

ESS Controls Infrastructure

Timo Korhonen ICS

www.europeanspallationsource.se

Feb.. 4, 2015

Overview

- Hardware platform(s)
 - High-speed digital platform
 - Middle range I/O
 - Industrial I/O
- Timing system
- Software (EPICS)

Scope of hardware platforms

- Control systems have a lot of interfaces
 - Need to cater for a spectrum of I/O requirements
 - Fast, real-time signal processing
 - State-of-the-art technology, evolving fast
 - FPGA-based processing
 - MHz to GHz range of signal acquisition
 - Middle-range I/O
 - requires synchronization, kHz range I/O
 - Non-real time industrial I/O
 - Typically PLC-based
 - Off-the-shelf devices
 - Serial, Ethernet or other fieldbus devices
- No single platform can cover this cost-efficiently!

EUROPEAI

High-speed Digital Platform

- Performance requirements (very shortly)
 - Support 14 Hz operation
 - Good integration with timing
 - Acquisition (ADC sampling) at 88 MSPS or faster
 - 2.86 ms long pulses: a lot of data to be handled
 - Local pre-processing of data
 - Interfaces to machine protection/interlock
 - Post-mortem abilities
- In fact, any (packaging/bus) platform could provide this!
 - The real questions are elsewhere:
 - Maintainability
 - Development and long-term sustainability
 - Collaborations and support for IKC partners

- Today, there is no clear single choice
 - cPCI, VME, custom (aka "pizza") box, MTCA.4,...?
- Serial links have overtaken parallel buses
 - Intelligence is in the interfaces and protocols
 - The "box" supplies infrastructure (power, cooling, monitoring, connectivity, some convenience features)
- Take a proven solution or go for something new?
 - Several labs are looking at MTCA.4
 - DESY (main promoter), SLAC, many others
 - ESS prototyping and development on MTCA.4
 - Not much existing hardware off-the-shelf

MTCA.4 structure

- xTCA is a telecommunication standard
 - Focus on teleecom needs
 - Bulk data transfer, different protocols
 - Platform management features
 - Targeted for (telecom) high availability
 - Sophisticated (=complicated)
 - MTCA.4 is called "uTCA for Physics"
 - Add Rear Transition Modules (RTM) for I/O
 - High-precision clock distribution
 - "interlock" lines on backplane
 - Bussed (not very useful for protection $\ensuremath{\mathfrak{S}}$)

- FMC (FPGA Mezzanine Card), VITA-57 standard
 - Separate analog (application-specific) and digital parts with a defined interface
 - One digital board can be used for several purposes
 - Reduce hardware stock complexity
 - Re-use of firmware libraries, software, integration
 - Modularization at the level of the major investment
 - Firmware, software, operational procedures
 - Separation of work (defined interfaces)

- Setting up a collaboration with PSI (ESS partner lab)
 - Framework for digital high-speed applications
 - Combination of powerful FPGA and C
 - Done with industry (small company) collaboration
 - Evform factor is different majority of effort is in the infrastructure for applications
 - Used in production (PSI LLRF, diagnostics, etc.)
 - This would be an overkill for the needs and not necessarily even suitable. To be seen
 - Advantage of timing integration exists, though

MTCA.4 and beam interlocks

- Nothing equivalent to CERN BIS exists today (As far as I know)
 - Would need to be developed from scratch
- Does BIS need to be on MTCA?
 - Control system integration (could be solved otherwise)
 - Many user systems (instrumentation) will be on MTCA
 - These need an interface to be defined

ESS Timing system

- Based on hardware by Micro-Research Finland
 - Originally developed for PSI/Swiss Light Source
 - Used in many accelarators (DLS, LCLS,...)
 - Lots of community development (software, open firmware, applications)
 - Basic capabilities:
 - High precision trigger distribution
 - Real-time data broadcast (beam info, etc.)
 - Sequencing
 - Synchronous timestamp delivery
 - Doing many of the same things than the CERN system but in a slightly different way.

- ESS uses EPICS as the control system platform
 - Running on (embedded) Linux
 - Interfacing different devices is (relatively) easy
 - Rather sophisticated things can be implemented lowlevel (not to be relied on, though)
 - Has its own alarm and limits monitoring system
 - Can be used to develop "soft interlocks"
 - (this term has caused a lot of confusion)
 - I do not think EPICS vs. FESA is a big issue for collaboration in machine protection.

Middle-range I/O

- High-end platform is expensive and centralized
 - Use only where needed
- Some applications still need time synchronization
 - Especially in a pulsed machine!
 - PLCs are not ideal for this (asynchronous cycle times)
- <u>EtherCAT</u> is a good solution for this range
 - Uses Ethernet cabling, special protocol
 - Can run on a PC or a "hard" IOC
 - Loop times of several kHz possible
 - Distributed I/O (reduce cabling)
 - Cost effective
 - Many I/O modules, several manufacturers
- Gaining popularity in the EPICS community

Industrial I/O

- PLC is the standard choice for most industrial-type I/O
 - High reliability
 - Widely known and deployed in partner labs and industries
 - A huge selection of I/O modules available
- Ideally, select one manufacturer
 - Reduce development and maintenance costs
 - One skillset, reduced stock of spares
 - Select a manufacturer with domain expertise
 - Local support for IKC partners
 - Procure via an open call for tender
 - Not quite straightforward, though but in progress

- There is still a large number of devices not covered yet
 - Serial devices
 - Use MOXA seems to be almost de-facto standard
 - Ethernet-based devices
 - Ethernet as a fieldbus, use StreamDevice & ASYN
 - Cameras
 - GigE, 10GBE, CameraLink(HS)
 - Very much provider-dependent take what the company gives
 - EPICS AreaDetector supports a large device base
 - Motion control
 - Working together with our NSS colleagues

- Decided to use MTCA.4 for instrumentation and LLRF
 - There is a lot of work to be done
 - Nothing (useful for ESS) in BIS area exists on MTCA as far as I know
- Listening to the talks it became obvious that
 - A lot of excellent thinking and experience exists at CERN
 - Collaborating in some form would be a big advantage for ESS
 - How to make this mutually attractive?

Questions?

Reserve slides

High-speed Digital Platform

- What to take, then?
 - Decide on **one** platform (and concentrate on it)
 - Certain level of know-how on MTCA.4 exists
 - With platform management (pains)
 - Single CPU configuration
 - "Front" card + RTM configuration
- Work to be done on the platform
 - Platform alone does not provide any functionality
 - Systems and processes have to be built around
 - Here lies the major investment!
 - We have some components developed but
 - Deployment will bring up many issues
 - Systems need to be maintained for a long time

High-speed Digital Platform – and beyond

- Lifetime issues
 - ESS project timespan > 10 years
 - Obsolecense issues will arise during the project
 - Need to be ready for change!
 - Biggest cost factor is in integration
 - Software, firmware, maintenance processes
 - How could that be modularized?
- Development of a full lifecycle system is costly
 - Has somebody addressed the deployment issues?
 - How to do gradual upgrades?
 - How to secure maintainability?
- Deciding the packaging standard is not enough
 - A more comprehensive framework is needed