Non-global logarithms and BFKL
 beyond the leading order

Simon Caron-Huot

(Niels Bohr International Academy, Copenhagen)
(based on: ph/l50I.03754)
['Parton Showers and Resummation 2015', Krakòw, May 28 ${ }^{\text {th }}, 2015$]

Setup: a simple question

 What is the cross-section for $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow X$, with energy $<Q_{0}$ outside some region $R\left(R=R_{1} \cup R_{2}\right)$

Motivation

- Study how exclusion boundaries affect soft gluons
- Same physics affects many 'non-global' event shapes:
-`Away from jet energy flow'/` Gaps between jets'
-Hemisphere mass function
-Possibly: Cone jets (see:T.~ Becher's talk)
- Learn to deal with color coherence at finite Nc
- Soft gluons are interesting

Simplifying features:

- IR and collinear safe observable
- Only two scales (\rightarrow one log: $\mathrm{Q} / \mathrm{Q}_{0}$)
- No collinear logs, only soft (wide angle) logs
- $\mathrm{e}^{+} \mathrm{e}^{-}$: No ISR [avoids nonabelian Coulomb phases]

Simplifying features:

- IR and collinear safe observable
- Only two scales (\rightarrow one log: $\mathrm{Q} / \mathrm{Q}_{0}$)
- No collinear logs, only soft (wide angle) logs
- $\mathrm{e}^{+} \mathrm{e}^{-}$: No ISR [avoids nonabelian Coulomb phases]

Complicating feature(s):

- Will work exactly in I/N N_{c} [and beyond LL]

What we're looking for:

Hard process @Q

Universal (RG)

 evolution[cf Z. Nagy's talk]

What we're looking for:

Hard process @Q

Universal (RG) evolution

@ IR scale Q_{0}
[cf Z. Nagy's talk]

What is K ? What data must it act on?

Key tools:

- Factorization of soft emissions (@amplitude level):

$$
\begin{gathered}
\lim _{k \rightarrow 0} H_{n+1}\left(k,\left\{p_{1}\right\}\right)=\mathcal{S}(k) H_{n}\left(\left\{p_{1}\right\}\right) \\
\mathcal{S}(k)=g \epsilon_{\mu} \sum_{i} \frac{p_{i}^{\mu} T_{i}^{a}}{p_{i} \cdot k}+O\left(g^{3}\right)
\end{gathered}
$$

- Bookkeeping device for multicolor states:
'color density matrix;'
depends on $\operatorname{SU}\left(\mathrm{N}_{\mathrm{c}}\right)$ matrices

Key tools:

- Factorization of soft emissions (@amplitude level):

$$
\begin{gathered}
\lim _{k \rightarrow 0} H_{n+1}\left(k,\left\{p_{1}\right\}\right)=\mathcal{S}(k) H_{n}\left(\left\{p_{1}\right\}\right) \\
\mathcal{S}(k)=g \epsilon_{\mu} \sum_{i} \frac{p_{i}^{\mu} T_{i}^{a}}{p_{i} \cdot k}+O\left(g^{3}\right)
\end{gathered}
$$

- Bookkeeping device for multicolor states:
'color density matrix;' depends on $\operatorname{SU}\left(\mathrm{N}_{\mathrm{c}}\right)$ matrices $U(\theta)$

The physics

Probability of not radiating g outside R , depends on all gluons inside R!

The physics

Probability of

not radiating g outside R , depends on
all gluons inside R!

Need to keep track of angle and color of all harder gluons
(that's a minimum!)

U's: a bookkeeping device

Squared amplitude for soft gluon ' 0 ' is proportional to:

$$
\left.\langle\mathrm{left}| T_{i}^{a} \quad T_{j}^{a} \mid \text { right }\right\rangle
$$

Color rotation of harder partons i and j

U’s: a bookkeeping device

Subsequent emissions can rotate '0' itself:

$$
\left.\langle\mathrm{left}| T_{i}^{a} T_{0}^{b} \quad T_{i}^{b} T_{j}^{a} \mid \text { right }\right\rangle
$$

U's: a bookkeeping device

Subsequent emissions can rotate ' 0 ' itself:

$$
\left.\langle\operatorname{left}| T_{i}^{a} T_{0}^{b} \quad T_{i}^{b} T_{j}^{a} \mid \text { right }\right\rangle
$$

