

Concept for a compact low emittance cell Plans for an upgrade of the Swiss Light Source

Andreas Streun Paul Scherrer Institut (PSI) Villigen, Switzerland

1 st Workshop on Low Emittance Lattice Design Barcelona, April 23-24, 2015

Antoni Gaudí (1852-1926): "*buttresses are the crutches of the Gothic"*

- \Rightarrow follow nature (i.e. the directions of force):
- inclined columns and walls
- cosh-shaped ("parabolic") arcs

The theoretical minium emittance (TME) cell

Conditions for minimum emittance

$$
\beta_o^{\min} = \frac{L}{2\sqrt{15}} \quad \eta_o^{\min} = \frac{hL^2}{24} \implies \varepsilon_{xo}^{\min}[\text{pm-rad}] = \frac{7.8}{12\sqrt{15}} (E[\text{GeV}])^2 \frac{(\phi[\text{O}^{\text{o}}])^3}{J_x}
$$

- periodic/symmetric cell: $\alpha = \eta' = 0$ at ends
- \Rightarrow over-focusing of $\beta_x \Rightarrow$ phase advance $\mu^{min} = 284.5^{\circ}$
	- x 2nd focus, useless overstrained optics, huge chromaticity...
	- long cell
	- \Rightarrow better have two relaxed cells of $\phi/2$
	- MBA concept...

Relaxed TME cells

 Deviations from TME conditions

$$
F = \frac{\varepsilon_{xo}}{\varepsilon_{xo}^{\min}} \quad b = \frac{\beta_o}{\beta_o^{\min}} \quad d = \frac{\eta_o}{\eta_o^{\min}}
$$

◆ Ellipse equations for emittance

$$
\frac{5}{4}(d-1)^2 + (b-F)^2 = F^2 - 1
$$

 Cell phase advance $15(d-3)$ 6 2 tan — = *d* μ 6 *b*

is this what we really wanted ?

 \Rightarrow Real cells: μ < 180° \Rightarrow \rightarrow \rightarrow 3...6

what would Gaudí do ?

- 1. disentangle dispersion η and beta function β_r
	- *release constraint: focusing is done with quads.*
	- \Rightarrow use "anti-bend" (AB) out of phase with main bend
	- suppress dispersion ($\eta_{\text{o}} \approx 0$) in main bend center.
	- allow modest β_{xo} for low cell phase advance.
- 2. optimize bending field for minimum emittance
	- *release constraint: bend field is homogeneous.*
	- \Rightarrow use "longitudinal gradient bend" (LGB)
	- **highest field at bend center** $(h_o = (e/p) B_o)$
	- reduce field $h(s)$ as dispersion $\eta(s)$ grows
- sub-TME cell $(F < 1)$ at moderate phase advance

step 1: **the anti-bend (AB)**

- General problem of dispersion matching:
	- dispersion is a horizontal trajectory
	- dispersion production in dipoles \rightarrow "defocusing": η " > 0
- Quadrupoles in conventional cell:
	- over-focusing of beta function β_x
	- insufficient focusing of dispersion $\eta_{\mathbb{E}^{14}}$
- \Rightarrow disentangle η and β_r
- use negative dipole: *anti-bend*
	- $-$ kick $\Delta \eta' = \psi$, angle $\psi < 0$
	- out of phase with main dipole
	- $-$ negligible effect on $\pmb{\beta}_x$, $\pmb{\beta}_y$

relaxed TME cell, 5°, 2.4 GeV, $J_x \approx 2$ Emittance: **500 pm / 200 pm**

2 2 2 AB emittance effects 12 2 2 4 AB

AB emittance contribution

$$
\varepsilon \propto I_5 = \int_L |h|^3 \mathcal{H} \, ds \xrightarrow{AB} \approx |h|^3 \frac{\eta^2}{\beta} L_{\frac{5}{5} \frac{4}{5}}^{\frac{5}{5} \frac{5}{5}} \sqrt{\frac{\text{Disp. }\eta}{\beta_r \beta_v}}
$$

