INTERACTION OF HIGH INTENSITY LASER WITH STRUCTURED SNOW TARGETS

A.Zigler Hebrew University of Jerusalem Israel and INFN Frascati Italy

IZEST 2015 CERN , Switzerland Collaborators :

Z.Henis, M. Botton, S. Eisenman, E. Schleifer **Hebrew Univ. Jerusalem** D. Gordon, P. Sprangle **NRL Washington DC**

R. Pompili, M.P. Anania FLAME LASER INFN F. G Bisesto M. Galletti Frascatti Italy

Proton energy vs. laser power (current status)

Enhanced proton acceleration from snow (microwire) targets

The higher proton energy can be attributed to several effects:

- **The density gradient generated by the laser prepulse.**
- **Mass limited phenomenon.**
- **Localized field enhancement by the local plasma density near the tip of snow needle.**
- **Coulomb explosion of the positively charged snow needle, adding longtime acceleration of the protons.**
- **Aspect ratio of the microwire.**

Highly structured snow surface

- **The snow is growing as pillars in the" normal" direction to the substrate.**
- **The aspect ratio of the pillars decreases as the scale size decreases. The smallest features, spatially resolved, are with diameter about 0.5 - 2 μm**
- **The surface can be characterized by three roughness scales:**
- a) pillars of about 100 μ m
- **b) spikes of about 10 µm on top of them**
- **c) whiskers of about 1 µm on the spikes.**

Control of the structured snow target by changing the flow rate and varying the nucleation centers

SEM images of snow pillars that were grown over artificial Aluminum nucleation centers on Sapphire substrate at various growth conditions.

Control of morphology by growth kinetics

0.9 SCFH, 480 sec 3 SCFH, 80 sec

Influence of the pre pulse (damage threshold of the snow target

LASER $@$ ~70 fsec. Field of view 400x300 $µm$. Just Strobe images.

The damage threshold $-$ 0.3j/cm²

Less than 1 microjoule for tight (<10 micron) focusing !

Experimental Setup

Max Proton Energy vs. Intensity

What is a possible origin of these higher energies? We need modeling.

Model of laser whisker interaction

- **Interaction of the laser with a single wire.**
- **Use the prepulse with the same time duration as the main pulse - generates plasma with temperature of 2–5 eV.**
- **During the 10 ns interval between the prepulse and the main pulse the plasma expands forming a cylindrical plasma column.**
- **The main pulse interacts with a proper density scale length plasma.**

Laser – snow wire interaction by 2D PIC simulations with TURBOWAVE

Laser: 88 fs (32 + 24 + 32), 0.8 m**m, 4-5** m**m spot size, 2.5∙10¹⁷ – 2.5∙10¹⁹ W/cm²**

The core of $100 \cdot n_{cr}$: ellipsoid ~ 0.1-0.2 μ m x 1-2 μ m. **The critical density contour: ellipsoid ~ 1-2µm x 10µm .**

TURBOWAVE, Gordon et al., IEEE Trans. Plasma Sci. 35, 1486 (2007).

Electrons

36 fs

RUN1_z12/t30₁00_ea.dvdat Frame No: 8 2000 2 1800 $\mathbf{1}$ 1600 0 1400 1200 -1 \times 1000 -2 800 600 -3 400 -4 200 -5 500 1000 1500 2000 Z

Protons 36 fs

The electric field in units of a₀ **(x 1.37∙10¹¹ V/cm) I^L = 2.5∙10¹⁹ W/cm² after 200fsec**

 $127 \mu m$

 $mc\omega$

 a_{0}

еE

Constant solid density

I ^L = 2.5∙10¹⁹ W/cm² , propagating at 45^o relatively to the whisker major axis. Time = 672 fs after the laser pulse hit the whiskers.

Acceleration process

- **Electrons are driven out of the plasma ellipsoid, starting charge separation** $\sim \tau_{L}$ **. Unlike TNSA, no difference between front and rear surface.**
- **After passage of the laser, electrons accumulate near the tip, the protons start to react, ~ (2 -3)** t**L .**
- **The electrons accumulation near the tip is reduced, charge separation still maintained,** $(3 - 6) \tau$ ^L. Oxygen ions add a pushing field.
- **Late times, acceleration ceases, the protons move at constant velocity.**

Zigler et al. PRL 110, 2013.

Can we measure the temporal profile of an electrical field generated during the interaction of a high intensity laser pulse with a single wire?

