CP violating phase ϕ_s and penguin pollution in $B_s^0 \rightarrow J/\psi K^+ K^-$

Carlos Vázquez Sierra*, on behalf of the LHCb collaboration * Universidade de Santiago de Compostela, Santiago de Compostela, Spain

LHCC Open Session, CERN, Switzerland, 4th March 2015

1. CP violating phase ϕ_s in $B_s^0 \rightarrow J/\psi K^+ K^-$

Mixing-induced violating CP phase:

$$\phi_{s} = \phi_{M} - 2\phi_{D}$$

Theoretical uncertainty on ϕ_s mainly due to penguin contributions $\delta^{\rm P}$:

$$\phi_{\boldsymbol{s}}^{\mathrm{SM}} = -\mathbf{2}\beta_{\boldsymbol{s}} + \delta^{\mathrm{P}}$$

where $-2\beta_s$, with CKM matrix elements, is: $-2\beta_{s} = -2\arg(-\frac{V_{ts}V_{tb}^{\star}}{V_{cs}V_{cb}^{\star}}) = -36.3^{+1.6}_{-1.5} \text{ mrad}^{[1]}$

2. Results with 3 fb⁻¹ in $B_s^0 \rightarrow J/\psi K^+ K^-$

Precision measurement of CP violation in $B_s^0 \rightarrow J/\psi K^+ K^$ decays using 3 fb⁻¹ of LHCb collected data^[3]

JNIVERSIDAI DE SANTIAGO

DE COMPOSTELA

New Physics (NP) processes can modify the value of ϕ_s if new particles contribute to box diagrams:

 $\phi_{s}^{\text{LHCb}} = -2\beta_{s} + \delta^{\text{P}} + \delta^{\text{NP}}$

The phase $-2\beta_s$ is predicted very **precisely** \Rightarrow sensitive to BSM (Beyond Standard Model) physics, specially non-MFV (Minimal Flavour Violation) scenarios, accessible even if this NP is at high energy scales!

> $B_s^0 \rightarrow J/\psi K^+ K^-$ is a *golden* decay for ϕ_s measurement $B_s^0 \rightarrow J/\psi K^+ K^-$ is a probe for New Physics Penguin phase δ^{P} should be estimated^[2]

3. Methodology of penguin pollution control

In the framework described in [2], penguin pollution can be measured using observables from a $b \rightarrow c\bar{c}d$ decay, and assuming approximate SU(3) flavour symmetry it is possible to apply these results on ϕ_s ($b \rightarrow c\bar{c}s$). Two possible control channels can be used in a separated way:

 \Rightarrow Using $B_s^0 \rightarrow J/\psi \bar{K}^{*0}$ decay as control channel:

Red: CP-even, green: CP-odd, purple: S-wave.

 $\phi_s = -0.058 \pm 0.049 \text{ (stat)} \pm 0.006 \text{ (syst) rad}$ $\Gamma_s = 0.6603 \pm 0.0027 \text{ (stat)} \pm 0.0015 \text{ (syst) ps}^{-1}$ $\Delta\Gamma_s = 0.0805 \pm 0.0091 \text{ (stat)} \pm 0.0032 \text{ (syst) ps}^{-1}$

Combined result including $B_s^0 \rightarrow J/\psi \pi^+ \pi^-$ measurements^[4]: $\phi_s = -0.010 \pm 0.039$ rad

 \Rightarrow Excellent agreement with SM! $(-2\beta_s = -0.0363^{+0.0016}_{-0.0015} \text{ rad}^{[1]})$ \Rightarrow Experimental sensitivity requires to distinguish possible δ^{NP} from δ^{P}

4. Measurement of penguin pollution phase δ^{P}

The penguin phase δ^{P} has been measured in $B^{0} \rightarrow J/\psi \rho^{0}$ decay^[5]:

 $|\delta^{\rm P}| < 0.02 \text{ rad at } 95\% \text{ CL}$

Note that this value is **half** the uncertainty in ϕ_s phase!

