

Concept for a compact low emittance cell Plans for an upgrade of the Swiss Light Source

Andreas Streun Paul Scherrer Institut (PSI) Villigen, Switzerland

1st Workshop on Low Emittance Lattice Design Barcelona, April 23-24, 2015

Antoni Gaudí (1852-1926): *"buttresses are the crutches of the Gothic"* ⇒ follow nature (i.e. the directions of force):

- inclined columns and walls
- cosh-shaped ("parabolic") arcs

Sagrada Familia → Barcelona

which constraints may be released to get new solutions?

The theoretical minium emittance (TME) cell

Conditions for minimum emittance

$$\beta_o^{\min} = \frac{L}{2\sqrt{15}} \quad \eta_o^{\min} = \frac{hL^2}{24} \implies \varepsilon_{xo}^{\min}[\text{pm} \cdot \text{rad}] = \frac{7.8}{12\sqrt{15}} (E[\text{GeV}])^2 \frac{(\phi[^\circ])^3}{J_x}$$

- periodic/symmetric cell: $\alpha = \eta' = 0$ at ends
- \Rightarrow over-focusing of $\beta_x \Rightarrow$ phase advance $\mu^{\min} = 284.5^{\circ}$
 - 2nd focus, useless
 overstrained optics, huge chromaticity...
 - Iong cell
 - ⇒ better have two relaxed cells of $\phi/2$
 - ➡ MBA concept...

Relaxed TME cells

 Deviations from TME conditions

$$F = \frac{\varepsilon_{xo}}{\varepsilon_{xo}^{\min}} \quad b = \frac{\beta_o}{\beta_o^{\min}} \quad d = \frac{\eta_o}{\eta_o^{\min}}$$

 Ellipse equations for emittance

$$\frac{5}{4}(d-1)^2 + (b-F)^2 = F^2 - 1$$

• Cell phase advance

$$\tan \frac{\mu}{2} = \frac{6}{\sqrt{15}} \frac{b}{(d-3)}$$

is this what we really wanted ?

what would Gaudí do ?

- 1. disentangle dispersion η and beta function β_x
 - ⇒ release constraint: focusing is done with quads.
 - ⇒ use "anti-bend" (AB) out of phase with main bend
 - suppress dispersion ($\eta_{o} \approx 0$) in main bend center.
 - allow modest β_{xo} for low cell phase advance.
- 2. optimize bending field for minimum emittance
 - ⇒ release constraint: bend field is homogeneous.
 - ⇒ use "longitudinal gradient bend" (LGB)
 - highest field at bend center $(h_o = (e/p) B_o)$
 - reduce field h(s) as dispersion $\eta(s)$ grows
- \Rightarrow sub-TME cell (F < 1) at moderate phase advance

step 1: the anti-bend (AB)

- General problem of dispersion matching:
 - dispersion is a horizontal trajectory
 - dispersion production in dipoles \rightarrow "defocusing": η " > 0
- Quadrupoles in conventional cell:
 - over-focusing of beta function β_x
 - insufficient focusing of dispersion $\eta_{\Xi^{^{16}}}$
- \Rightarrow disentangle η and β_x
- use negative dipole: anti-bend
 - kick $\Delta \eta' = \psi$, angle $\psi < 0$
 - out of phase with main dipole
 - negligible effect on β_x , β_y

relaxed TME cell, 5°, 2.4 GeV, $J_x \approx 2$ Emittance: **500 pm / 200 pm**

AB emittance effects

2

AB emittance contribution

$$\varepsilon \propto I_5 = \int_L |h|^3 \mathcal{H} ds \xrightarrow{AB} \approx |h|^3 \frac{\eta^2}{\beta}$$

- η is large and ≈constant at AB
 ⇒ low field, long magnet
- Cell emittance (2×AB +main bend)
 - main bend angle to be increased by 2 $|\psi|$ ⇒ in total, still lower emittance
- AB as combined function magnet
 - Increase of damping partition J_x
 - vertical focusing in normal bend
 - horizontal focusing in anti-bend.
 - horizontal focusing required anyway at AB
 - AB = off-centered quadrupole ⇒ half quadrupole

AB impact on chromaticity

• Anti-bend \Rightarrow negative momentum compaction α

$$\alpha = \frac{1}{C} \left(\int_{\text{LGB}}^{\text{small}} \eta h \, ds + \int_{\text{AB}}^{\text{large}} \eta h \, ds \right) < 0$$

⇒ Head-tail stability for negative chromaticity!

