500 MSPS status

Outline

- Roadmap up to now
- RF-distributor
- ADC board
\square VFC-HPC integration
> The JESD204 Rx block
> Results
\square Commercial options
- Summary

Roadmap up to now

] From simulations:
> ~17 ns Gaussian pulse
>500 MSPS, ENOB ~ 10.5, DC coupled
$>$ To get an accuracy $<1 \%$ for
] Market survey => FMC-500 from Innovative, but the board never existed...

- Decide to move to a development board from AD with the AD9680 ADC => AD9680-EVM:
> 300 MSPS - 1 GSPS
> ~10.8 ENOB (@ 10 MHz)
\Rightarrow AC coupled
> Serial JESD204 data transmission
> Received by mid November
- Signal conditioning needed to tune the signal timing and work with safe voltage ranges for the sampling system => Rf-Distributor board

RF-Distributor

\square ADC-FMC outputs:
> Non reflective Gaussian filter with 55 MHz BW
> Output voltages tuned to work safely with the Innovative FMC-500 analog input stage ($\pm 1 \mathrm{Vp}$)
> Offset control available
\square System A output similar to the old one, but with some modifications:
> Changed clamping diodes
> Input buffer changed

Rf-Distributor

\square V1 built and tested:
> Scattering parameters
> Pulse shape in time domain
> Linearity
> Noise
> External offset control
\square Some minor errors found
\square Fixes done and V2 being assembled

ADC-Board

\square Needs two external source synchronous low jitter clocks:
> Sample Clock $=500 \mathrm{MHz}$ (to AD9680)
> Ref Clock $=125 \mathrm{MHz}$ (to FPGA)
\square Serial data output in 4 lanes (JESD204 protocol)

VFC-HPC integration

\square Overview of the system

Arria V GX (5AGXMB1G4F40C4N

- 5A: Arria V
- GX: 6 Gbps transceiver
- M: 1 hard PCle and 2 hard memory controllers
- B1: 300 K logic elements
- G: 18 transceivers
- 4: Transceiver speed gra de 6.5536 Gbps
- F: FBGA package
- 40: 1517 pins
- C: Commercial
- 4 : Speed grade 4 ($3=$ fastest)
- N: Lead-free
- PLL input Fmax $=710 \mathrm{MHz}$
- Transceiver max link freq: 163 MHz
- 1510xM10Kbit

VFC-HPC integration - JESD204

\square Adapt project from Altera for the AD9680 ADC using a Stratix V : change clock frequencies, rebuild all the IP cores for the Arria V, modify pinout and add some pieces of code

VFC-HPC integration - JESD204

- I got quite jammed because I was using a schematic with a wrong pinout...
\square And in fact, the wrong-old pinout was better to accommodate the GX transceivers
\square With the new one the Duplex core doesn't fit $=>$ had to modify the code $=>$ no internal loopback to test the deserialization disentangling machinery
\square In addition one fuse was blown...

Wrong pinout

Actual pinout

GXB RX L7P,GXB REFCLK L7P GXB RX_L $7 \mathrm{~N}, \mathrm{GXB}$-REFCLK_L7N GXB_RX_L8P,GXB_REFCLK_L8P GXB_RX_L8N,GXB_REFCLK_L8N GXB_RX_ROP,GXB_REFCLK_ROP GXB_RX_RON,GXB_REFCLK_RON GXB RX R10P,GXB REFCLK R10P GXB_RX_R10N,GXB_REFCLK_R10N GXB RX R11P, GXB REFCLK R11P GXB_RX_R11N,GXB_REFCLK_R11N GXB RX R1P GXB RFFCLK R1P GXB RX R1N GXB REFCIK R1N GXB RX R2P,GXB REFCLK R2P GXB_RX_R2N,GXB_REFCLK_R2N GXB_RX_R6P,GXB_REFCLK_R6P GXB_RX_R6N,GXB_REFCLK_R6N GXB_RX_R7P,GXB_REFCLK R7P GXB_RX_R7N,GXB_REFCLK_R7N GXB RX R8N,GXB REFCLK R8N GXB RX R9P,GXB REFCLK R9P GXB_RX_R9N,GXB_REFCLK_R9N

