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R1

e+

e-

Allowed
‘potato-shaped’

regions

Setup: a simple question
What is the cross-section for e+e-→X,
with energy <Q0 outside some region R

R2

(R=R1∪R2)
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Motivation
• Study how exclusion boundaries affect soft gluons

• Same physics affects many ‘non-global’ event shapes:
-`Away from jet energy flow’/`Gaps between jets’
-Hemisphere mass function
-Possibly: Cone jets

• Learn to deal with color coherence at finite Nc

• Soft gluons are interesting

3

(see: T.~ Becher’s talk)
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• IR and collinear safe observable

• Only two scales (→one log: Q/Q0)

• No collinear logs, only soft (wide angle) logs

• e+e- : No ISR [avoids nonabelian Coulomb phases]

4

Simplifying features:
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• IR and collinear safe observable

• Only two scales (→one log: Q/Q0)

• No collinear logs, only soft (wide angle) logs

• e+e- : No ISR [avoids nonabelian Coulomb phases]

5

Simplifying features:

• Will work exactly in 1/Nc  [and beyond LL]

Complicating feature(s):
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Hard process 
@Q

What we’re looking for:

Veto
@ IR scale Q0Universal (RG)

evolution

⌦ ⌦
e+

e-

h
Pe�

R Q
Q0

d�
� K(�)

i

[cf  Z. Nagy’s talk]
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Hard process 
@Q

What we’re looking for:

Veto
@ IR scale Q0Universal (RG)

evolution

⌦ ⌦
e+

e-

h
Pe�

R Q
Q0

d�
� K(�)

i

What is K? What data must it act on?

[cf  Z. Nagy’s talk]
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Key tools: 

• Factorization of soft emissions (@amplitude level):

• Bookkeeping device for multicolor states:

8

lim
k!0

Hn+1(k, {p1}) = S(k)Hn({p1})

S(k) = g✏µ
X

i

pµi T
a
i

pi · k
+O(g3)

‘color density matrix;’
depends on SU(Nc) matrices
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Key tools: 

• Factorization of soft emissions (@amplitude level):

• Bookkeeping device for multicolor states:

9

lim
k!0

Hn+1(k, {p1}) = S(k)Hn({p1})

S(k) = g✏µ
X

i

pµi T
a
i

pi · k
+O(g3)

‘color density matrix;’
depends on SU(Nc) matrices U(✓)
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The physics

10

Probability of
not radiating g outside R, 
depends on
all gluons inside R!

R

 soft g
with E>Q0

(forbidden)
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The physics

11

Probability of
not radiating g outside R, 
depends on
all gluons inside R!

R

 soft g
with E>Q0

(forbidden)

Need to keep track of 
angle and color of all 
harder gluons
(that’s a minimum!)
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U’s: a bookkeeping device

12

Squared amplitude for soft gluon ‘0’ is proportional to: 

... ...
i

j
0

*

Color rotation of harder partons i and j

hleft|T a
i T a

j |righti
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U’s: a bookkeeping device

... ...
i

j
0

*

Subsequent emissions can rotate ‘0’ itself:
hleft|T a

i T
b
0 T b

i T
a
j |righti
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U’s: a bookkeeping device

... ...
i

j
0

*

Subsequent emissions can rotate ‘0’ itself:

Let: U = Cumulative rotation from all subsequent emissions

hleft|T a
i T

b
0 T b

i T
a
j |righti
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U’s: a bookkeeping device

... ...
i

j
0

*

Subsequent emissions can rotate ‘0’ itself:

Let: U = Cumulative rotation from all subsequent emissions

hleft|T a
i T

b
0 T b

i T
a
j |righti

Emission of ‘0’: UiUj ! (T aUi)U
ab
0 (UjT

b)

Ui

Uj

Uab
0
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U’s: a bookkeeping device

... ...
i

j
0

*

Subsequent emissions can rotate ‘0’ itself:

Let: U = Cumulative rotation from all subsequent emissions

hleft|T a
i T

b
0 T b

i T
a
j |righti

Emission of ‘0’: UiUj ! (T aUi)U
ab
0 (UjT

b)

Ui

Uj

Uab
0

Now subsequent emissions can act on U0!
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U’s: a bookkeeping device

... ...
i

j
0

*

Subsequent emissions can rotate ‘0’ itself:

Let: U = Cumulative rotation from all subsequent emissions
Emission of ‘0’:

Ui

Uj

Efficient notation:
R acts on matrix element, L on conjugate

Uab
0

hleft|La
i Uab

0 Ra
j |righti

UiUj ! (UiT
a)Uab

0 (UjT
b) ⌘ La

iU
ab
0 Rb

j (UiUj)
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Formal definition
• Physically, Ui should represent color rotation 

from all softer, but resolved partons with E>μ

• Cutoffs make life hard. Standard technique: take 
cutoff to zero and renormalize with MSbar.