Let: $\mathrm{U}=$ Cumulative rotation from all subsequent emissions

U's: a bookkeeping device

Subsequent emissions can rotate ' 0 ' itself:

$$
\left.\langle\operatorname{left}| T_{i}^{a} T_{0}^{b} \quad T_{i}^{b} T_{j}^{a} \mid \text { right }\right\rangle
$$

Let: $\mathrm{U}=$ Cumulative rotation from all subsequent emissions Emission of ' 0^{\prime} : $\quad U_{i} U_{j} \rightarrow\left(T^{a} U_{i}\right) U_{0}^{a b}\left(U_{j} T^{b}\right)$

U's: a bookkeeping device

Subsequent emissions can rotate ' 0 ' itself:

$$
\left.\langle\operatorname{left}| T_{i}^{a} T_{0}^{b} \quad T_{i}^{b} T_{j}^{a} \mid \text { right }\right\rangle
$$

Let: $\mathrm{U}=$ Cumulative rotation from all subsequent emissions Emission of ' 0 ': $\quad U_{i} U_{j} \rightarrow\left(T^{a} U_{i}\right) U_{0}^{a b}\left(U_{j} T^{b}\right)$

Now subsequent emissions can act on U_{0} !

U's: a bookkeeping device

Subsequent emissions can rotate ' 0 ' itself:

$$
\left.\langle\operatorname{left}| L_{i}^{a} \quad U_{0}^{a b} \quad R_{j}^{a} \mid \text { right }\right\rangle
$$

Let: $\mathrm{U}=$ Cumulative rotation from all subsequent emissions Emission of ' 0 ': $U_{i} U_{j} \rightarrow\left(U_{i} T^{a}\right) U_{0}^{a b}\left(U_{j} T^{b}\right) \equiv L_{i}^{a} U_{0}^{a b} R_{j}^{b}\left(U_{i} U_{j}\right)$
Efficient notation:
R acts on matrix element, L on conjugate

Formal definition

- Physically, U_{i} should represent color rotation from all softer, but resolved partons with $E>\mu$
- Cutoffs make life hard. Standard technique: take cutoff to zero and renormalize with MSbar.
- Bare $\sigma[U]$: dress each final state with a color rotation:

$$
\begin{aligned}
& \sigma[U] \equiv \sum_{n} \int d \Pi_{n}\left[A_{n}^{a_{1} \cdots a_{n}}\left(\left\{p_{i}\right\}\right)\right] \underbrace{U^{a_{1} b_{1}}\left(\theta_{1}\right) \cdots U^{a_{n} b_{n}}\left(\theta_{n}\right)}\left[A_{n}^{b_{n} \cdots b_{n}}\left(\left\{p_{i}\right\}\right)\right] u\left(\left\{p_{i}\right\}\right) .
\end{aligned}
$$

- Bare color density matrix IR divergent. Assuming RG eq., can renormalize:

$$
\sigma^{\mathrm{ren}}[U ; \mu]=\mathcal{P} \exp \left[\int_{0}^{\mu} \frac{d \lambda}{\lambda} K\left(\lambda, \alpha_{s}(\lambda)\right)\right] \sigma[U]
$$

Then $\sigma^{\text {ren }}$ will be finite.

- Precisely, $\mathrm{U}\left[\Theta_{i}\right]$ is the color rotation experienced by a resolved parton at Θ_{i} if all radiation below μ is unresolved (so only modes $>\mu$ contribute)
- RG equation is expected physically, due to decoupling of radiation at vastly different scales (direct combinatorial proof in paper)

LL example:

- I. Start from a dijet at scale Q

$$
\sigma[U ; Q]=\operatorname{Tr}\left[U^{\dagger}\left(\theta_{1}\right) U\left(\theta_{2}\right)\right]+O\left(\alpha_{s}\right)
$$

- 2. Evolve down to scale Q_{0} using RG:

$$
\left[\mu \partial_{\mu}+\beta \partial_{\alpha_{s}}\right] \sigma[U ; \mu]=K \sigma[U ; \mu]
$$

With each action of K one new resolved gluon U can be added

- 3. Kill all resolved gluons outside R by averaging procedure:

$$
\left\langle U^{a b}(\theta)\right\rangle=\delta^{a b} \chi_{\theta \in R}
$$

Evolution operator

- Extract from I/eps pole in one-loop fixed-order
- Real:

$$
\begin{aligned}
\sigma^{(1)}[U] \supset & \sum_{i, j} \int \frac{d^{3} p_{0}}{2 E_{0}} \frac{p_{i} \cdot p_{j}}{p_{0} \cdot p_{i} p_{0} \cdot p_{j}} \times L_{i}^{a} U_{0}^{a b} R_{j}^{b} \\
& \rightarrow \frac{1}{\epsilon_{\mathrm{IR}}} \int d^{2} \Omega_{0} \frac{\alpha_{i j}}{\alpha_{0 i} \alpha_{0 j}}
\end{aligned}
$$

