Optical Link Connections

Carlos García-Argos, Stéphane Gabourin, Christophe Martin

TE-MPE-EP

Workshop on Beam Interlock Systems for CERN and ESS February 3, 2015

Contents

- Introduction
- 2 Optical Transmission in the Current BIS
- Monitoring Optical Fibres
- 4 Looking Towards the Future
- Conclusions

Introduction

Beam Permit Loops in the LHC

- Beam Permit Loop signal travelling along the LHC.
- Two per LHC beam: loop A and loop B, in opposite directions.
- Each Beam Interlock Controller (BIC) has users inputs, any user can disable the beam permit.

Closed beam permit loop:

Introduction

Optical Communications

- Advantages of optical transmission:
 - EMI immunity.
 - Long distance links, thanks to low attenuation in single-mode fibre.

- High available bandwidth.
- Disadvantages:
 - Optical fibre is more fragile than copper cable.
 - More costly than electrical connections.

Optical Transmission in the Current BIS

Optical connections for the Beam Interlock System:

- Beam Permit Loops: CIBO transceiver, single-mode ELED transmitter.
 - Sent along the 27 km of the LHC,
 6 km of the SPS, PSB and transfer lines.
 - $\bullet~\approx 10~\mathrm{MHz}$ square signal, frequency is measured at the receiver side.
 - User permits generate local permit at each location, re-transmit the signal if true.

- Optical interface for the users (CIBF): CIBL transceiver, single-mode laser transmitter.
 - Transmits data using RS-485/RS-422.
 - Low speed: 62.5 kbps.
 - Only links longer than 1.2 km.

Optical Transmission in the Current BIS

Why?

- Long links (in most cases).
- Immune to electromagnetic interference.

How?

- Single-mode fibre, 1310 nm window: low attenuation, zero dispersion.
- Ad-hoc designs:
 - CIBO for the Beam Permit Loops: ELED transmitter, PIN diode receiver.
 - Sends and receives a $\approx 10~\mathrm{MHz}$ square signal.
 - Interface signals are 5 V TTL.
 - CIBL for the User Interface: laser transmitter, PIN diode receiver.
- Issues:
 - Tight power margin on some of the CIBOs.
 - Low flexibility to change output power.
 - No possibility of measuring received power, hence no fibre monitoring is available.

Monitoring Optical Fibres

- Track **radiation damage** or fibre **failure** by checking attenuation.
- Not feasible with current devices.
- Small Form-factor Pluggable transceivers (SFP):
 - Industry standard (Multi-Source Agreement).
 - Common electrical interface.
 - Diagnostics interface: temperature, received and transmitted power.
- Wavelength Division Multiplexing to separate signals: $1310~\mathrm{nm}$ for BPL, $1550~\mathrm{nm}$ for monitoring signal.

Looking Towards the Future

SFP transceivers

- The good:
 - Availability, future-proof.
 - Easy insertion and removal.
 - Easy fibre connection.
 - Digital Diagnostics Monitoring interface.
 - Small footprint.
 - Protocol agnostic.
- The bad:
 - Sometimes incompatible optical signals between different manufacturers.
- The ugly:
 - Needs DC-balanced signals.
 - Needs testing with the current 10 MHz BPL signal . . .
 - SFPs tested with a pure 10 MHz signal, works OK.
 - ... or develop a new BPL signal.

Looking Towards the Future

Beam Permit Loop upgrades:

- **Keep the signals**, change the transceivers to SFPs.
 - \bullet It is possible to send signals down to 1 $\rm MHz$ using SFPs without much degradation.
 - A first upgrade: replace the CIBOs with SFPs
 - Requires signal translation: CIBO takes TTL, SFP takes LVDS.
 - \bullet Requires voltage regulation: 5 $V \rightarrow$ 3.3 V.
- Rethink the Beam Permit Loop signals?
 - Sending messages instead of an analogue frequency.
 - For low latency, messages must be short.
 - **Ethernet** is ruled out (64 bytes/frame minimum).
 - The SFP will take any protocol we want.
 - As long as the signals are DC balanced.
 - We need to find a replacement for the current CPLDs anyway.
- VersatileLink: CERN project for an optical transceiver at the LHC experiments.
 - Back-end transceiver: commercial SFPs are acceptable.
 - Front-end transceiver: rad-hard SFP-like transceiver, tracker grade (500 kGy).
 - Bit-rates $\approx 5 \text{ Gbps}$.

Conclusions

- Optical links are good for:
 - Long distances.
 - High data rates.
 - Low EMI.
- In scenarios where distances are short and data rate is low:
 - EMI immunity may trample the few disadvantages.
 - Ease of monitoring is another good asset.
 - Flexibility in the transceivers choice.