• Bare       : dress each final state with a color rotation:

18

non-global logarithms is the color density matrix :

�[U ] ⌘
X

n

Z

d⇧
n

h

Aa1···an
n

({p
i

})
i⇤
Ua1b1(✓

1

) · · ·Uanbn(✓
n

)
h

Ab1···bn
n

({p
i

})
i

u({p
i

}) . (1.2)

We call it a density matrix because it is linear in both the amplitude and its complex conjugate.

It is a functional of a continuous field of unitary matrices Uab(✓), which depend on a two-

dimensional angle and live in the adjoint representation of the gauge group. Pictorially, U ,

shown in fig. 1, is a (local) color rotation between the matrix element and its conjugate. A

closely related construction has been used to describe parton showers at finite N
c

[13].

The physical motivation for eq. (1.2) is that the information carried by �[U ] is clearly

necessary to fully characterize the distribution soft gluons. Since soft radiation can be trig-

gered by any other colored parton with a higher energy, keeping track of color charges in every

direction, as �[U ] does, indeed seems unavoidable. The information in �[U ] is also intuitively

su�cient : due to coherence e↵ects, soft gluons are a↵ected by the color charge carried by

harder partons but generally not by other details.

Contrary to the original weighted cross-section, the density matrix �[U ] is infrared di-

vergent. We propose, and will demonstrate, that these infrared divergences exponentiate in

terms of a well-defined anomalous dimension. This supports our claim that the information in

�[U ] is su�cient. After cancelling these divergences (see eq. (2.7)), the ‘renormalized’ density

matrix then depends on a factorization scale as


µ
d

dµ
+ �

d

d↵
s

�

�ren[U ;µ] = K(U, �/�U,↵
s

(µ), ✏)�ren[U ;µ] . (1.3)

The anomalous dimension or Hamiltonian K assumes the form of a functional di↵erential

operator. Its one-loop expression, computed in eq. (2.14), repdoduces earlier formulas derived

in the literature to deal with non-global logarithms [10, 14].

1.1 Structure of the resummation

For concreteness, we briefly sketch how the formalism would be applied in a complete calcula-

tion of a specific non-global event shape, the (cumulative) hemisphere mass function, at finite

N
c

. The hemisphere mass function is the distribution of the invariant masses in the left- and

right- hemispheres of a decaying color-singlet state of mass Q (for example, a Z-boson). In

the di-jet limit m
L

,m
R

⌧ Q, the observable simplifies to

R(X,Y,Q) =
X

n

Z

d⇧
n

�

�A
Q!n

�

�

2

✓

 

X �
X

i

✓
L

(i)(p0
i

+pz
i

)

!

✓

 

Y �
X

i

✓
R

(i)(p0
i

�pz
i

)

!

.

(1.4)

Here ✓
L/R

(i) = ✓(⌥pz
i

) project onto respective hemispheres. Logarithms of X/Q and Y/Q are

global and can be resummed using standard techniques (see ref. [15] and references therein).

When X ⌧ Y ⌧ Q, R receives additional logarithms log(Y/X) due to the phase space cut

between the two hemispheres. These are the non-global logarithms.

– 3 –

...
Aa1···an

n

Ua1b1(✓
1

)

...

Ab1···bn
n

Ua2b2(✓
2

)

· · ·

Uanbn(✓
n

)

*

Figure 1. Color density matrix. For each colored final state, an independent color rotation is applied
between the amplitude and its complex conjugate.

To resum them we take Y as the hard scale and X as the soft scale. At the hard scale

we drop the X-dependent step function, and define a density matrix involving only Y :

�[U ;Q, Y ] ⌘
X

n

Z

d⇧
n

[Aa1···an
n

]⇤ Ua1b1(✓
1

) · · ·Uanbn(✓
n

)
h

Ab1···bn
n

i

✓

 

Y �
X

i

✓
R

(i)(p0
i

�pz
i

)

!

.

(1.5)

This is of the form of eq. (1.2). Infrared divergences introduced by the U matrices exponen-

tiate and renormalizing at the scale µ = Y (see eq. (2.7)) removes large infrared logarithms.