- Possible approach –use of electro optical sampling Requirements:
- 1. 30 fs synchronization between the main (interacting) beam and the probe beam
- 2. Spatial overlap better than 30 microns

Electrical field measurement schematics – first steps

- Based on Electro-Optic effect in nonlinear crystals (ZnTe, GaP).
- The crystal becomes anisotropic \rightarrow 2 different refractive indices.
- Induced phase delay in a polarized laser propagating into it:

$$
\Gamma(t) = \frac{\omega d}{c} (n_1 - n_2) = \frac{\omega d}{2c} n_0^3 \sqrt{4E_{\pi H} (t)} \sqrt{4 + 3\cos^2 \alpha}
$$

Benefits: single shot, non-intercepting, time resolution (50 fs rms) ٠

Electrical Field due to Charged Particles Generated by Interaction of 10¹⁷ W/cm² 40fsec Laser Beam with the Blade edge

(preliminary results)

Data 20000 Gaussian Fit 15000 Amplitude (a.u.) 10000 5000 1.5 b, $2.5\,$ 3 3.5 4.5 Time (s) $\times 10^{-12}$ **Electric Field: 7.5 MV/m Duration: 740 fs (rms)** 0.025 0.02 electric field[a0]
e.c.
e.c. 0.005 4000 6000 10000 12000 14000 16000 18000 2000 8000 time[fs]

7psec

Measured at 2mm from the blade edge

Summary: Proton energy vs. Laser power using micro- structured targets

EOS Spatial Encoding Setup

- Laser crosses the crystal with an incident angle of 30 \degree \rightarrow one side of the laser pulse arrives earlier on the EO crystal than the other by a time difference Δt .
- Coulomb field inducing birefringence is encoded in the spatial profile of laser pulse
- Benefits: simple, no high energy laser needed.
- **Crossed Polarizer Setup** ۰.

Measured intensity is equal to
$$
I_d
$$

$$
I_{\text{det}} = I_{\text{laser}} \sin^2 \Gamma \propto E_{\text{THz}}^2
$$

Snow target In the ESEM

Pre-plasma density spatial profile

Interferometry Measurements:

Electron density up to $N_e^{\sim} 10^{20}$ cm⁻³

Spatial resolution up to 1-3 microns

Output of 1D model - accelerated protons energy

- Field enhancement: $a_{0 \text{eff}}$ ~ 3a₀
- $k_B T_h = m_e c^2 \left[1 + \frac{I \lambda^2}{1.37 \cdot 10^{18}} 1 \right]$ • Hot electrons:
- Short length scale: $L \sim 0.05 \lambda$
- $E_{acc} \approx \frac{kT_{hot}}{\rho I}$ • Accelerating field:
- ION energy: accelerated along one wavelength

 $E_{proton} \cong E_{acc} \times \lambda = 20kT_{hot} = 6MeV$ At k_BT_h ~ 300 keV

 $\frac{1}{3}$

 -20 -10 $z[\mu]$ 10

 $\mathbf{0}^{\mathsf{I}}$

Target- Normal Sheet Acceleration (TNSA)

Proton detection setup

- **TOF measurement using a plastic scintillator + PMT provide online energy spectra.**
- **Thomson parabola spectrometer**
- **CR 39 and Cu nuclear activation**

Experiments of proton acceleration with snow targets

CR39 plates representing typical results of the experiments

 $E_p > 1$ MeV $E_p > 13$ MeV $E_p > 20$ MeV

Energy bins – total protons count

1,E+08 1,E+07 1,E+06 counts [protons] **counts [protons]** 1,E+05 1,E+04 1,E+03 1,E+02 1,E+01 1,E+00 13 20 24

Protons energy bins

proton energy [MeV]

Shot 7354 Texas PW (42TW on Target)

- AR plasma mirrors slides
- Stack (protons arrive from the left):

• Geiger counter - Cu#1 signal

Cu Activation (TU)

Image plate scan (with grey level adjusted) Image plate scan (with spatial 1mm average)

I L = 2.5∙10¹⁹ W/cm² , 90^o irradiance, at 141 fs.

Electrons Protons Oxygen

Laser-target coupling

Very efficient coupling of laser energy to H_2O layer:

No H2O deposited on Al2O3 (Sapphire)

With H_2O deposited on Al_2O_3

What about the pre pulse?

Energy bins – protons per mm^2 (MBI)

Protons energy bins

Electric field and protons density distribution along central horizontal line at different times (430 fs – 1138 fs after start of interaction)

Multi-variables numerical study of the laser – snow whisker interaction

- **Different sizes.**
- **Aspect ratios from 1 to 100.**
- **Planar and ellipsoid shapes.**
- **From step-like solid density to under-dense plasma with smooth Gaussian density gradients.**
- **Laser intensity from 2.5∙10¹⁷ W/cm² to 2.5∙10²¹ W/cm² .**
- **Different angles between the laser propagation and the whisker axis of symmetry.**

Pre-plasma density temporal profile

Protons energy spectrum

I ^L = 2.5∙10¹⁹ W/cm² , propagating at 45^o .

