s-channel simplified models for mono-jet

Christophe Clément, Valerio Ippolito, Xiangyang Ju, David Šálek, Fuquan Wang, Felix Kahlhoefer, Uli Haisch, Emanuele Re

DM Forum
06/02/2015

Mediator width (V)

- Set of couplings used: $(g S M, g D M)=(0.5,0.5),(I, I),(I .45, I .45),(I, 0.25)$
- For $g=1.45$, we see the mediator widths approaches the mediator mass.

Mediator width (A)

Mediator width (S)

- Set of couplings used $(g S M, g D M)=(I, I),(I, 2),(2, I),(2,2)$
- We could probe even larger couplings (there is still room until $\Gamma=$ mass)
- No need to consider Гmin and Гmin + Гtop \rightarrow this can be achieved e.g. by comparing $\mathrm{gSM}=\mathrm{I}$ and $\mathrm{gSM}=2$ (since the contribution from top anyway dominates as other quarks are Yukawa suppressed)

Different coupling strength

- Coupling strength not only influences the width (i.e. the cross section), it also has an effect on kinematic distributions.

different mediator mass

- $\mathrm{mDM}=100 \mathrm{GeV}, \mathrm{gDM}=\mathrm{gSM}=\mathrm{I}$
- Comparison to the contact interaction is also shown.

VV,AA,VA,AV

- work in progress (samples are in production)
- The aim is to understand differences among the four operators in the cases where $\mathrm{mMed}<2 \mathrm{mDM}, 2 \mathrm{TeV}>\mathrm{mMed}>2 \mathrm{mDM}$, mMed $>2 \mathrm{TeV}$

Plan

- Finalize the proposal of the coupling strength for V,A, S, P
- Provide extensive comparison of kinematic distributions for V, A, S, P (and compare to EFT)
- For the scalar operator, consider cases with the top loop calculation and also with the EFT vertex to account for heavy top partners.
- CompareVV,AA,VA,AV interactions.