Concretely, in perturbation theory, �ren is polynomial in U ’s and can be viewed as a book-

keeping device encoding the orientations of radiated particles. It starts with the dijet term

�ren[U ;Q, Y, µ = Y ] = Tr
⇥

U(n̄)U †(n)
⇤

+O(g2), (1.6)

with n, n̄ null vectors along the positive and negative z directions. To resum logarithms

log(Y/X) we now use the RG equation (1.3) to run �ren down to the scale X, where we deal

with the infrared part of the measurement. In the leading-log approximation, the ✓(X � . . .)

factor in the observable e↵ectively removes left-hemisphere radiation between the scales X

and Y (except within a cone of small radius R ⇠
p

X/Q centered around the left jet). The

IR measurement can thus be phrased in terms of an averaging

R(X,Y,Q) = h�ren[U ;Q, Y, µ = X]i
IR

(1.7)

where1

hUa1b1
1

· · ·Uanbn
n

i
IR

= hUa1b1
1

i
0

· · · hUanbn
n

i
0

+O(g2) with hUab(✓
i

)i
0

= �ab✓0
R

(i) . (1.8)

The step function ✓0
R

(i) = ✓
R

(i) + ✓
�

�pz
i

/p0
i

+ cosR
�

allows real radiation inside the right

hemisphere and left cone. It is important that the averaging depends only on angles, since at

this stage information about energies is lost.

1 Even though the right-hand-side is not a unitary matrix, the equation makes sense since the average of

unitary matrices need not be unitary.
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�[U ]

�[U ] ⌘
X
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19

• Bare color density matrix IR divergent.  Assuming 
RG eq., can renormalize:

Then       will be finite. 

• Precisely, U[Θi] is the color rotation experienced 
by a resolved parton at Θi if all radiation below μ 
is unresolved (so only modes > μ contribute)

• RG equation is expected physically, due to 
decoupling of radiation at vastly different scales
(direct combinatorial proof in paper)

�ren
[U ;µ] = P exp

Z µ

0

d�

�
K(�,↵s(�))

�
�[U ]

�ren
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• 1. Start from a dijet at scale Q

• 2. Evolve down to scale Q0 using RG:

With each action of K one new resolved 
gluon U can be added

• 3. Kill all resolved gluons outside R by 
averaging procedure:

20

�[U ;Q] = Tr [U†(✓1)U(✓2)] +O(↵s)

[µ@µ + �@↵s ]�[U ;µ] = K�[U ;µ]

hUab(✓)i = �ab�✓2R

LL example:
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Evolution operator

21

• Extract from 1/eps pole in one-loop fixed-order

• Real: �(1)[U ] �
X

i,j

Z
d3p0
2E0

pi·pj
p0·pip0·pj

⇥ La
iU

ab
0 Rb

j

! 1

✏IR

Z
d2⌦0

↵ij

↵0i↵0j
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Evolution operator

22

• Extract from 1/eps pole in one-loop fixed-order

• Real:

• Virtual: 

�(1)[U ] �
X

i,j

Z
d3p0
2E0

pi·pj
p0·pip0·pj

⇥ La
iU

ab
0 Rb

j

! 1

✏IR

Z
d2⌦0

↵ij

↵0i↵0j

1

✏IR

X

i,j

Ra
iR

b
i [log(2pi·pj � i0) + c.c.]

+ (collinear div.)� (collinear subtraction)
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Evolution operator

23

• Extract from 1/eps pole in one-loop fixed-order

• Real:

• Virtual: 

�(1)[U ] �
X

i,j

Z
d3p0
2E0

pi·pj
p0·pip0·pj

⇥ La
iU

ab
0 Rb

j

! 1

✏IR

Z
d2⌦0

↵ij

↵0i↵0j

1

✏IR

X

i,j

Ra
iR

b
i [log(2pi·pj � i0) + c.c.]

+ (collinear div.)� (collinear subtraction)

Determined by KLN theorem
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Evolution operator

24

• Extract from 1/eps pole in one-loop fixed-order

• Real:

• Real+Virtual: 

�(1)[U ] �
X

i,j

Z
d3p0
2E0

pi·pj
p0·pip0·pj

⇥ La
iU

ab
0 Rb

j

! 1

✏IR

Z
d2⌦0

↵ij

↵0i↵0j

K(1) =
X

i,j

Z
d2⌦0

4⇡

↵ij

↵0i↵0j

⇣
Uaa0

0 (La
iR

a0

j +Ra0

i La
j )�La

iL
a
j�Ra

iR
a
j

⌘

Finite Nc one-loop evolution equation for non-global logs!
[Weigert ’02]

Combination is collinear safe

↵ij =
1� cos(✓ij)

2
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• Planar limit: products in terms of traces

• Closed nonlinear equation for Uij

• 1/Nc2 expansion can be automated
(next order involves quadrupoles, etc.)

