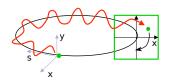


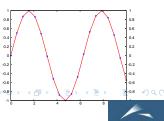
Experimental Setup and Lattice Data Analysis for TbT Measurements at Alba

Michele Carlá on behalf of the Alba beam physics group

24 April 2015


Experimental Setup and Lattice Data Analysis for TbT Measurements at Alba

- Transverse beam dynamics
- Beam Position Monitors (BPM)
- TbT measurements
- Lattice error reconstruction:
 - Quadrupole
 - Skew Quadrupole
 - Sextupole
- Conclusion


Transverse Motion in a Linear Lattice

- Quadrupoles excert a linear force on electrons. (Sextupole doesn't!)
- Traveling through quadrupoles electrons exhibit betatron motion.
- 120 beam position monitors measure turn after turn beam position.

Like a pendulum viewed through a stroboscope

Non linear transverse beam dynamics at small amplitude

Unluckily non-linearity can not be avoided...

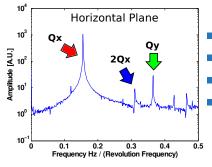
...field errors, higher order magnets

- Hamiltonian is not integrable.
- We can break the Hamiltonian into integrable terms
- Build an integrator accurate to some order...

normal form analysis provide direct access to the **building block** of the **spectrum**: **Resonant Driving Terms**

$$f_{jklm}(s) = \frac{\sum_{w,n} K_n \beta_{x,n}^{(l+m)/2} \beta_{y,n}^{(l+m)/2} e^{i((j-k)\Delta(s)_{w,x} + (l-m)\Delta(s)_{w,y})}}{1 - e^{2\pi i((j-k)Q_x + (l-m)Q_y)}}$$

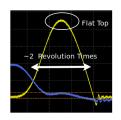
The spectrum is composed by discrete lines, each line can be expressed as a *mixture* of driving terms.



Non linear transverse beam dynamics at small amplitude

Every magnet play a different role in the spectrum

For example on the horizontal plane...

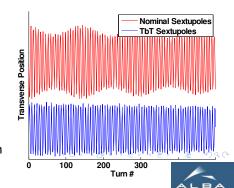


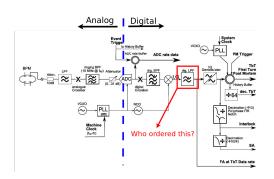
- $Q_{ imes}$ Depends on the quadrupoles
- lacksquare Q_y Depends on Skew quadrupoles
- $2Q_x$ Depends on sextupoles
- Every spectral line tell us something about a different part of the optics

Experimental Setup: A few issues for starter

Kick coherently:

Kick pulse must be fast: less than 1 turn.

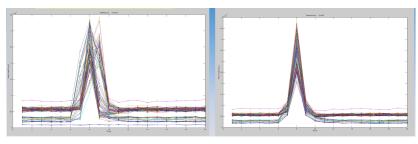

Kick pulse must be flat: all particles get kicked with


the same amplitude

Preserve the coherent motion:

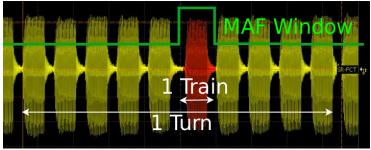
Chromaticity & Tune shift with amplitude reduce strongly the observable number of turns

Special sextupole settings with low Chromaticity and small Tune shift with amplitude


- Aggressive design taking profit of fast ADC!
- A narrow low pass-filter is used to smooth the signal before demodulation
- In the time domain the effect is mixing signal from different turns!!!
- The easy and dirty way: measure the response of the filter and deconvolute the signal
- The elegant solution: re-implement from scratch the digital domain filtering (MAF)

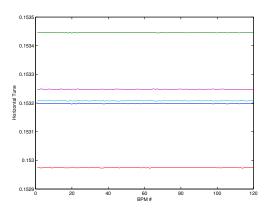
Smearing Work Around

• One train is injected and dumped after one turn.


- BPM are synchronized with the beam.
- The single turn response of each BPM is measured.
- The output signal is deconvoluted with the measured single turn response.

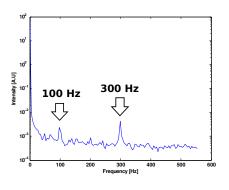
Moving Average Filter (MAF): A smarter design

Replace the low pass filter with an integration window synchronized with the beam.


- Avoids turn mixing.
- Reduce the integrated noise: most of the revolution time contain no signal.
- Only available on Libera-Brilliance

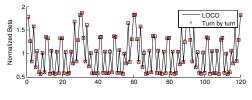
Tune Jitter...