Proton energy vs. laser power (current status)

Future work

- **Experiments with controlled targets.**
- **Study of the pre-plasma characteristics and impact on proton acceleration.**
- **Simulation of interaction of the laser with more than one whisker.**
- **Experiments at laser system with I>5 10¹⁹W/cm² and highly controlled prepulse**

Collisionless plasma description

$$
\begin{cases}\n\frac{\partial f_j}{\partial t} = -\mathbf{v} \cdot \frac{\partial f_j}{\partial \mathbf{x}} - q_j \left(\mathbf{E} + \frac{\mathbf{v}}{c} \times \mathbf{B} \right) \cdot \frac{\partial f_j}{\partial \mathbf{p}} \\
\nabla \cdot \mathbf{E} = 4\pi \rho \\
\nabla \times \mathbf{E} = -\frac{1}{c} \frac{\partial \mathbf{B}}{\partial t} \\
\nabla \times \mathbf{B} = \frac{4\pi}{c} \mathbf{J} + \frac{1}{c} \frac{\partial \mathbf{E}}{\partial t} \\
\nabla \cdot \mathbf{B} = 0 \\
\varphi = \sum_j q_j \int f_j(\mathbf{x}, \mathbf{p}, t) \, d\mathbf{p} \\
\mathbf{J} = \sum_j \frac{q_j}{m_j} \int \mathbf{p} f_j(\mathbf{x}, \mathbf{v}, t) \, d\mathbf{p}\n\end{cases}
$$

Structured snow targets

Snow grown in ESEM over a sapphire substrate at -160C at 6 Torr

Schleiffer er all, J. Phys. D, 2015

Relation between Vlasov and macro-particle approach

Main loop of a typical PIC code

Mechanisms of proton acceleration

- **TNSA - target normal sheath acceleration, due to hot electrons.**
	- **Quasi static models.**
	- **Plasma expansion.**
	- **Multi species studies.**
- **RPA – radiation pressure acceleration, circ. polarization, intensities > 10²¹ W/cm² and cleaner pulses.**
	- **Thick targets: hole boring regime.**
	- **Thin targets: light sail regime.**
- **Collisionless shocks.**
- **Break after burner – transparency regime**.
- **Field enhancement in structured targets**

Motivation

Fundamental research: ion acceleration is a fertile field for theory and simulations.

Current and future applications:

- Proton radiography and imaging
- Production of warm dense matter
- Fast ignition of fusion targets
- Biomedical applications
- Nuclear and particle physics

Recent review articles

- **K. Ledingham et al, NJP 12, 045005 (2010).**
- **H. Daido, Rep. Prog. Phys. 75 , 056401 (2012).**
- **A. Machi, Rev. Mod. Phys. 85, 751, 2013.**

Mechanisms of ion acceleration

Boella_Thesis_PhD_UGOV.pdf, 2014

Characterization of the pre plasma (low density plasma)

CR39 Counting Diagnostics (HU)

90 shots; 2.5cm from target

6MeV filter Background

D1 protons >1MeV

- Distribution relatively uniform.
- Counts (based on 30 images) > 2E5 protons/mm²
- Total counts is 10⁸ protons

FOV is 100um

D3 proton > 20 MeV

- Highly non-uniform (bunch)
- Counts (average 30 images) : 10⁵ protons/mm²
- Total count $\sim 10^6$

FOV is 100um

CR39 Counting Diagnostics

- * Energy bins are not continues due to CR39 detection limits.
- ****** Cu activation

1D fluid equations for electrons and protons model

FIG. 3 (color online). (a) The plasma density as a function of planar distance from the original position of the nanowire $(x = 0, y = 0)$. (b) The laser electric field E propagation through the nanoplasma at a direction k .

TNSA

Efficient production of hot electrons, 30%. Ions are pulled out by the sheath electric field at the rear surface.

$$
k_B T_h = m_e c^2 \left[\sqrt{1 + \frac{I \lambda^2}{1.37 \cdot 10^{18}} - 1} \right]
$$

$$
E_{acc} \approx \frac{k T_{hot}}{eL} \qquad L = \lambda_{Debye} = \sqrt{\frac{k_B T_h}{4 \pi e^2 n_h}} \qquad n_h = \frac{\eta E_L}{k_B T_h} \frac{1}{S c \tau_L} = \frac{\eta I_L}{k_B T_h c}
$$

1D fluid model… (cont.)

FIG. 5. The density of the electrons (solid line) at six time frames. The laser envelope (dotted line) is enhanced by the NPC. Broken lines show the initial distribution of the electrons.

Zigler et al., PRL 106, 134801 (2011)

 -5

 $\frac{0}{\omega_1}$ z/c

5

 10

 0 - 10

Electron density gradient scale length L \sim (0.5-0.1) λ

FIG. 6. Electron density normalized to the laser frequency before and after the main laser pulse has passed the frozen H₂O nanowire. Left-hand inset: Enlargement of the region of peak electron density. Right-hand inset: Enlargement of the ions' acceleration length.