- η is large and \approx constant at AB \Rightarrow low field, long magnet
- Cell emittance $(2\times AB + \text{main bend})$
	- $-$ main bend angle to be increased by 2 | ψ \Rightarrow in total, still lower emittance
- \blacksquare AB as combined function magnet
	- Increase of damping partition *J^x*
		- vertical focusing in normal bend
		- horizontal focusing in anti-bend.
	- horizontal focusing required anyway at AB
	- \Rightarrow AB = off-centered quadrupole \Rightarrow half quadrupole \oslash

$\mathsf R$ imnact on chromaticity \blacksquare 2 Y 2 Y 2 Y 2 Y **Example 2 AB** impact on chromaticity

Anti-bend \Rightarrow negative momentum compaction α

$$
\alpha = \frac{1}{C} \left(\int_{LGB} \sqrt{\eta h} \, ds + \int_{AB} \eta h \, ds \right) < 0
$$

 \Rightarrow Head-tail stability for negative chromaticity!

- First simulations on transverse instabilities (Eirini Koukovini-Platia @CERN)
	- SLS candidate lattice : $\alpha = -10^{-4}$; 100 MHz, 5 mA/bunch
	- resistive wall: 10 mm radius Cu-pipe, 1 μ m NEG
	- $-$ broad band resonanter: 8 GHz, $Q = 1$, $R = 500 \text{ k}\Omega/\text{m}$
	- transverse instability from HEADTAIL code
	- \Rightarrow unstable for $\xi = 0$, stability for $\xi < -4$

step 2: **the longitudinal gradient bend (LGB)**

$$
\mathcal{E} \propto I_5 = \int_L |h(s)|^3 \mathcal{H}(s) \, ds \quad \mathcal{H} = \frac{\eta^2 + (\alpha \eta + \beta \eta')^2}{\beta} \quad \text{orbit curvature} \quad h(s) = B(s)/(p/e)
$$

- Longitudinal field variation $h(s)$ to compensate $H(s)$ variation
- Beam dynamics in bending magnet
	- Curvature is source of dispersion: $\eta''(s) = h(s) \to \eta'(s) \to \eta(s)$
	- $1+\alpha_0^2$ α^2 - Horizontal optics ~ like drift space: $\beta(s) = \beta_0 - 2\alpha_0 s + \frac{1+\alpha_0^2}{\beta_0} s^2$
	- $-$ Assumptions: no transverse gradient ($k = 0$); rectangular geometry
- $I_5 = \int_L f(s,\eta,\eta',\eta'') ds \to \min \text{ with functional } f = \mathcal{H}(s,\eta,\eta',\eta'') \left[|\eta' |^3 \right]$ • Variational problem: find extremal of $\eta(s)$ for $\propto I_5 = \int_L |h(s)|^3 \mathcal{H}(s) ds$

■ Longitudinal field variation

■ Beam dynamics in bend

— Curvature is source of dis

— Horizontal optics ~ like dr

— Assumptions: no transver

■ Variational problem: find
 $I_5 = \int_L f(s, \eta, \eta$
	- too complicated to solve
		- mixed products up to $n^{\prime\prime\prime}$ in Euler-Poisson equation...
- \rightarrow special functions $h(s)$, simple (few parameters): variational problem \rightarrow minimization problem
-

3

 $\eta''(s) = h(s) \rightarrow \eta'(s) \rightarrow \eta(s)$

LGB numerical optimization

- Half bend in *N* slices: curvature h_i , length Δs_i
- Knobs for minimizer: $\{h_i\}, \beta_0, \eta_0$
- Objective: I_5
- Constraints:
	- **length:** $\Sigma \Delta s_i = L/2$
	- **angle:** $\Sigma h_i \Delta s_i = \Phi/2$
	- **Field:** $h_i < h_{\text{max}}$]
	- **I** [optics: β_0 , η_0]
- Results:
	- **hyperbolic field variation** (for symmetric bend, dispersion suppressor bend is different)