• Lattice Monte-Carlo techniques allow to solve 
finite Nc equation

25

The virtual corrections (fig. 3(b)) generate products of the type LL and RR with no

extra U . An important constraint is that �ren[Uab = �ab] must be evolution-invariant, since

this correspond to the total cross-section which is finite by the KLN theorem. Equivalently

K must vanish when U is the identity field. This unambiguously determines the LL and RR

terms. Using the identities

Uaa

0
i

Ra

0
i

= La

i

, La

i

Uaa

0
i

= Ra

0
i

, (2.13)

which in particular yield L
i

= R
i

when Uab

i

= �ab, the (unique) solution is easily seen to be2

K(1) =
X

i,j

Z

d2⌦
0

4⇡
K(1)

ij;0

⇣

Uaa

0
0

(La

i

Ra

0
j

+Ra

0
i

La

j

)� La

i

La

j

�Ra

i

Ra

j

⌘

. (2.14)

This gives the complete scale dependence of the density matrix �ren[U ], including non-planar

e↵ects (and therefore, by the expected factorization, any non-global logarithm at leading-log).

We review a few known facts about this equation.

• Taking the ’t Hooft planar limit N
c

! 1 with � = g2N
c

fixed, eq. (2.14) becomes for

the dipole U
ij

= 1

Nc
Tr

⇥

U
i

U †
j

⇤

:

K U
12

=
g2

16⇡2

Z

d2⌦
0

4⇡

2↵
12

↵
01

↵
02

✓

2C
F

U
12

� 2

N
c

Tr
⇥

T aU
1

T a

0
U †
2

⇤

Uaa

0
0

◆

+O(g4) . (2.15)

Using simple color identities this reduces to a closed nonlinear equation:3

K U
12

=
�

8⇡2

Z

d2⌦
0

4⇡

↵
12

↵
01

↵
02

(U
12

� U
10

U
02

) +O(�2, 1/N
c

) . (2.16)

This is the Banfi-Marchesini-Smye (BMS) equation governing non-global logarithms

in the planar limit [10].4 Let us be more precise. As stated in the introduction, the

functional RG equation (1.3) is to be integrated from the UV to the IR, starting from

e.g. the dijet initial condition �[U ] = U
nn̄

(1.6). In the IR one performs the average

(1.8). In the planar limit, the averaging reduces to evaluating the functional at one

point, �[U
ij

= ✓0
R

(i)✓0
R

(j)], so the procedure is equivalent to evolving the argument of

the functional from the IR to the UV, e.g. the function U
ij

. This is how the relevance

of eq. (2.16) arises.

2 A term
P

i,j fij(L
a
i L

a
j �R

a
i R

a
j ) would also satisfy the KLN theorem and preserve the reality of � provided

that its coe�cient is imaginary. The imaginary part of the explicit expression (2.9) however shows that fij / i⇡

is constant and thus cancels out using color conservation.
3We have used: Uaa0

0 T

a0
= U

†
0T

a
U0 and Tr

⇥
T

a
XT

a
Y

⇤
= 1

2Tr[X]Tr[Y ]� 1
2Nc

Tr[XY ].
4 In addition, compared with ref. [26] which deals with the hemisphere function, one needs to set U

here
12 =

✓

0
R(1)✓

0
R(2)U

there
12 ; the step-functions factors are stable under evolution. At leading-log collinear divergences

exponentiate independently so the R term in ✓

0
R in eq. (1.8) does not interfere with the non-global part.

– 9 –

[Banfi,Marchesini,Smye ’02]

[Weigert ’02,
Hatta&Ueda ’13]
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• Other strategy:
‘dressed gluon expansion’

• Integrate exactly      → Sudakov exponents

• Work perturbatively in      : inserts ‘dressed’ gluon

• Since collinear safety of K, not preserved, must 
include: collinear cutoff, ‘zero-bin subtraction’, etc.
For details (and a nice derivation), see their paper!