Evolution operator

- Extract from I/eps pole in one-loop fixed-order
- Real:

$$
\begin{aligned}
\sigma^{(1)}[U] \supset & \sum_{i, j} \int \frac{d^{3} p_{0}}{2 E_{0}} \frac{p_{i} \cdot p_{j}}{p_{0} \cdot p_{i} p_{0} \cdot p_{j}} \times L_{i}^{a} U_{0}^{a b} R_{j}^{b} \\
& \rightarrow \frac{1}{\epsilon_{\mathrm{IR}}} \int d^{2} \Omega_{0} \frac{\alpha_{i j}}{\alpha_{0 i} \alpha_{0 j}}
\end{aligned}
$$

- Virtual: $\frac{1}{\epsilon_{\mathrm{IR}}} \sum_{i, j} R_{i}^{a} R_{i}^{b}\left[\log \left(2 p_{i} \cdot p_{j}-i 0\right)+\right.$ c.c. $]$
$+($ collinear div. $)-($ collinear subtraction $)$

Evolution operator

- Extract from I/eps pole in one-loop fixed-order
- Real:

$$
\begin{aligned}
\sigma^{(1)}[U] \supset & \sum_{i, j} \int \frac{d^{3} p_{0}}{2 E_{0}} \frac{p_{i} \cdot p_{j}}{p_{0} \cdot p_{i} p_{0} \cdot p_{j}} \times L_{i}^{a} U_{0}^{a b} R_{j}^{b} \\
& \rightarrow \frac{1}{\epsilon_{\mathrm{IR}}} \int d^{2} \Omega_{0} \frac{\alpha_{i j}}{\alpha_{0 i} \alpha_{0 j}}
\end{aligned}
$$

- Virtual:

Evolution operator

- Extract from I/eps pole in one-loop fixed-order
- Real:

$$
\begin{aligned}
\sigma^{(1)}[U] \supset & \sum_{i, j} \int \frac{d^{3} p_{0}}{2 E_{0}} \frac{p_{i} \cdot p_{j}}{p_{0} \cdot p_{i} p_{0} \cdot p_{j}} \times L_{i}^{a} U_{0}^{a b} R_{j}^{b} \\
& \rightarrow \frac{1}{\epsilon_{\mathrm{IR}}} \int d^{2} \Omega_{0} \frac{\alpha_{i j}}{\alpha_{0 i} \alpha_{0 j}}
\end{aligned}
$$

- Real+Virtual:

$$
\alpha_{i j}=\frac{1-\cos \left(\theta_{i j}\right)}{2}
$$

$K^{(1)}=\sum_{i, j} \int \frac{d^{2} \Omega_{0}}{4 \pi} \frac{\alpha_{i j}}{\alpha_{0 i} \alpha_{0 j}}\left(U_{0}^{a a^{\prime}}\left(L_{i}^{a} R_{j}^{a^{\prime}}+R_{i}^{a^{\prime}} L_{j}^{a}\right)-L_{i}^{a} L_{j}^{a}-R_{i}^{a} R_{j}^{a}\right)$
Combination is collinear safe
Finite N_{c} one-loop evolution equation for non-global logs!

- Planar limit: products in terms of traces

$$
K U_{12}=\frac{\lambda}{8 \pi^{2}} \int \frac{d^{2} \Omega_{0}}{4 \pi} \frac{\alpha_{12}}{\alpha_{01} \alpha_{02}}\left(U_{12}-U_{10} U_{02}\right)
$$

- Closed nonlinear equation for U_{ij}
[Banfi,Marchesini,Smye '02]
- $\mathrm{I} / \mathrm{N}_{\mathrm{c}}{ }^{2}$ expansion can be automated (next order involves quadrupoles, etc.)
- Lattice Monte-Carlo techniques allow to solve finite N_{c} equation
[Weigert'02,
Hatta\&Ueda 'I3]
- Other strategy:
'dressed gluon expansion'

$$
\left.K^{(1)}=\sum_{i, j} \int \frac{d^{2} \Omega_{0}}{4 \pi} \frac{\alpha_{i j}}{\alpha_{0 i} \alpha_{0 j}} \frac{\left(\hat{U}_{0}^{a a^{\prime}}\left(L_{i}^{a} R_{j}^{a^{\prime}}+R_{i}^{a} L_{j}^{a}-L_{i}^{a} L_{j}^{a}-R_{i}^{a} R_{j}^{a}\right)\right.}{K_{0}}\right)
$$