- First simulations on transverse instabilities (Eirini Koukovini-Platia @CERN)
 - SLS candidate lattice : $\alpha = -10^{-4}$; 100 MHz, 5 mA/bunch
 - resistive wall: 10~mm radius Cu-pipe, $1~\mu m$ NEG
 - broad band resonanter: 8 GHz, Q = 1, $R = 500 \text{ k}\Omega/\text{m}$
 - transverse instability from HEADTAIL code
 - \Rightarrow unstable for $\xi = 0$, stability for $\xi < -4$

step 2: the longitudinal gradient bend (LGB)

$$\mathcal{E} \propto I_5 = \int_L |h(s)|^3 \mathcal{H}(s) ds \qquad \mathcal{H} = \frac{\eta^2 + (\alpha \eta + \beta \eta')^2}{\beta} \qquad \text{orbit curvature} \\ \frac{h(s) = B(s)}{h(s)} ds \qquad \mathcal{H} = \frac{\eta^2 + (\alpha \eta + \beta \eta')^2}{\beta} \qquad \text{orbit curvature} \\ \frac{h(s) = B(s)}{h(s)} ds \qquad \mathcal{H} = \frac{\eta^2 + (\alpha \eta + \beta \eta')^2}{\beta} \qquad \text{orbit curvature} \\ \frac{h(s) = B(s)}{h(s)} ds \qquad \mathcal{H} = \frac{\eta^2 + (\alpha \eta + \beta \eta')^2}{\beta} \qquad \text{orbit curvature} \\ \frac{h(s) = B(s)}{h(s)} ds \qquad \mathcal{H} = \frac{\eta^2 + (\alpha \eta + \beta \eta')^2}{\beta} \qquad \text{orbit curvature} \\ \frac{h(s) = B(s)}{h(s)} ds \qquad \mathcal{H} = \frac{\eta^2 + (\alpha \eta + \beta \eta')^2}{\beta} \qquad \text{orbit curvature} \\ \frac{h(s) = B(s)}{h(s)} ds \qquad \mathcal{H} = \frac{\eta^2 + (\alpha \eta + \beta \eta')^2}{\beta} \qquad \text{orbit curvature} \\ \frac{h(s) = B(s)}{h(s)} ds \qquad \mathcal{H} = \frac{\eta^2 + (\alpha \eta + \beta \eta')^2}{\beta} \qquad \text{orbit curvature} \\ \frac{h(s) = B(s)}{h(s)} ds \qquad \mathcal{H} = \frac{\eta^2 + (\alpha \eta + \beta \eta')^2}{\beta} \qquad \text{orbit curvature} \\ \frac{h(s) = B(s)}{h(s)} ds \qquad \mathcal{H} = \frac{\eta^2 + (\alpha \eta + \beta \eta')^2}{\beta} \qquad \text{orbit curvature} \\ \frac{h(s) = B(s)}{h(s)} ds \qquad \mathcal{H} = \frac{\eta^2 + (\alpha \eta + \beta \eta')^2}{\beta} \qquad \text{orbit curvature} \\ \frac{h(s) = B(s)}{h(s)} ds \qquad \mathcal{H} = \frac{\eta^2 + (\alpha \eta + \beta \eta')^2}{\beta} \qquad \text{orbit curvature} \\ \frac{h(s) = B(s)}{h(s)} ds \qquad \mathcal{H} = \frac{\eta^2 + (\alpha \eta + \beta \eta')^2}{\beta} \qquad \text{orbit curvature} \\ \frac{h(s) = B(s)}{h(s)} ds \qquad \mathcal{H} = \frac{\eta^2 + (\alpha \eta + \beta \eta')^2}{\beta} \qquad \mathcal{H} = \frac{\eta^2 + (\alpha \eta + \beta \eta')^2}{\beta} \qquad \mathcal{H} = \frac{\eta^2 + (\alpha \eta + \beta \eta')^2}{\beta} \qquad \mathcal{H} = \frac{\eta^2 + (\alpha \eta + \beta \eta')^2}{\beta} \qquad \mathcal{H} = \frac{\eta^2 + (\alpha \eta + \beta \eta')^2}{\beta} \qquad \mathcal{H} = \frac{\eta^2 + (\alpha \eta + \beta \eta')^2}{\beta} \qquad \mathcal{H} = \frac{\eta^2 + (\alpha \eta + \beta \eta')^2}{\beta} \qquad \mathcal{H} = \frac{\eta^2 + (\alpha \eta + \beta \eta')^2}{\beta} \qquad \mathcal{H} = \frac{\eta^2 + (\alpha \eta + \beta \eta')^2}{\beta} \qquad \mathcal{H} = \frac{\eta^2 + (\alpha \eta + \beta \eta')^2}{\beta} \qquad \mathcal{H} = \frac{\eta^2 + (\alpha \eta + \beta \eta')^2}{\beta} \qquad \mathcal{H} = \frac{\eta^2 + (\alpha \eta + \beta \eta')^2}{\beta} \qquad \mathcal{H} = \frac{\eta^2 + (\alpha \eta + \beta \eta')^2}{\beta} \qquad \mathcal{H} = \frac{\eta^2 + (\alpha \eta + \beta \eta')^2}{\beta} \qquad \mathcal{H} = \frac{\eta^2 + (\alpha \eta + \beta \eta')^2}{\beta} \qquad \mathcal{H} = \frac{\eta^2 + (\alpha \eta + \beta \eta')^2}{\beta} \qquad \mathcal{H} = \frac{\eta^2 + (\alpha \eta + \beta \eta')^2}{\beta} \qquad \mathcal{H} = \frac{\eta^2 + (\alpha \eta + \beta \eta')^2}{\beta} \qquad \mathcal{H} = \frac{\eta^2 + (\alpha \eta + \beta \eta')^2}{\beta} \qquad \mathcal{H} = \frac{\eta^2 + (\alpha \eta + \beta \eta')^2}{\beta} \qquad \mathcal{H} = \frac{\eta^2 + (\alpha \eta + \beta \eta')^2}{\beta} \qquad \mathcal{H} = \frac{\eta^2 + (\alpha \eta + \beta \eta')^2}{\beta} \qquad \mathcal{H} = \frac{\eta^2 + (\alpha \eta + \beta \eta')^2}{\beta} \qquad \mathcal{H} = \frac{\eta^2 + (\alpha \eta + \beta \eta')^2}{\beta} \qquad \mathcal{H} = \frac{\eta^2 + (\alpha \eta + \beta \eta')^2}{\beta} \qquad \mathcal{H} = \frac{\eta^2 + (\alpha \eta + \beta \eta'$$