• U-matrix calculus: an efficient way to generate and 
organize the terms

26

K(1) =
X

i,j

Z
d2⌦0

4⇡

↵ij

↵0i↵0j

⇣
Uaa0

0 (La
iR

a0

j +Ra0

i La
j )�La

iL
a
j�Ra

iR
a
j

⌘

K0�K

K0

�K

[Larkoski,Moult&Neill ’05]
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• To understand RG structure, let’s now look at NLL

• Main ingredient: soft current for two soft partons

27

S(k1, k2) =
X

i,j

1

2
{Ra

i , R
b
j}Si(k1)Sj(k2) + ifabc

X

i

Rc
iSi(k1, k2)

[...,Catani&Grazzini,...]

...

i

+
...

i

...

(a) (b)

Figure 4. Building block for next-to-leading order computation: amplitude for two soft particles.
Solid lines are eikonal Wilson lines. (a) Two soft gluons. The non-abelian part of the first graph gives
a connected contribution. (b) Two soft fermions or scalars.

• Finally, we did not prove in this subsection that divergences do exponentiate according

to eq. (2.7). We simply read o↵ the exponent from a one-loop fixed-order calculation.

Proofs to leading-logarithm accuracy are in refs. [10, 14] and an all-order demonstration

is given in section 5.

3 Evolution equation to next-to-leading order

We now present a calculation ofK to the next-to-leading order, by matching two-loop infrared

divergences in �[U ] against eq. (2.7). The computation will be phrased exclusively in terms

of convergent integrals over building blocks with a clear physical interpretation (renormalized

soft currents), which will shed light on the exponentiation mechanism. We perform the

computation in a general gauge theory, although at intermediate steps we only write formulas

for color-adjoint matter. The reader not interested in the technical details can skip directly

to the final result in subsection 3.6.

3.1 Building blocks: soft currents

A natural building block is the tree-level amplitude for emitting two soft gluons. It can be

written naturally as a sum of disconnected and connected contributions:

Sµ⌫,ab(k
1

, k
2

) = g2
X

i,j

Ra

i

Rb

j

Sµ

i

(k
1

)S⌫

j

(k
2

) + g2
X

i

ifabcRc

i

Sµ⌫

i

(k
1

, k
2

) +O(g4) , (3.1)

with Sµ

i

(k
1

) =
�

µ
i

�i·k1 the one-gluon soft current introduced previously. The connected part

Sµ⌫

i

(k
1

, k
2

) =
1

2�
i

·(k
1

+k
2

)



�µ

i

�⌫

i

�
i

·k
1

�
�µ

i

�⌫

i

�
i

·k
2

+
�µ⌫�

i

·(k
2

�k
1

) + 2(�µ

i

k⌫
1

� kµ
2

�⌫

i

)

k
1

·k
2

�

(3.2)

follows directly from the Feynman graphs shown in fig. 4(a) [25]. To optimize the notation

all color generators are implicitly symmetrized: Ra

i

Rb

j

! 1

2

{Ra

i

, Rb

j

}, which is relevant when

i = j. This notational convention (borrowed from ref. [31]) is why the connected part is

proportional to fabc.

– 11 –
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• For this talk, let just take planar limit.

• Get only strings of dipoles:

28

KU12 �
Z

d2⌦0

4⇡

d2⌦00

4⇡
K[1 000 2]U10U000U002

1
0

2
0’

jeudi 28 mai 15



Naively:

a=relative energy

K[1 000 2] =

Z 1

0
ada

h��S(a�0,�00)
��2 �

��
a!0

✓(1� a)�
��
a!1✓(a� 1)

i

subtraction of 1-loop
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Naively:

a=relative energy

K[1 000 2] =

Z 1

0
ada

h��S(a�0,�00)
��2 �

��
a!0

✓(1� a)�
��
a!1✓(a� 1)

i

subtraction of 1-loop

planar soft current squared is relatively simple:

|S|2 =
s100s20 + 2s10s20 + 3s10s100 + 2s100s200 + s12s000

s10s000s002(s10+s100)(s20+s200)

+ (nF � 4)
s12

s000(s10+s100)(s20+s200)

+ (
1

2
ns�nF + 1)

(s10s200 � s100s200)2

s2000(s10+s100)2(s20+s200)2

N=4SYM

general
gauge thy
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Lorentz invariance and 
ordering variable

• One-loop was not written in Lorentz-
invariant form

31

Z
d2�2✏⌦0

pi·pj
p0·pip0·pj

(· · · )
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Lorentz invariance and 
ordering variable