- Integrate exactly $K_{0} \rightarrow$ Sudakov exponents
- Work perturbatively in δK : inserts 'dressed' gluon
- Since collinear safety of K, not preserved, must include: collinear cutoff, 'zero-bin subtraction', etc. For details (and a nice derivation), see their paper!
- U-matrix calculus: an efficient way to generate and organize the terms
- To understand RG structure, let's now look at NLL
- Main ingredient: soft current for two soft partons

$$
\mathcal{S}\left(k_{1}, k_{2}\right)=\sum_{i, j} \frac{1}{2}\left\{R_{i}^{a}, R_{j}^{b}\right\} S_{i}\left(k_{1}\right) S_{j}\left(k_{2}\right)+i f^{a b c} \sum_{i} R_{i}^{c} S_{i}\left(k_{1}, k_{2}\right)
$$

[...,Catani\&Grazzini,...]

- For this talk, let just take planar limit.
- Get only strings of dipoles:

$$
K U_{12} \supset \int \frac{d^{2} \Omega_{0}}{4 \pi} \frac{d^{2} \Omega_{0^{\prime}}}{4 \pi} K_{\left[100^{\prime} 2\right]} U_{10} U_{00^{\prime}} U_{0^{\prime} 2}
$$

Naively:

$$
\begin{gathered}
K_{\left[100^{\prime} 2\right]}=\int_{0}^{\infty} a d a[\left|\mathcal{S}\left(a \beta_{0}, \beta_{0^{\prime}}\right)\right|^{2}<\underbrace{-\left.\right|_{a \rightarrow 0} \theta(1-a)-\left.\right|_{a \rightarrow \infty} \theta(a-1)}_{a=\text { relative energy }}] \\
\text { subtraction of I-loop }
\end{gathered}
$$

Naively:

$$
K_{\left[100^{\prime} 2\right]}=\int_{a=\text { relative energy }}^{\infty} a d a\left[\left|\mathcal{S}\left(a \beta_{0}, \beta_{0^{\prime}}\right)\right|^{2}-\underset{a \rightarrow 0}{-\Gamma_{a \rightarrow(1-a)-\left.\right|_{a \rightarrow \infty} \theta(a-1)}}\right. \text { subtraction of I-loop }
$$

planar soft current squared is relatively simple:

$$
\begin{aligned}
|\mathcal{S}|^{2} & =\frac{s_{10^{\prime}} s_{20}+2 s_{10} s_{20}+3 s_{10} s_{10^{\prime}}+2 s_{10^{\prime}} s_{20^{\prime}}+s_{12} s_{00^{\prime}}}{s_{10^{\prime}} s_{00^{\prime}} s_{0^{\prime} 2}\left(s_{10}+s_{10^{\prime}}\right)\left(s_{20}+s_{20^{\prime}}\right)} \quad \mathrm{N}=4 \mathrm{SYM} \\
& \left.+\left(n_{F}-4\right) \frac{s_{12}}{s_{00^{\prime}}\left(s_{10}+s_{10^{\prime}}\right)\left(s_{20}+s_{20^{\prime}}\right.}\right) \\
& +\left(\frac{1}{2} n_{s}-n_{F}+1\right) \frac{\left(s_{10} s_{20^{\prime}}-s_{10^{\prime}} s_{20^{\prime}}\right)^{2}}{s_{00^{\prime}}^{2}\left(s_{10}+s_{10^{\prime}}\right)^{2}\left(s_{20}+s_{20^{\prime}}\right)^{2}}
\end{aligned} \text { gauge gal }
$$

Lorentz invariance and ordering variable

- One-loop was not written in Lorentzinvariant form

$$
\int d^{2}-2 \sigma \Omega_{0} \frac{p_{i} \cdot p_{j}}{p_{0} \cdot p_{i} p_{0} \cdot p_{j}}(\cdots)
$$

Lorentz invariance and

ordering variable

- One-loop was not written in Lorentzinvariant form

$$
\int d^{2}-2 \epsilon \overbrace{0}\left(\frac{p_{i} \cdot p_{j}}{p_{0} \cdot p_{i} p_{0} \cdot p_{j}}\right)^{1-\epsilon}(\cdots) \text { in po required] }
$$