GXB_RX ${ }^{-}$LTPGXB-REFCLK \bar{L} / P GXB_RXLTN,GXB REFCLK LTN GXB_RX_L8P,GXB REFCLK L8P GXB RX L8N,GXB REFCLK L8N GXB_RX_ROP,GXB REFCLK ROP GXB-RX RON, GXB-REFCLK GXB-RX R10P, GXB REFCLK R10P GXB-RX-R10N,GXB-REFCLK-R10N
 GXB RX-R11N, CXB -REFCLK-R11N GXXB RXX RIPGXB REFCIK RIP GXB RXXRIP, GXB_REFCLK_RIP GXB RX RIN,GXB REFCLK R1N
 GXB_RX_R2N,GXB REFCLK R2N
GXB RX R6P, GXB REFCLK R6P GXB RX R6N, GXB REFCLK R6N GXB_RX_R6N,GXB_REFCLK_R6N GXB_RX_R7P,GXB_REFCLK_R7P
GXB_RX_R7N,GXB_REFCLK_R7N GXB_RX_R7N,GXB REFCLK R7N
GXB RX R8P,GXB REFCLK R8P GXB_RX_R8P,GXB REFCLK R8P GXB RX R8N,GXB REFCLK R8N
GXB RX R9P,GXB REFCLK R9P GXB_RX_R9N,GXB_REFCLK_R9N

VFC-HPC integration - JESD204

\square Loop-back modified. This has some consequences...

Firs results

\square They really showed me that I keep being a naive dreamer... Things never work in the firs trial, despite it may seem so...
■ Data at 500 MSPS, "ramp" test pattern. It looks nice..., but cautiousness led me to verify in detail the link status, and surprise!!...

Firs results

\square The physical layer seems to work

Firs results

But the link layer doesn't.

How is it that I could see the ramp?? Well I had a bug in the code and the internal loop was by default enabled => At least we know that the Transport layer does work ()

- The source of the problem not identified yet... and not easy. The Duplex core would have helped a lot here...
\square Now we are using the development board, but for the future we should look for a commercial FMC mezzanine:
> Innovative (UK) => latest news is FMC-1000 for March. It houses the AD9680. The RF-Distributor outputs were designed to fit with their analog input requirements.
> Delphi engineering (US) => reply from few days ago: "Delphi is quoting 16 week delivery on orders we are receiving now for the quad channel, $1.0 \mathrm{Gs} / \mathrm{s} 14$ bit ADC FMC using the AD9680 ADC from ADI."

I On the other hand, Innovative claims that they already have since very recently an FMC-500 with parallel readout.
> I'm not going to express my opinion about this...

Summary

\square The RF-Distributor to be tested soon, and with some luck it will work properly.
\square Still work to do in the JESD204 link synchronization block. A lot. I'm debugging it getting some support from Altera, but any help is welcome. This part is essential for the system to work like a charm...
In addition I had a bunch of ideas on how to do the signal processing that I should document. Already started time ago, but no time to finish it...

- Purchase decision to be taken:
> Cross-check again the technical details (analog and digital signals)
> And pray to have one before summer...
\square Due to the bad experience with mismatched version of documents, maybe we should really think about an unified methodology of working using SVN or Git.
- New Fellowship, Jiri Kral, is taking over these tasks.

Thank you for your attendance

BACKUP

[2V input, dab_Igs, dimfss_lgs

■ 1V, 10dB att, dab_hgs, dimfss_hgs

- Spectrum analyzer

Spectrum analyzer noise figure: ~ -152 dBm

Output	"@ 60MHz"	"@ 200MHz"	"@ 600MHz"	"@ 60MHz"	"@ 200MHz"	"@ 600MHz"
Dimfss-HighGainStage	-137,8	-138,1	-149,8	28,806	27,828	7,236
Dimfss-LowGainStage	-155,7	-154,6	-151,8	3,668	4,164	5,748
Dab-HighGainStage	-126,9	-129,2	-142,2	101,038	77,533	17,357
Dab-LowGainStage	-144,5	-146,5	-152,5	13,319	10,58	5,303
			$\mathrm{dBm} / \mathrm{Hz}$			

Resonance: 933 MHz

\square Linearity tests Low Gain Stage

\square Linearity tests High Gain Stage

