Consortium during Long Shutdown 1 included the repair of masked cells and the replacement of Low Voltage Power Supplies. The Tile-Muon Trigger is scheduled to be ready for 25ns collisions and the entire Calibration System has been rerun. A new signal reconstruction that reduces out-of-time pile-up will be applied for Run II and the whole TileCal read-out electronics is being replaced in Phase-II.

Consolidation during the Long Shutdown 1 (LS1)

- **Masked Channels**
 - Consolidation Campaign successfully repaired masked channels of Run I
 - The status during last weeks has stayed approximately constant
 - The current level of masked channels is below 1%

- **New Low Voltage Power Supplies**
 - New LVPSi installed during LS1, which provide greater robustness against power trips
 - Electronic noise has been reduced considerably (mainly non-Gaussian tails) from October 2011, when an older version of the LVPSis was present in the drawers, to September 2014, after the LS1 maintenance campaign and installation of newer LVPSis

- **Minimum Bias Trigger Scintillators**
 - MBTS have been replaced, due to irradiation during Run I
 - Small increase of acceptance in η, $2.08<|\eta|<3.86$ (in Run I was 3.75)
 - Reduced granularity in outer counters to obtain full phi coverage of Tile Crack scintillators
 - New light collection layout for a more homogeneous response from the tiles
 - Installed in the experimental cavern in 2014

Calibration

- **Laser II System**
 - Installation of a new Laser system in October 2014 in USA15: new source, optics and electronics
 - Ongoing commissioning:
 - DAQ commissioning during last weeks
 - Good laser pulse-to-pulse stability: <3%
 - Focus on the stability of the photodiode response
 - Close to study the PMT stability in time

- **Charge Injection System**
 - CIS is used to define the ADC count to pC conversion for the High Gain and Low Gain readout
 - Since the end of LS1 consolidation and maintenance period, vast majority of TileCal channels have been stable from a CIS perspective

- **Cesium Calibration System**
 - Newest Cs scan without magnetic field
 - Results show similar up-drift as in the past
 - First iteration to set the HV based on Cs (same procedure adopted before Run I)
 - More Cs scans in the next week/months with full magnetic fields

Data Preparation and Performance

- **Response to isolated charged hadrons**
 - This measurement can be used to place constraints on the systematic uncertainty for the jet and tau energy scales
 - Comparisons 2012 data/MC are within few percent in all detector regions and are compatible with 2011 and 2010 measurements

- **New signal reconstruction for Run II**
 - Offline: Constrained Optimal Filtering (COF)
 - COF is a 2-step algorithm that aims to identify signals within the 7 bunch crossing read-out window
 - Better performance than Optimal Filtering 2 (OF2) in high pile-up conditions
 - Online: Optimal Filtering (OF1)

Upgrade Phase-II

- **Front-End boards**
 - Three alternatives being evaluated:
 - The modified 3-in-1 cards based on the current design using discrete components.
 - The QIE ASIC is a Charge Integrator and Encoder based on a current splitter.
 - The FATALIC ASIC solution is a current conveyor with pulse shaping and ADC functionalities.

- **On-detector electronics**
 - The Mainboard is the data and control interface between the very front-end boards and the Daughterboard. For each of the three alternatives a different type of Mainboard is required for the digitization of the signals of 12 PMTs.
 - The Daughterboard provides high speed communication between on- and off-detector electronics. Each side of the board hosts a Kintex7 FPGA that receives the digitized data from the Mainboard and transmits it to the sROD.

- **Off-detector electronics**
 - Interface between the detector and the L0/L1 trigger and DAQ systems
 - The module is equipped with Virtex7 and Kintex7 FPGAs. It is compliant with double AMC format to be in an Advanced Telecommunications Computing Architecture (ATCA) carrier.
 - It includes four QSFP connectors which provide full duplex communication with four MiniDrawers.

Conclusion

TileCal plans a complete replacement of the read-out electronics in Phase-II (except the PMTs). The new read-out architecture will transfer full digitized data to the off-detector system requiring a total data bandwidth of 80 Tbps. The demonstrator project aims to evaluate and qualify the new proposed read-out electronics. The validation program will include standalone beam tests and the insertion of the new electronics in part of the real detector.