• One-loop was not written in Lorentz-
invariant form

• Equivalent to changing ordering variable:

32

E2 ! p1·p0p0·p2
p1·p2

= ‘p2t ’

Z
d2�2✏⌦0

✓
pi·pj

p0·pip0·pj

◆1�✏

(· · · )
[Homogeneity
in p0 required]
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Less naive two-loop kernel (Lorentz-invariant scheme):

K[1 000 2] =

Z 1

0
ada

h��S(a�0,�00)
��2 �

��
a!0

✓(1� ar1)�
��
a!1✓(ar2 � 1)

i

with:                      from mismatching E scales in (1-loop)2
r2
r1

=
↵12↵000

↵001↵02
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Less naive two-loop kernel (Lorentz-invariant scheme):

K[1 000 2] =

Z 1

0
ada

h��S(a�0,�00)
��2 �

��
a!0

✓(1� ar1)�
��
a!1✓(ar2 � 1)

i

Full two-loop planar:

One-loop single-real (w/ hard-
collinear subtraction); double-virtual

K(2)U12 =

Z

0,00

�2U10U000U002

↵10↵000↵002

⇥
n

2 log

↵12↵000

↵100↵02
+



1 +

↵12↵000

↵10↵200 � ↵100↵20

�

log

↵10↵200

↵10↵200

+(nF � 4)(· · · ) + (

1

2

ns � nF + 1)(· · · )
o

+ . . .

jeudi 28 mai 15



35

Less naive two-loop kernel (Lorentz-invariant scheme):

K[1 000 2] =

Z 1

0
ada

h��S(a�0,�00)
��2 �

��
a!0

✓(1� ar1)�
��
a!1✓(ar2 � 1)

i

Full two-loop planar: make it collinear-finite

only possible structure

by Lorentz invariance and KLN theorem

K(2)U12 =

Z

0,00

�2U10U000U002+U10U02 + U100U002
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⇥
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2 log
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o

#K(1)
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Less naive two-loop kernel (Lorentz-invariant scheme):

K[1 000 2] =

Z 1

0
ada

h��S(a�0,�00)
��2 �

��
a!0

✓(1� ar1)�
��
a!1✓(ar2 � 1)

i

Full two-loop planar:

Sudakov double logs for narrow cones

K(2)U12 =

Z

0,00

�2U10U000U002 + U10U02 + U100U002
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n
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+
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o
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Check: two-loop BFKL/BK
• Conformal transformation maps 2-sphere 

to transverse plane in BFKL:

• Fact: pQCD is close to a CFT.  In a CFT 
there is nothing special about ‘infinity’.

• Broken by QCD β-function. Check:

37

[Hofman&Maldacena;
Hatta ’08]

↵ij ! (zi � zj)
2

Highly nontrivial!
K(2) �H

(2)
BFKL / b0 =

11CA � 4nFTF � nSTS

3

Z
d2⌦i

4⇡
! d2z

⇡
,
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Upshots
• Agreement with BFKL: evidence result is correct

• Calculations readily automated
(products of U’s; large Nc expansion; squares of Catani-
Grazzini soft currents)

• Finite Nc case worked out in paper and matched 
with (recent!) Balitsky-JIMWLK.

• Universal two-loop

• Three-loops will require only 3- and 2-real
(+ Lorentz + KLN+ΥK (+Hermiticity of HBFKL))
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[Herranen+SCH, in progress]
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Proof of RG equation
• Input: soft factorization of (loop) amplitudes

• Output:

has no subdivergences at (L+1) loops.
→                      is finite!

• Proof constructive: explicit formal expressions for K:
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lim
{ki}!0

H({ki}, {pj}) = S({ki})H({pj})

K =

Z

energies

⇥
|S|2 � (subtractions)

⇤
at all loops

Pe
R µ
0

d�
� (K(1)+...+K(L))�[U ](L+1)

Pe
R µ
0

d�
� K�[U ]
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Conclusion
• Two-scale problems involving soft wide-angle 

gluons can be solved:  color density matrix

• Efficient U-matrix calculus: can be used by others! 

• Proven:  all logs generated by RG equation in e+e-; 
exponent now known to NLL

• Next: collinear logs when R becomes small
-Compare with existing 2-loop fixed-order NGL’s
-Make contact with Soper&Nagy’s density matrix?

• Next: Coulomb phases in hadron collisions
[Superleading logs: K(2)~log[μ];  Martinez’talk]
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