})$ - $M(D_{s})$ is applied to reduce the combinatorial background due to fake photons.
- → Particle Identification requirements (PID) are applied to the final state "bachelor" hadron (K or π).
- * Finally a multivariate approach is applied to further reduce the combinatorial background.

SOFT PHOTONS

Photons from ${D_s}^* \to {D_s} \gamma$: the P_T spectrum is obtained from the invariant mass fit using the *sWeight* technique.

INVARIANT MASS FIT:

INVARIANT MASS FIT:

$N_K = 1025 \pm 71$ events

RESULTS

Our result is:

$$\mathcal{R}^* = 0.068 \pm 0.005 \text{ (stat.)} ^{+0.004}_{-0.003} \text{ (sys.)}$$

- → The value of R * and the recently measured value of R [1] (analogous of R * for $B_s^0 \to D_s$ K) are compared to the corresponding prediction [2].
- Using the Belle measurement for $B_s^0 \to D_s^* \pi$ [3] :

$$\mathcal{B} (B_s^0 \to D_s^{*\mp} K^{\pm}) = 16.3 \pm 1.2 \text{ (stat.)} ^{+1.0}_{-0.7} \text{ (sys.)} \pm 4.8 \text{ (bf)} \times 10^{-5}$$

*This is the first step towards the measurement of time dependent CP asymmetry in these decays.

REFERENCES

[1] LHCb collaboration, R. Aaij et al., Determination of the branching fractions of $B^0_s \to D_s \ K$ and $B^0 \to D_s \ K$, submitted to JHEP.

[2] K. De Bruyn et al., Exploring $B_s \to D_s(*)K$ decays in presence of a sizable width difference $\Delta\Gamma_s$, Nucl. Phys. B868 (2012) 351.

[3] Belle collaboration, L. Louvot et al., Observation of $B^0_s \to D_s *\pi$, $B^0_s \to D_s *\rho$, and measurement of $B^0_s \to D_s^* \rho$ polarization, Phys. Rew. Lett. (104) 2010 231801.