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Overview

I Soft-collinear factorisation.

I Generalisation to next-to-leading power.

I Checks in Drell-Yan production.

I Further applications.
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General structure of threshold corrections

I If ξ is a kinematic variable that is zero at threshold for some
process:

dσ

dξ
=
∑
n,m

αn

[
c
(0)
nm

(
lnm ξ

ξ

)
+

+ c
(1)
nm lnm ξ + . . .

]
.

I First set of terms correspond to (leading) threshold logs: pure
soft and / or collinear.

I Second set of terms is next-to-leading power (NLP) threshold
logs: next-to-soft and / or collinear.

I Can we classify / resum these terms?
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Factorisation

I Many approaches exist for resumming threshold logs:
diagrammatic (Sterman; Catani, Trentadue), Wilson lines
(Korchemsky, Marchesini), RGEs (Forte, Ridolfi),
soft-collinear effective theory (SCET) (Becher, Neubert;
Schwartz; Stewart).

I Crucial to all of these approaches is the notion of factorisation:

Soft and collinear physics is process-independent, so can be
written in terms of universal functions.

I These functions are well-known at leading threshold level...
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Soft-collinear factorisation

I A general n-point amplitude has the form:

An = Hn

(
Q2

µ2
, {pi}, {ni}, αs(µ2), ε

)
× S

(
{βi}, αs(µ2), ε

)
×

n∏
i=1

[
J(pi , ni , αs(µ2), ε)

J (βi , ni , αs(µ2), ε)

]

I Hn: hard function (IR finite).

I S: soft function (all soft singularities).

I J: jet function (collinear singularities).

I J : eikonal jet (soft-collinear, removes double-counting).
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I The soft and jet functions are universal:

S
(
{βi}, αs(µ2), ε

)
=

〈
0

∣∣∣∣∣∏
i

Φ(βi )

∣∣∣∣∣ 0

〉
;

J
(
p, n, αs(µ2), ε

)
u(p) = 〈0 |Φ(n)Ψ(0)| p〉 ,

defined in terms of Wilson lines:

Φ(β) = P exp

[
igs

∫ ∞
0

dλβ · A(λβ)

]
I Hard function Hn defined by matching to the full amplitude,

after computing S, J, J to a given order.
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Next-to-leading power logs

I To date, much less has been known about NLP effects.

I Known for a while to be numerically significant e.g. in Higgs
production (Kramer Laenen, Spira; Harlander, Kilgore; Catani,
de Florian, Grazzini, Nason).

I This has been confirmed by recent N3LO Higgs results
(Anastasiou, Duhr, Dulat, Herzog, Mistlberger).

I There are thus two good reasons to study NLP logs:

1. Resummation of them will improve precision.
2. Even without resummation, NLP logs may provide good

approximate NnLO cross-sections.

I The study of NLP effects has a surprisingly long history...

7 / 26



Low-Burnett-Kroll theorem

I Next-to-soft effects were first studied in gauge theory (QED)
by Low (1958).

I He considered external scalars; generalised to fermions by
Burnett and Kroll (1968).

I Both groups only considered massive particles: all threshold
effects soft.

I Del Duca (1990) generalised the Low-Burnett-Kroll result to
include collinear effects.

I He gave a generalised factorisation formula at NLP level.
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Path integral approach
I Can describe next-to-soft effects by writing external

propagators as spacetime path integrals (Laenen, Stavenga,
White).

I Leading term is classical
trajectory (soft limit).

I First-order wobbles give
next-to-soft behaviour.

I Reproduces NNLO real
emission in Drell-Yan.

I Also works for gravity
(White).

I Collinear singularities not accounted for.
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Physical Evolution Kernel approach

I In DIS, can set up evolution equations for physical structure
functions directly:

dFi (x ,Q
2)

d lnQ2
=
∑
j

Kij ⊗ Fi .

I The physical evolution kernels Kij are known to NNLO in
some cases.