I

Trend: $h_0 \rightarrow \infty$, $\beta_0 \rightarrow 0$, $\eta_0 \rightarrow 0$

LGB optimization with optics constraints

- \bullet Numerical optimization of field profile for fixed β_0 , η_0
	- **Emittance (F) vs.** β_0 , η_0 normalized to data for TME of hom. bend

small (-0) dispersion at centre required, but tolerant to large beta function

The LGB/AB cell ("Gaudí cell")

- Conventional cell vs. longitudinal-gradient bend/anti-bend cell
	- both: angle 6.7°, $E = 2.4$ GeV, $L = 2.36$ m, $\Delta \mu_x = 160^{\circ}$, $\Delta \mu_y = 90^{\circ}$, $J_x \approx 1$

st Workshop on Low Emittance Lattice Design, Barcelona, Apr. 23-24, 2015 12

SLS lattice and history

SLS upgrade constraints and challenges

Constraints

- get factor 20...50 lower emittance (100...250 pm)
- keep circumference & footprint: hall & tunnel.
- **Fuller** re-use injector: booster & linac.
- keep beam lines: avoid shift of source points.
- "dark period" for upgrade 6...9 months
- Main challenge: *small circumference* (288 m)
	- Multi bend achromat: $\epsilon \propto$ (number of bends)⁻³
	- **Damping wigglers (DW):** $\varepsilon \propto \frac{m g}{r \ln a + D M}$ **radiated power** ring ring + **DW**
	- \Rightarrow Low emittance from MBA and/or DW requires space !
	- \Rightarrow Scaling MAX IV to SLS size and energy gives $\epsilon \approx 1$ nm \star
	- **LGB/AB-cell based MBA** \Rightarrow $\varepsilon \approx 100...200$ pm \checkmark

SLS-2 lattice design

Various concept lattice designs for 100-200 pm

(factor 25...50 compared to SLS-1)

- based on a 7-bend achromat arc.
- longitudinal gradient bends and anti-bends.
- period-3 lattice: 12 arcs and 3 different straight types.
- beam pipe / magnet bore \varnothing 20/26 mm.

60 s.c. superbend LGB/AB lattice

n.c. bend LGB/AB lattice

s.c./n.c. hybrid MBA lattice

SLS-2 design priorities

- Dynamic aperture optimization
	- Non-linear optics optimization to provide sufficient lifetime and injection efficiency.
	- \Rightarrow Mike Ehrlichman's talk
- \blacktriangleright Injection scheme
	- off-axis and on-axis schemes using existing SLS injector.
	- \Rightarrow Angela Saa Hernandez' talk
- ◆ Impedances and instabilities
	- Interaction of beam with narrow, NEG coated beam pipe.
- Alignment and orbit correction
	- Magnet/girder integration, dynamic alignment, photon BPMs.
	- Rely on beam based alignment methods.

Time schedule

Jan. 2014 Letter of Intent submitted to SERI (SERI = State secretariat for Education, Research and Innovation)

■ schedule and budget

- 2017-20 studies & prototypes 2 MCHF
- 2021-24 new storage ring 63 MCHF beamline upgrades 20 MCHF
- Oct. 2014 positive evaluation by SERI: *SLS-2 is on the "roadmap".*
- Concept decisions fall 2015.
- Conceptual design report end 2016.

Conclusion

- Anti bends (AB) disentangle horizontal beta and dispersion functions.
- Longitudinal gradient bends (LGB) provide minimum emittance by adjusting the field to the dispersion.
- ◆ The new LGB/AB cell provides low emittance at modest cell phase advance.
- ◆ Upgrade of the Swiss Light Source SLS has to cope with a rather compact lattice footprint.
- Draft designs for an SLS upgrade are based on LGB/AB-MBAs and on hybrid MBAs, and promise an emittance in the 100..200 pm range.
- A conceptual design report is scheduled for end 2016.