The value of δ^P is also limited by SU(3) symmetry breaking effects. The dependence at 95% CL as a function of the difference between *penguin* strong phases of $b \to c\bar{c}s$ and $b \to c\bar{c}d$ transitions $(\theta - \theta')$ is shown:

Penguins suppressed to tree level by $\lambda^2 \simeq |V_{us}|^2 \simeq 0.22^2$

Penguins not suppressed to tree level!

Branching ratio, polarization fractions from angular analysis and direct CPviolation are needed for $\delta^{\rm P}$ calculation. Branching ratio and polarization fractions are combined (separately for each final polarization state) in order to construct a unique untagged observable.

\Rightarrow Using $B^0 \rightarrow J/\psi \rho^0$ decay as control channel:

A time dependent Dalitz analysis is performed using data from $B^0 \to J/\psi \rho^0$ $(b \rightarrow c \bar{c} d)$ decay: penguin phase δ^{P} can be calculated from measuring the

The dependency shown here is obtained **fixing** a SU(3) breaking factor related to the ratio of *penguin* strong amplitudes between both type of *b* transitions shown before. Here, both amplitudes are **fixed** to be the same. This behaviour scales linearly with the SU(3) breaking factor mentioned before.

Results obtained from $B^0 \rightarrow J/\psi \rho^0$ analysis are **consistent** with theoretical estimations.

The penguin phase $\delta^{\rm P}$ measurement in $B^0_s \to J/\psi \bar{K}^{*0}$ decay using 3 fb⁻¹ of data is still ongoing, but is almost **finished**. A previous publication where 370 pb^{-1} of data is analysed is available^[6].

5. Implications in searches of New Physics (NP)

CP violating phase ϕ_s can be measured with **high precision** combining results

mixing-induced CP violating phase β observable in this channel.

References

- [1] J. Charles et al., "Predictions of selected flavour observables within the Standard Model", Phys. Rev. D84 (2011) 033005, arXiv:1106.4041.
- [2] K. De Bruyn, R. Fleischer, "A Roadmap to Control Penguin Effects in $B_d^0 \rightarrow J/\psi K_S^0$ and $B_{s}^{0} \rightarrow J/\psi\phi$ ", arXiv:1412.6834.
- [3] LHCb collaboration, "Precision measurement of *CP* violation in $B_s^0 \rightarrow J/\psi K^+ K^-$ decays", LHCb-PAPER-2014-059, arXiv:1411.3104.
- [4] LHCb collaboration, "Measurement of the CP-violating phase ϕ_s in $\bar{B}_s^0 \to J/\psi \pi^+ \pi^-$ decays", LHCb-PAPER-2014-019, arXiv:1405.4140.
- [5] LHCb collaboration, "Measurement of the CP-violating phase β in $B^0 \rightarrow J/\psi \pi^+ \pi^-$ decays and limits on penguin effects", LHCb-PAPER-2014-058, arXiv:1411.1634. [6] LHCb collaboration, "Measurement of the $B_s^0 \rightarrow J/\psi \bar{K}^{*0}$ branching fraction and angular
- amplitudes", Phys. Rev. D 86, 071102(R) (2012), arXiv:1208.0738.
- [7] LHCb collaboration, "Measurement of the CP-violating phase ϕ_s in $\bar{B}_s^0 \to D_s^+ D_s^-$ decays", Phys. Rev. Lett. 113, 211801 (2014), arXiv:1409.4619.

[8] D. M. Straub, "New physics searches in flavour physics", arXiv:1107.0266.

from $B_s^0 \to J/\psi K^+ K^-$ and $B_s^0 \to J/\psi \pi^+ \pi^-$ decays. In the future, results from additional decay modes as $B_s^0 \to D_s^+ D_s^-$ decay will be also included in this combined measurement^[7].

 \mathcal{CP} violating phase ϕ_s is very sensitive to possible BSM NP scenarios^[8], such as LHT (Littlest Higgs model with T-parity), non-MFV in SUSY-breaking lagrangian, ED (Extra Dimension), etc.

Several NP scenarios could contribute to NP observations via ϕ_s measurements

Possible δ^{NP} contributions should be disentangled from δ^{P} contributions which have to be properly estimated