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Antoni Gaudí (1852-1926):
“buttresses are the crutches of the Gothic”

 follow nature (i.e. the directions of force):

 inclined columns and walls

 cosh-shaped (“parabolic”) arcs

 Notre Dame
Paris

Sagrada Familia 
Barcelona

buttress

which constraints 
may be released to 
get new solutions?
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The theoretical minium emittance (TME) cell  

 Conditions for minimum emittance

 periodic/symmetric cell: a = h’ = 0 at ends

 over-focusing of bx  phase advance m min =284.5°

 2nd focus, useless
 overstrained optics,

huge chromaticity...

 long cell

 better have two
relaxed cells of f/2

 MBA concept...
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 Deviations from 
TME conditions

 Ellipse equations
for emittance

 Cell phase advance

 Real cells:     m < 180°  F ~ 3...6

Relaxed TME cells
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is this what we 
really wanted ?
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what would Gaudí do ?  

1. disentangle dispersion h and beta function bx

 release constraint: focusing is done with quads.

 use “anti-bend” (AB) out of phase with main bend

 suppress dispersion (ho  0) in main bend center.

 allow modest bxo for low cell phase advance.

2. optimize bending field for minimum emittance
 release constraint: bend field is homogeneous.

 use “longitudinal gradient bend” (LGB)

 highest field at bend center  (ho = (e/p) Bo)

 reduce field h(s) as dispersion h(s) grows

 sub-TME cell (F < 1) at moderate phase advance
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step 1:   the anti-bend (AB)

 General problem of dispersion matching:

– dispersion is a horizontal trajectory

– dispersion production in dipoles  “defocusing”:  h’’  > 0

 Quadrupoles in conventional cell:

– over-focusing of beta function bx

– insufficient focusing of dispersion h 

 disentangle h and bx

 use negative dipole: anti-bend

– kick  Dh’ =  ,  angle  <  0 

– out of phase with main dipole

– negligible effect on bx , by

bx by

dispersion:
anti-bend
off / on

relaxed TME cell, 5°, 2.4 GeV, Jx  2

Emittance:  500 pm / 200 pm
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 AB emittance contribution

– h is large and constant at AB

 low field, long magnet

 Cell emittance (2AB +main bend)

– main bend angle to be increased by 2| |

 in total, still lower emittance

 AB as combined function magnet
– Increase of damping partition Jx

• vertical focusing in normal bend

• horizontal focusing in anti-bend.

– horizontal focusing required anyway at AB

 AB = off-centered quadrupole half quadrupole 

AB emittance effects

bx by
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 Anti-bend  negative momentum compaction a

 Head-tail stability for negative chromaticity!

 First simulations on transverse instabilities
(Eirini Koukovini-Platia @CERN)

– SLS candidate lattice : a = 104  ; 100 MHz, 5 mA/bunch

– resistive wall: 10 mm radius Cu-pipe, 1 mm NEG

– broad band resonanter: 8 GHz, Q = 1, R = 500 k/m

– transverse instability from HEADTAIL code

 unstable for  x = 0,  stability for x < 4 

AB impact on chromaticity


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step 2: the longitudinal gradient bend (LGB)

h(s) = B(s)/(p/e)b
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 Longitudinal field variation h(s) to compensate H (s) variation

 Beam dynamics in bending magnet

– Curvature is source of dispersion:

– Horizontal optics ~ like drift space:

– Assumptions: no transverse gradient (k = 0); rectangular geometry

 Variational problem: find extremal of h(s) for

– too complicated to solve 

• mixed products up to h’’’’ in Euler-Poisson equation...

special functions h(s), simple (few parameters):

variational problem  minimization problem

numerical optimization

=
L

dssshI )(|)(| 3

5 H
orbit curvature
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 Half bend in N slices: 
curvature hi , length Dsi

 Knobs for minimizer: 
{hi}, b0, h0 

 Objective:   I5    

 Constraints: 

 length: SDsi = L/2

 angle: ShiDsi = F/2 

 [ field: hi < hmax ] 

 [ optics: b0 , h0 ]

 Results:

 hyperbolic field variation 
(for symmetric bend, dispersion suppressor bend is different)

 Trend:   h0    , b0    0 , h0    0   

LGB numerical optimization

Results for half symmetric bend
( L = 0.8 m, F = 8°, 2.4 GeV )

homogeneous

optimized
hyperbola fit

I5 contributions

I
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 Numerical optimization of field profile for fixed b0, h0 

 Emittance (F) vs. b0, h0 normalized to data for TME of hom. bend

LGB optimization with optics constraints

F = 1

F = 1

small (~0) dispersion at centre required, but tolerant to large beta function

F  0.3
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 Conventional cell vs. longitudinal-gradient bend/anti-bend cell

 both: angle 6.7°, E = 2.4 GeV, L = 2.36 m, Dmx = 160°, Dmy = 90°, Jx  1

conventional:  = 990 pm (F = 3.4) LGB/AB:   = 200 pm (F = 0.69)