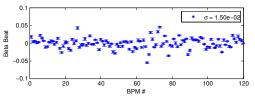
- Every BPM sees the same tune! (Good)
- Every kick has a different tune! (Bad)
- The Machine is Changing!
- Who is the responsible ...?



 ~ 10 mA of noise in each quadrupole can produce the tune-jitter we are observing!

Tune Jitter Spectrum

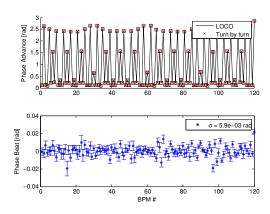

- A kick do not last enough!
- Once in a while instabilites are our friends → tuning the chromaticity close to 0 betatron motion get steadily excited
- Enough to get a spectrum
- 100 & 300 Hz looks very suspicious...


 ~ 10 mA of noise in each quadrupole can produce the tune-jitter we are observing!

Linear Lattice: Relative β -beat from Amplitude

- Kick strength is unknown. (with enough precision)
- We can still define a normalized $\bar{\beta}$:

$$\bar{\beta}_i = \frac{A_i^2}{\sum_{j=0}^N A_j^2} N$$


Precision is mainly limited by BPM gain

Linear Lattice: phase-beat

- Phase advance between couples of BPM can be directly assessed
- The most reliable TbT observable!
- We expect the precision to be limited by mechanical errors and noise.

Let's start with an easy one...

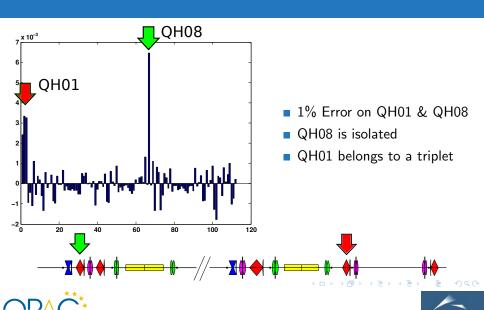
Can we observe a known quadrupolar error $ec{Q_0}$?

In simulation:

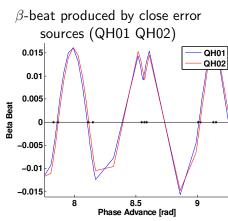
I Calculate the β and phase to quadrupole response matrix:

$$M \times \vec{Q} = \vec{\Delta}$$

On the machine:


- lacktriangle Measure $ar{eta}$ and phase
- 2 Change the strength of 2 Quadrupoles $(\vec{Q_0})$
- Measure again...
- \blacksquare Build an error vector: $\vec{\Delta}$

$$ec{Q_0} = ec{M}^{-1} imes ec{\Delta} \leftarrow$$

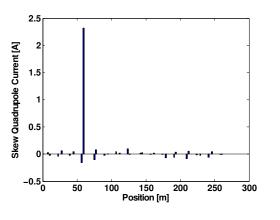


Quadrupole errors reconstruction

Error reconstruction is **LOCAL!**

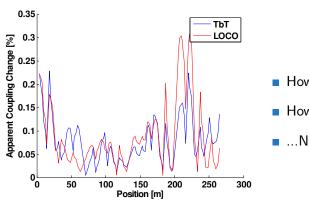
 \Rightarrow Close quadrupoles results in close β -beat patterns

Looking at the inverse response matrix


⇒ Only close BPMs are able to locate error sources

BPM Position [m]

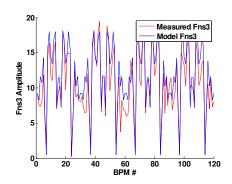
Coupling



- This time we look at the coupling lines:
 - lacksquare Q_y on the H-plane
 - lacksquare Q_X on the V-plane
- Set 2 Amp error on 1 skew quadrupole
- Measure 2.3 Amp
- Still close skews get mixed

Reducing the Coupling: Turn-by-Turn vs LOCO

- How LOCO corrects coupling?
- How we correct coupling?
- ...Not too far



...and the Sextupoles? Still work in progress

Should not be more difficult than the skews quadrupoles...

We did few acquisitions but the results looks well confused!

Conclusions

- It tooks almost two years to setup the system and get reliable TbT data...
- Linear: Results match quite well LOCO predictions. Still not clear if the accuracy is enough to attemp a lattice correction.
- Coupling:
 Even if the overall accuracy is worst than the linear case,
 probably is good enough to attempt coupling correction as required during normal operation.
- Sextupoles: Results look weird... still work in progress. The overall accuracy is expected to be similar to the one obtained for coupling: in any case not enough to correct the optics!

Thank you

The Alba TbT team:

M. Carlá, Z. Martí, G. Benedetti, A. Olmos and U. Iriso

