Contribution ID: 65 Type: not specified

Generation of an ultrashort monoenergetic proton bunch in an instability-free regime by a single-cycle laser pulse

Friday, 16 October 2015 09:50 (20 minutes)

Prompted by the possibility1 to produce high energy single cycle laser pulse in the tens of PW intensity (1024W=cm2), we have

investigated laser-matter interaction in the few optical cycle and ultra relativistic intensity regime. A particularly interesting

instability-free regime for ion production was revealed leading to the efficient production of short(fs) monoenergetic ions with a

peak energy greater than GeV. Of paramount importance, the interaction is absent of RTI and hole boring plaguing techniques

as Target Normal Sheath Acceleration (TNSA) and Radiation Pressure Acceleration (RPA).

Primary author: ZHOU, M.L. (State Key Laboratory of Nuclear Physics and Technology, and Key Laboratory of HEDP of the Ministry of Education, CAPT, Peking University, Beijing, China, 100871)

Co-authors: MOUROU, Gerard (Laboratory of Applied Optics; International Centre for Zetta-Exawatt Science and Technology (IZEST)); TAJIMA, Toshiki (Department of Physics and Astronomy, UC Irvine, Irvine, CA 92697, USA; International Centre for Zetta-Exawatt Science and Technology (IZEST)); YAN, Xuequing (State Key Laboratory of Nuclear Physics and Technology, and Key Laboratory of HEDP of the Ministry of Education, CAPT, Peking University, Beijing, China, 100871)

Presenter: YAN, Xuequing (State Key Laboratory of Nuclear Physics and Technology, and Key Laboratory of HEDP of the Ministry of Education, CAPT, Peking University, Beijing, China, 100871)

Session Classification: Acceleration with micro and nanostructures

Track Classification: Presentations