I Fixed order information can be used to motivate a partial
resummation prescription for NLP effects (Almasy, Moch,
Presti, Soar, Vermaseren, Vogt).

I Can be generalised to DY, Higgs production, e+e− etc.

I NLP results found to give excellent approximation of full
fixed-order result in some cases.
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Method of regions approach

I For specific processes, can classify all (next-to) soft / collinear
effects using the method of regions (Beneke, Smirnov, Pak,
Jantzen).

I Example: Drell-Yan production with 1-real and 1-virtual gluon
(Bonocore, Laenen, Magnea, Vernazza, White).

p

p
_

q
k1

k
2

I The virtual gluon momentum k1 can be soft, hard or collinear.

I Each of these is a “region”, and they do not overlap.
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Method of regions

p

p
_

q
k1

k
2

I Introduce n+, n− via

pν =

√
ŝ

2
nµ+, p̄µ =

√
ŝ

2
nµ−.

I Then write (Sudakov)

kµ1 =
(n− · k1)

2
nµ++

(n+ · k1)

2
nµ−+kµ1⊥.

I Split k1 into different regions:

Hard : k1 ∼
√
ŝ (1, 1, 1) ; Soft : k1 ∼

√
ŝ
(
λ2, λ2, λ2

)
;

Collinear : k1 ∼
√
ŝ
(
1, λ, λ2

)
; Anticollinear : k1 ∼

√
ŝ
(
λ2, λ, 1

)
.
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I The method of regions reproduces the known 1-real, 1-virtual
DY K-factor at NNLO.

I Thus, it works also at next-to-soft level.

I All possible collinear and (next-to) soft logs classified
(Bonocore, Laenen, Magnea, Vernazza, White).

I Valuable data for constraining / testing NLP factorisation.

I Method of regions has also been applied recently to Higgs
production at N3LO (Anastasiou, Duhr, Dulat, Herzog,
Mistlberger).

I No formal proof that it works at NLP level, but it clearly
seems to!
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A quick summary

I There are many ways of thinking about NLP effects, spanning
60 years!

I None of these previous approaches, though, offers a complete
understanding.

I They provide strong hints, though, of an underlying structure.

I What we want is to be able to predict NLP logs in an
arbitrary process.

I Can they be written in terms of universal functions (like LP
effects)?

I Encouraging recent progress on two fronts...
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Factorisation approach

I Here will focus on diagrammatic approach - see also SCET
(Larkoski, Neill, Stewart).

I Start with an amplitude with n hard particles (momenta
{pi}), and add an extra emission (momentum k).

I Can then write a formula for this valid at NLP level
(Bonocore, Laenen, Magnea, Melville, Vernazza, White).

I This approach builds on the previous work of Del Duca.

I So far a formula has been given for all QED-type logs...
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Towards a NLP factorisation formula
I An n-point amplitude can be written

An = Hn × S ×
∏
i

[
Ji
Ji

]
= Hn × S̄︸ ︷︷ ︸

H

×
∏
i

Ji .

I Now consider emission of a soft gluon k from inside H or jets.

(a) (b) (c)

J

J

J

J

J

J

H H H
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The jet emission function

I Emissions from the jets can be written in terms of

Jµ(p, n, αs(µ2), ε; k)u(p) =

〈
0

∣∣∣∣∫ ddy e−i(p+k)·yΦn(y ,∞)Ψ(y)jµ(0)

∣∣∣∣ p〉 .
I Universal quantity in field theory. Introduced by Del Duca,

but not previously calculated.

p

n

(a) (b) (c) (d)

k1

k2

I Emissions from H related to this via Ward identities.
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Factorisation formula for NLP effects

I Putting everything together, one finds

Aµn+1({pi}; k) =
∑
i

[
qi

(
(2pi − k)µ

2pi · k − k2
− G νµ

i

∂

∂pνi

)
An

+Hn(pi )S̄(βi )G
νµ
i

(
Jν(pi , k)− qi

∂

∂pνi
J(pi , k)

)∏
j 6=i

J(pj)

 ,
where the “G-polarisation tensor” is a simple function of pi and k .