- Equivalent to changing ordering variable:

$$
E^{2} \rightarrow \frac{p_{1} \cdot p_{0} p_{0} \cdot p_{2}}{p_{1} \cdot p_{2}}={ }^{\prime} p_{t}^{2}
$$

Less naive two-loop kernel (Lorentz-invariant scheme):

$$
K_{\left[100^{\prime} 2\right]}=\int_{0}^{\infty} a d a\left[\mid \mathcal{S}\left(a \beta_{0},\left.\beta_{0^{\prime}}\right|^{2}-\left.\right|_{a \rightarrow 0} \theta\left(1-a r_{1}\right)-\left.\right|_{a \rightarrow \infty} \theta\left(a r_{2}-1\right)\right]\right.
$$

with: $\frac{r_{2}}{r_{1}}=\frac{\alpha_{12} \alpha_{00^{\prime}}}{\alpha_{0^{\prime} 1} \alpha_{02}}$ from mismatching E scales in (I-loop $)^{2}$

Less naive two-loop kernel (Lorentz-invariant scheme):

$$
K_{\left[100^{\prime} 2\right]}=\int_{0}^{\infty} a d a\left[\mid \mathcal{S}\left(a \beta_{0},\left.\beta_{0^{\prime}}\right|^{2}-\left.\right|_{a \rightarrow 0} \theta\left(1-a r_{1}\right)-\left.\right|_{a \rightarrow \infty} \theta\left(a r_{2}-1\right)\right]\right.
$$

Full two-loop planar:

$$
K^{(2)} U_{12}=\int_{0,0^{\prime}} \frac{-2 U_{10} U_{00^{\prime}} U_{0^{\prime} 2}}{\alpha_{10} \alpha_{00^{\prime}} \alpha_{0^{\prime} 2}}
$$

$$
\times\left\{2 \log \frac{\alpha_{12} \alpha_{00^{\prime}}}{\alpha_{10^{\prime}} \alpha_{02}}+\left[1+\frac{\alpha_{12} \alpha_{00^{\prime}}}{\alpha_{10} \alpha_{20^{\prime}}-\alpha_{10^{\prime}} \alpha_{20}}\right] \log \frac{\alpha_{10} \alpha_{20^{\prime}}}{\alpha_{10} \alpha_{20^{\prime}}}\right.
$$

$$
\left.+\left(n_{F}-4\right)(\cdots)+\left(\frac{1}{2} n_{s}-n_{F}+1\right)(\cdots)\right\}
$$

$+\ldots$ One-loop single-real (w/ hardcollinear subtraction); double-virtual

Less naive two-loop kernel (Lorentz-invariant scheme):

$$
K_{\left[100^{\prime} 2\right]}=\int_{0}^{\infty} a d a\left[\mid \mathcal{S}\left(a \beta_{0},\left.\beta_{0^{\prime}}\right|^{2}-\left.\right|_{a \rightarrow 0} \theta\left(1-a r_{1}\right)-\left.\right|_{a \rightarrow \infty} \theta\left(a r_{2}-1\right)\right]\right.
$$

Full two-loop planar:

make it collinear-finite

$$
K^{(2)} U_{12}=\int_{0,0^{\prime}} \frac{-2 U_{10} U_{00^{\prime}} U_{0^{\prime} 2}+U_{10} U_{02}+U_{10^{\prime}} U_{0^{\prime} 2}}{\alpha_{10} \alpha_{00^{\prime}} \alpha_{0^{\prime} 2}}
$$

$$
\begin{aligned}
& \times\left\{2 \log \frac{\alpha_{12} \alpha_{00^{\prime}}}{\alpha_{10^{\prime}} \alpha_{02}}+\left[1+\frac{\alpha_{12} \alpha_{00^{\prime}}}{\alpha_{10} \alpha_{20^{\prime}}-\alpha_{10^{\prime}} \alpha_{20}}\right] \log \frac{\alpha_{10} \alpha_{20^{\prime}}}{\alpha_{10} \alpha_{20^{\prime}}}\right. \\
& \left.\quad+\left(n_{F}-4\right)(\cdots)+\left(\frac{1}{2} n_{s}-n_{F}+1\right)(\cdots)\right\} \\
& \\
& \# K^{(1)} \\
& \text { only possible structure }
\end{aligned}
$$

by Lorentz iny̧ariance and KLN theorem

Less naive two-loop kernel (Lorentz-invariant scheme):

$$
K_{\left[100^{\prime} 2\right]}=\int_{0}^{\infty} a d a\left[\mid \mathcal{S}\left(a \beta_{0},\left.\beta_{0^{\prime}}\right|^{2}-\left.\right|_{a \rightarrow 0} \theta\left(1-a r_{1}\right)-\left.\right|_{a \rightarrow \infty} \theta\left(a r_{2}-1\right)\right]\right.
$$