The LGB/AB cell    („Gaudí cell“)

bx by bx by

dipole field
quad field
total |field| 

} at R = 13 mm

longitudinal 
gradient 
bend

anti-bend

Disp. h Disp. h
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The SLS   

4 days

1 mA

90 keV 

pulsed (3 Hz)

thermionic 

electron gun

Synchrotron (“booster”)

100 MeV  2.4 [2.7] GeV

within 146 ms (~160’000 turns)

100 MeV 

pulsed linac

2.4 GeV storage ring

x = 5.0..6.8 nm, y = 1..10 pm

400±1 mA beam current

top-up operation

shielding 

walls

transfer lines

Current vs. time

Electron beam cross 

section in comparison 

to human hair
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SLS lattice and history 

 288 m circumference
 12  TBA (triple bend achromat) lattice
 straight: 6  4 m, 3  7 m, 3  11.5 m

 FEMTO chicane for laser beam slicing
 3 normalconducting 3T superbends
 Horizontal emittance 5.5 nm 

 Vertical emittance    1...5 pm 

 User operation since June 2001
 18 beam lines in operation

Beam size monitor 
X09DA

bx by h

vertically polarized 
synchrotron light
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SLS upgrade constraints and challenges

 Constraints
 get factor 20...50 lower emittance (100...250 pm)

 keep circumference & footprint: hall & tunnel.

 re-use injector: booster & linac.

 keep beam lines: avoid shift of source points.

 “dark period” for upgrade 6...9 months

 Main challenge: small circumference (288 m)

 Multi bend achromat:       (number of bends)─3

 Damping wigglers (DW):   radiated power

 Low emittance from MBA and/or DW requires space !

 Scaling MAX IV to SLS size and energy gives   1 nm 

 LGB/AB-cell based MBA      100...200 pm 

ring
ring + DW
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SLS-2 lattice design 

 Various concept lattice designs for 100-200 pm
(factor 25...50 compared to SLS-1)

 based on a 7-bend achromat arc.

 longitudinal gradient bends and anti-bends.

 period-3 lattice: 12 arcs and 3 different straight types.

 beam pipe / magnet bore   20 / 26 mm. 
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60 s.c. superbend LGB/AB lattice

strong 
anti-bends

hyperbolic 
superbends

S|F| = 504°

2½ of 12 arcs  ½ arc 

Emittance 126 pm

Straight sections 6  3.6 m

3  6.2 m

split long straights  3  (5 + 5) m 

Radiation loss 735 keV

Energy spread 1.24 103

Working point 37.7 / 10.8

Chromaticities 61 / 49

MCF a 1.00 104
ca06b

bx by h
cell tunes
0.4 / 0.1
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n.c. bend LGB/AB lattice

strong 
anti-bends

hyperbolic 
superbends

S|F| = 547°

2½ of 12 arcs  ½ arc 

Emittance 132 pm

Straight sections 6  3.1 m

3  4.9 m

split long straights  3  (5 + 5) m 

Radiation loss 544 keV

Energy spread 1.00 103

Working point 38.2 / 10.3

Chromaticities 70 / 34

MCF a  1.01  104
db02b

bx by h
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s.c./n.c. hybrid MBA lattice

Emittance 183 pm

Straight sections 6  3.2 m

3  5.7 m

3  10 m 

Radiation loss 466 keV

Energy spread 1.04 103

Working point 39.4 / 10.8

Chromaticities 163 / 70

MCF a 1.29  104

bx by h

ah04n

2½ of 12 arcs  ½ arc 
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SLS-2 design priorities

 Dynamic aperture optimization
 Non-linear optics optimization to provide sufficient lifetime 

and injection efficiency.

 Mike Ehrlichman’s talk

 Injection scheme
 off-axis and on-axis schemes using existing SLS injector.

 Angela Saa Hernandez’ talk

 Impedances and instabilities
 Interaction of beam with narrow, NEG coated beam pipe.

 Alignment and orbit correction
 Magnet/girder integration, dynamic alignment, photon BPMs.

 Rely on beam based alignment methods.
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Time schedule

 Jan. 2014 Letter of Intent submitted to SERI 
(SERI = State secretariat for Education, Research and Innovation)

 schedule and budget

• 2017-20 studies & prototypes 2 MCHF

• 2021-24 new storage ring 63 MCHF
beamline upgrades 20 MCHF

 Oct. 2014 positive evaluation by SERI:
SLS-2 is on the “roadmap”.

 Concept decisions fall 2015.

 Conceptual design report end  2016.
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Conclusion

 Anti bends (AB) disentangle horizontal beta and 
dispersion functions.

 Longitudinal gradient bends (LGB) provide minimum 
emittance by adjusting the field to the dispersion.

 The new LGB/AB cell provides 
low emittance at modest cell phase advance.

 Upgrade of the Swiss Light Source SLS has to cope 
with a rather compact lattice footprint.

 Draft designs for an SLS upgrade are based 
on LGB/AB-MBAs and on hybrid MBAs, 
and promise an emittance in the 100..200 pm range.

 A conceptual design report is scheduled for end 2016.


