Exotic-spin and anomalous coupling study of the H boson with the \(H \rightarrow ZZ \rightarrow 4l \) channel

Can You (Johns Hopkins University), for CMS collaboration

Introduction

The observation of a new boson with a mass around 125 GeV and properties consistent with the standard model (SM) Higgs boson was reported by the ATLAS and CMS Collaborations in 2012. The discovery was followed by a comprehensive set of measurements of its properties to determine if the new boson follows the SM predictions or if there are indications for physics beyond the SM (BSM).

- **Decay of spin-zero resonance**
 \[A(HVV) \sim [1 + \epsilon_{HVV}^{\gamma\gamma} \epsilon_{HVV}^{\gamma\gamma} + \epsilon_{HVV}^{\gamma\gamma}(1 + \epsilon_{HVV}^{\gamma\gamma})] \]
 - The tree-level SM-like contribution corresponds to \(a_0 \).
 - Small values of other couplings can be generated through loop effects in the SM, and can be ascribed to anomalous couplings.
 - \(A_1 \) is the scale of BSM physics and is a free parameter of the model.
 - The parity-conserving interaction of a pseudoscalar (CP-odd state) corresponds to the \(a_4 \) terms, while the other terms describe the parity-conserving interaction of a scalar (CP-even state).
 - The anomalous couplings are parameterized in terms of effective fractional cross sections \(f_{a_i} \), \(f_{a_2} \) and \(f_{a_4} \), and the phases \(\phi_{a_1}, \phi_{a_2} \) and \(\phi_{a_4} \).

- **Decay of spin-one resonance**
 \[A(ZV+V) \sim [1 + \epsilon_{ZV+V}^{\gamma\gamma} \epsilon_{ZV+V}^{\gamma\gamma} + \epsilon_{ZV+V}^{\gamma\gamma}(1 + \epsilon_{ZV+V}^{\gamma\gamma})] \]
 - In the case of a spin-one resonance, the amplitude of its interaction with a pair of massive gauge bosons consists of two independent terms. Here the \(a_0 \) coupling corresponds to a vector particle, while the \(a_4 \) coupling corresponds to a pseudovector.
 - An effective fractional cross section \(f_{a_2} \) is defined to test some particular mixture of the vector and pseudovector states.

Analysis Techniques

Matrix Element Likelihood Approach (MELA)

- **Observables**
 - Five production and decay angles
 - Invariant masses of dilepton pairs
 - Invariant mass of the four-lepton system

- **Kinematic Discriminants**
 - Probabilities are calculated using the LO matrix elements as a function of angular and mass observables.

- **Spin-one results**
 - Two scenarios are tested: \(qq \) production and using only decay information (production-independent)
 - Hypothesis testing is performed for a discrete set of values of the parameter \(f_{a_2} \)
 - The input observables are \(\Delta m_{a_2} \), \(\Delta \theta_{a_2} \), \(\Delta \theta_{a_2} \)

Spin-two results

- Three scenarios are tested: \(gg \), \(q\bar{q} \) production and using only decay information (production-independent)
- The input observables are \(\Delta m_{a_2} \), \(\Delta \theta_{a_2} \)

References

CMS Collaboration, “Constraints on the spin-parity and anomalous HVV couplings of the Higgs boson in proton collisions at 7 and 8 TeV”, arXiv:1411.3441