Full two-loop planar:

$$
K^{(2)} U_{12}=\int_{0,0^{\prime}} \frac{-2 U_{10} U_{00^{\prime}} U_{0^{\prime} 2}+U_{10} U_{02}+U_{10^{\prime}} U_{0^{\prime} 2}}{\alpha_{10} \alpha_{00^{\prime}} \alpha_{0^{\prime} 2}}
$$

$$
\times\left\{2 \log \frac{\alpha_{12} \alpha_{00^{\prime}}}{\alpha_{10^{\prime}} \alpha_{02}}+\left[1+\frac{\alpha_{12} \alpha_{00^{\prime}}}{\alpha_{10} \alpha_{20^{\prime}}-\alpha_{10^{\prime}} \alpha_{20}}\right] \log \frac{\alpha_{10} \alpha_{20^{\prime}}}{\alpha_{10} \alpha_{20^{\prime}}}\right.
$$

$$
\left.+\left(n_{F}-4\right)(\cdots)+\left(\frac{1}{2} n_{s}-n_{F}+1\right)(\cdots)\right\}
$$

$$
\gamma_{K}^{(2)} K^{(1)} .
$$

Sudakov double logs for narrow cones

Check: two-loop BFKL/BK

- Conformal transformation maps 2-sphere to transverse plane in BFKL: [Hofman\&Maldacena;

$$
\int \frac{d^{2} \Omega_{i}}{4 \pi} \rightarrow \frac{d^{2} z}{\pi}, \quad \alpha_{i j} \rightarrow\left(z_{i}-z_{j}\right)^{2}
$$

- Fact: PQCD is close to a CFT. In a CFT there is nothing special about 'infinity'.
- Broken by QCD β-function. Check:

$$
K^{(2)}-H_{\mathrm{BFKL}}^{(2)} \propto b_{0}=\frac{11 C_{A}-4 n_{F} T_{F}-n_{S} T_{S}}{3}
$$

Highly nontrivial!

Upshots

- Agreement with BFKL: evidence result is correct
- Calculations readily automated (products of U's; large N_{c} expansion; squares of CataniGrazzini soft currents)
- Finite N_{c} case worked out in paper and matched with (recent!) Balitsky-JIMWLK.
- Universal two-loop
- Three-loops will require only 3- and 2-real (+ Lorentz $+\mathrm{KLN}+\mathrm{Y}_{\mathrm{K}}\left(+\right.$ Hermiticity of $\left.\mathrm{H}_{\mathrm{BFKL}}\right)$)
[Herranen+SCH, in progress]

Proof of RG equation

- Input: soft factorization of (loop) amplitudes

$$
\lim _{\left\{k_{i}\right\} \rightarrow 0} H\left(\left\{k_{i}\right\},\left\{p_{j}\right\}\right)=\mathcal{S}\left(\left\{k_{i}\right\}\right) H\left(\left\{p_{j}\right\}\right)
$$

- Output:

$$
\mathcal{P} e^{\int_{0}^{\mu} \frac{d \lambda}{\lambda}\left(K^{(1)}+\ldots+K^{(L)}\right)} \sigma[U]^{(L+1)}
$$

has no subdivergences at $(\mathrm{L}+\mathrm{I})$ loops.
$\rightarrow \mathcal{P} e^{\int_{0}^{\mu} \frac{d \lambda}{\lambda} K_{\sigma}} \sigma[U]$ is finite!

- Proof constructive: explicit formal expressions for K :

$$
K=\int_{\text {energies }}\left[|\mathcal{S}|^{2}-(\underset{39}{(\text { subtractions })] \quad \text { at all loops }}\right.
$$

Conclusion

- Two-scale problems involving soft wide-angle gluons can be solved: color density matrix
- Efficient U-matrix calculus: can be used by others!
- Proven: all logs generated by RG equation in $\mathrm{e}^{+} \mathrm{e}^{-;}$ exponent now known to NLL
- Next: collinear logs when R becomes small -Compare with existing 2-loop fixed-order NGL's -Make contact with Soper\&Nagy's density matrix?
- Next: Coulomb phases in hadron collisions

