

Longitudinal alignment tolerances for HL-LHC IT?

M. Fitterer and S. Fartoukh Acknowledgments: R. De Maria and M. Giovannozzi

Motivation

EN-MEF-SU (Survey) is starting to design the alignment system for the HL-LHC IT:

- -> new alignment system should also include measurements of the longitudinal position (not included in current system)
- -> Request by EN-MEF-SU (Survey) to specify longitudinal alignment tolerances for the IT

Optics distortions due to long. misalignment

longitudinal misalignment of quadrupoles results (mainly) in beta-beating. Assuming $3\Delta\sigma_s$ longitudinal alignment error (Gaussian error distribution), the peak beta-beating is in first order given by (see LHC Project Note 866):

$$B_{x,y}^{\text{classX}} = \chi_{x,y}^{\text{classX}} \sigma_{\Delta_s}^{\text{classX}}, \text{ with}$$

$$\chi_{x,y}^{\text{classX}} = \frac{3}{2\sqrt{2}\sin 2\pi Q_{x,y}} \sqrt{\sum_{i \in \text{classX}} K^{(i)^2} \left(\beta_{x1,y1}^{(i)}^2 + \beta_{x2,y2}^{(i)}^2 - 2\beta_{x1,y1}^{(i)} \beta_{x2,y2}^{(i)} \cos 2\Delta \mu_{x,y}^{(i)}\right)}$$

where the IT is seen as one class of magnets. $\beta_{1/2}$ is the beta function at the entrance and exit of the quadrupole and $\Delta\mu$ the phase advance over the quadrupole.

Limits on peak beta-beat (given by S. Fartoukh):

injection:

1% peak beta-beat

pre-squeezed optics (β*=44 cm):

20% peak beta-beat

squeezed optics and assuming a correction of the pre-squeezed optics to <7 %:
 20% peak beta-beat

Sensitivity of different optics

peak beta-beat assuming $3\Delta\sigma_s$ longitudinal alignment error is given by:

$$B_{x,y}^{\text{classX}} = \chi_{x,y}^{\text{classX}} \sigma_{\Delta_s}^{\text{classX}}, \text{ with}$$

$$\chi_{x,y}^{\text{classX}} = \frac{3}{2\sqrt{2}\sin 2\pi Q_{x,y}} \sqrt{\sum_{i \in \text{classX}} K^{(i)^2} \left(\beta_{x1,y1}^{(i)}^2 + \beta_{x2,y2}^{(i)}^2 - 2\beta_{x1,y1}^{(i)} \beta_{x2,y2}^{(i)} \cos 2\Delta \mu_{x,y}^{(i)}\right)}$$

peak beta-beating considering the contribution form all IT magnets in IR1 and IR5 and $3\sigma_{\Lambda s}$.

optics	Sensitivity parai	$\sigma_{\Delta s}$ [mm] for peak		$\sigma_{\Delta s}$ [mm] for peak		
optics	hor. b1/b2	vert. b1/b2	beta-beat($3\sigma_{\Delta s}$)=1%		beta-beat($3\sigma_{\Delta s}$)=20%	
injection 6	2.54/2.54	2.68/2.68		3.73	-	
pre-squeeze	36.58/36.57	37.60/37.58		-	5.32	
round	107.32/107.24	110.33/110.16		-	1.82	
flat	155.69/155.29	160.21/159.86		-	1.25	
sround	161.05/160.86	165.56/165.15		-	1.21	
sflat	232.24/231.21	239.31/238.38		-	0.84	

Proposal

optics	Sensitivity parar	$\sigma_{\Delta s}$ [mm] for peak		$\sigma_{\Delta s}$ [mm] for peak		
optics	hor. b1/b2	vert. b1/b2	beta-beat $(3\sigma_{\Delta s})=1\%$		beta-beat($3\sigma_{\Delta s}$)=20%	
injection 6	2.54/2.54	2.68/2.68		3.73	-	
pre-squeeze	36.58/36.57	37.60/37.58		-	5.32	
round	107.32/107.24	110.33/110.16		-	1.82	
flat	155.69/155.29	160.21/159.86		-	1.25	
sround	161.05/160.86	165.56/165.15		-	1.21	
sflat	232.24/231.21	239.31/238.38		-	0.84	

=> request 1-2 mm as longitudinal alignment error tolerance?????

BACKUP SLIDES

Check with MC simulations

peak beta-beat with analytical formula:

optics	Sensitivity param	meter $\chi_{x,y}$ [m ⁻¹]	$\sigma_{\Delta s}$ [mm] for peak	$\sigma_{\Delta s}$ [mm] for peak	
	hor. b1/b2	vert. b1/b2	beta-beat($3\sigma_{\Delta s}$)=1%	beta-beat($3\sigma_{\Delta s}$)=20%	
injection 6	2.54/2.54	2.68/2.68	3.73	-	
pre-squeeze	36.58/36.57	37.60/37.58	-	5.32	
round	107.32/107.24	110.33/110.16	-	1.82	
flat	155.69/155.29	160.21/159.86	-	1.25	
sround	161.05/160.86	165.56/165.15	-	1.21	
sflat	232.24/231.21	239.31/238.38	-	0.84	

Monte Carlo simulation for "opt round" considering the contribution from all IT magnets in IR1/5 and assuming a Gaussian distribution with $\sigma = \sigma_{\Lambda s}$ and 1000 seeds.

σ.	Beam	beta-beat [%] (hor./vert.)						
$\sigma_{\Delta s}$	Deam	maximum	mean	std	rms		3 rms	
1 mm	mm $B \Rightarrow good agreement with the analytical formula for small 84 11.18/11.51$							
	misalignments (< few mm). For larger misalignments, the analytical formula underestimates the rms peak beta-beat as expected. 63 11.74/10.88 3.64 68.71/70.92 71.49/69.07						11.74/10.88	
5 mm								
							71.49/69.07	
10 mm	Beam	Can 1 1702.711137.21 70.11177.70 72.33133.77 103.3017 1.07 310					310.15/213.2	
	Beam 2	1815.21/1590.12	46.04/44.48	75.44/78.39	88.38/90.13 26		265.15/270.4	