I This is the generalisation of the soft-collinear factorisation
formula to NLP level.

I Looks complicated, but each term can be traced to a clear
physical interpretation.
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Comments

I The first term of the formula is the leading soft-collinear
factorisation result.

I All NLP corrections expressed in terms of Jµ, plus quantities
already appearing at leading threshold level.

I Once Jµ has been calculated for a given spin, it can be used in
any process.

I This result differs from that of Del Duca, in that it explicitly
includes the (reduced) soft function.

I Can check its validity in Drell-Yan production.
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Drell-Yan check

I The simplest example that checks all aspects of the NLP
factorisation formula is the 1-real, 1-virtual contribution to
Drell-Yan production.

I In that case, the factorisation formula leads to three separate
contributions:

1. The non-radiative (NLO) result, dressed by an extra emission.
2. Derivative of the non-radiative amplitude w.r.t. external

momenta.
3. A “G-emission” from each jet.

I These are straightforwardly calculated, and integrated over
phase space (Bonocore, Laenen, Magnea, Melville, Vernazza,
White).
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Drell-Yan check
I The answer reproduces exactly the known NLP contribution

to the NNLO Drell-Yan K factor (Hamberg, Matsuura, van
Neerven; Harlander, Kilgore).

K
(2)
1r,1v =

(
αs CF

4π

)2{32D0 − 32

ε3
+
−64D1 + 48D0 + 64L1 − 96

ε2

+
64D2 − 96D1 + 128D0 − 196− 64L21 + 208L1

ε

−128

3
D3 + 96D2 − 256D1 + 256D0 +

128

3
L31 − 232L21 + 412L1 − 408

}
,

where

Di =

(
logi (1− z)

1− z

)
+

, L1 = log(1− z).

I Even constant (non-log) terms are reproduced!
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What next?

I The factorisation formula can be generalised to include all
non-abelian contributions (in progress).

I Can also think of a formula at cross-section, rather than
amplitude level (Laenen, Magnea, Stavenga, White).

I This would then pave the way for resummation of NLP effects.

I It would be interesting to compare the SCET and
diagrammatic approaches (Larkoski, Neill, Stewart; Beneke,
Campanario, Mannel, Pecjak)...

I ...and apply either of them to collider processes!
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QCD versus gravity

I Remarkably, the structure of next-to-soft corrections appears
to be similar in QCD and gravity.

I This may be related to the BCJ double copy, a recently
conjectured relationship between the two theories (Bern,
Carrasco, Johannson).

I QCD next-to-soft effects are important for collider physics...

I ...but there may also be phenomenological consequences of
next-to-soft graviton emission!
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Next-to-soft gravity
I Soft gravitons dominate in the high-energy (Regge) limit.

I Different regions in energy / impact parameter (Giddings,
Schmidt-Sommerfeld, Andersen).

I Next-to-soft corrections probe unknown parts of this diagram.
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Next-to-soft gravity

I A first study of next-to-soft corrections performed by Akhoury,
Saotome, Sterman.

I Analysed a subset of terms when a light particle scatters on a
black hole.

I Next-to-soft corrections found to exponentiate, modifying the
leading behaviour by an amount proportional to the
Schwarzschild radius.

I Further applications e.g. to black hole production?

I See also Amati, Ciafaloni, Veneziano, Colferai, Falcioni; ’t
Hooft; Verlinde2; Jackiw, Kabat, Ortiz.
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Conclusions

I Soft-collinear factorisation and resummation are widely
applicable in collider physics.

I It is possible to extend this factorisation to include threshold
corrections at next-to-leading power (NLP).

I Can be used to increase the precision of collider predictions.

I Links between QCD and gravity, including interesting
conjectures in (non-)supersymmetric theories.

I Possible applications in quantum gravity phenomenology.
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