- Longitudinal field variation h(s) to compensate $\mathcal{H}(s)$ variation
- Beam dynamics in bending magnet
 - Curvature is source of dispersion: $\eta''(s) = h(s) \rightarrow \eta'(s) \rightarrow \eta(s)$
 - Horizontal optics ~ like drift space: $\beta(s) = \beta_0 2\alpha_0 s + \frac{1 + \alpha_0^2}{\beta_0} s^2$
 - Assumptions: no transverse gradient (k = 0); rectangular geometry
- Variational problem: find extremal of $\eta(s)$ for $I_5 = \int_L f(s,\eta,\eta',\eta'') ds \rightarrow \min$ with functional $f = \mathcal{H}(s,\eta,\eta',\eta'') |\eta''|^3$
 - too complicated to solve
 - mixed products up to $\eta^{'''}$ in Euler-Poisson equation...
- → special functions h(s), simple (few parameters): variational problem → minimization problem
- \rightarrow numerical optimization

(p/e)

LGB numerical optimization

- Half bend in N slices: curvature h_i , length Δs_i
- Knobs for minimizer: $\{h_i\}, \beta_0, \eta_0$
- Objective: I_5
- Constraints:
 - length: $\Sigma \Delta s_i = L/2$
 - angle: $\Sigma h_i \Delta s_i = \Phi/2$
 - [field: $h_{\rm i} < h_{\rm max}$]
 - [optics: β_0, η_0]
- Results:
 - hyperbolic field variation
 (for symmetric bend, dispersion suppressor bend is different)

Ι

• Trend: $h_0 \to \infty$, $\beta_0 \to 0$, $\eta_0 \to 0$

LGB optimization with optics constraints

- Numerical optimization of field profile for fixed β_0 , η_0
 - Emittance (F) vs. β_0 , η_0 normalized to data for TME of hom. bend

small (~0) dispersion at centre required, but tolerant to large beta function

The LGB/AB cell ("Gaudí cell")

- Conventional cell vs. longitudinal-gradient bend/anti-bend cell
 - both: angle 6.7°, E = 2.4 GeV, L = 2.36 m, $\Delta \mu_x = 160^\circ$, $\Delta \mu_y = 90^\circ$, $J_x \approx 1$

1st Workshop on Low Emittance Lattice Design, Barcelona, Apr. 23-24, 2015

SLS lattice and history

SLS upgrade constraints and challenges

- Constraints
 - get factor 20...50 lower emittance (100...250 pm)
 - keep circumference & footprint: hall & tunnel.
 - re-use injector: booster & linac.
 - keep beam lines: avoid shift of source points.
 - "dark period" for upgrade 6...9 months
- Main challenge: *small circumference* (288 m)
 - Multi bend achromat: $\epsilon \propto (number of bends)^{-3}$
 - Damping wigglers (DW): $\varepsilon \propto \frac{\text{ring}}{\text{ring} + \text{DW}}$ radiated power
 - ⇒ Low emittance from MBA and/or DW requires space !
 - \Rightarrow Scaling MAX IV to SLS size and energy gives $\epsilon \approx 1 \ nm$ *
 - \Rightarrow LGB/AB-cell based MBA \Rightarrow ε ≈ 100...200 pm ✓

SLS-2 lattice design

Various concept lattice designs for 100-200 pm

(factor 25...50 compared to SLS-1)

- based on a 7-bend achromat arc.
- Iongitudinal gradient bends and anti-bends.
- period-3 lattice: 12 arcs and 3 different straight types.
- beam pipe / magnet bore \varnothing 20 / 26 mm.

60 s.c. superbend LGB/AB lattice

n.c. bend LGB/AB lattice

s.c./n.c. hybrid MBA lattice

SLS-2 design priorities

- Dynamic aperture optimization
 - Non-linear optics optimization to provide sufficient lifetime and injection efficiency.
 - → Mike Ehrlichman's talk
- Injection scheme
 - off-axis and on-axis schemes using existing SLS injector.
 - → Angela Saa Hernandez' talk
- Impedances and instabilities
 - Interaction of beam with narrow, NEG coated beam pipe.
- Alignment and orbit correction
 - Magnet/girder integration, dynamic alignment, photon BPMs.
 - Rely on beam based alignment methods.

Time schedule

Jan. 2014 Letter of Intent submitted to SERI (SERI = State secretariat for Education, Research and Innovation)

schedule and budget

- 2017-20 studies & prototypes 2 MCHF
- 2021-24 new storage ring 63 MCHF beamline upgrades 20 MCHF
- Oct. 2014 positive evaluation by SERI: SLS-2 is on the "roadmap".
- Concept decisions fall 2015.
- Conceptual design report end 2016.

Conclusion

- Anti bends (AB) disentangle horizontal beta and dispersion functions.
- Longitudinal gradient bends (LGB) provide minimum emittance by adjusting the field to the dispersion.
- The new LGB/AB cell provides low emittance at modest cell phase advance.
- Upgrade of the Swiss Light Source SLS has to cope with a rather compact lattice footprint.
- Draft designs for an SLS upgrade are based on LGB/AB-MBAs and on hybrid MBAs, and promise an emittance in the 100..200 pm range.
- A conceptual design report is scheduled for end 2016.