Generalised Resummation for QCD Jet Observables

P. F. Monni Rudolf Peierls Centre for Theoretical Physics University of Oxford

Based on work in collaboration with:

G. Zanderighi (CERN & University of Oxford)

A. Banfi, H. McAslan (University of Sussex) and ongoing work

Outline

- All-order perturbation theory in the Sudakov regime
- Practical relevance of resummation for QCD jet observables
- Different approaches to resummation and factorisation theorems
- Devising a general technique without any required factorisation theorem at NNLL
 - Observable's properties
 - Amplitudes
 - Relevant phase space regions
- Applications in e+e- -> 2 jets and p p -> V production
- Future work and perspectives

- High energy strong interaction can be very well described by perturbative QCD (PT) through a power series in the (small) coupling constant
- Each extra power of the coupling corresponds to an extra real emission and relative virtual corrections
- Each real emission has a different scale for its strong coupling which is of the order of its transverse momentum
- In a PT expansion the coupling is evaluated at some common scale of the order of the hard scale(s) of the process - this ensures the coupling to be small (high transverse momentum)
- The PT expansion can be taken and the hard event is usually very well described by the first few terms in the power series

- When the transverse momentum of the QCD radiation is constrained to be small, the strong coupling becomes large and an arbitrary amount of QCD emissions become equally important - Need for a all-orders description of the reaction
- The large coupling manifests itself in terms of large single logarithms in the perturbative series

$$\alpha_s(k_t^2) \sim \frac{\alpha_s(Q^2)}{1 - \alpha_s(Q^2)\beta_0 \ln \frac{Q^2}{k_t^2}}$$

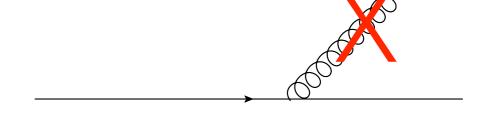
- One way to account for the large coupling effects is to sum up all these logarithms to all orders in PT series
- Resummation recasts predictive power of the PT series in this regime and provides a reliable description for the reaction

 Constraining the real radiation's kinematics leads to additional (double and single) logarithms

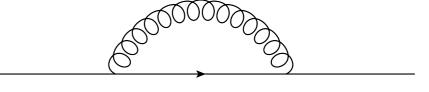
e.g. soft-collinear emission:

- real emission forced to be soft and/or collinear to the emitter
- virtual corrections are unaffected

$$\frac{dk_t}{k_t}d\eta\alpha_s(k_t^2)$$



$$-\frac{dk_t}{k_t}d\eta\alpha_s(k_t^2)$$



$$P(k_t < v) \sim 1 - \frac{\#\alpha_s C_F}{2\pi} \ln^2 v + \dots$$

 In the perturbative regime these logarithms can become as large as (breakdown of the PT below this limit)

$$L \sim \frac{1}{\alpha_s}$$

- This makes "higher order" corrections as large as leading order ones, i.e. $(\alpha_s L)^n L \sim \alpha_s L^2$
- The PT series breaks down and the probability of the reaction diverges logarithmically in the large L limit instead of being suppressed
- The resummation of the large logarithms to all perturbative orders restores the correct physical (Sudakov) suppression and rescues the predictive power of perturbation theory

Logarithmic accuracy

- Double logarithms due radiation kinematics commonly happen to exponentiate exactly (see later)
 - non-exponentiating observables are avoided because of issues with the simulation in event generators, e.g. JADE algorithm
- For such observables we can define a new perturbative order by expressing the cross section as an exponential function

$$\Sigma(v) = \int_0^v \frac{1}{\sigma_{\text{Born}}} \frac{d\sigma}{dv'} dv' \sim e^{\alpha_s^n L^{n+1} + \alpha_s^n L^n + \alpha_s^n L^{n-1} + \dots}$$

• In the region where $L \sim 1/\alpha_s(Q)$, LL are enhanced w.r.t. the Born, NLL are as large as the Born cross section itself, NNLL count as NLO corrections, and so on

Are these regimes of interest?

- The large-logarithms (Sudakov) regime is probed in several collider reactions whenever tight phase space cuts are applied in the definition of the physical observables (e.g. event-shapes, jet rates, definition of fiducial/control regions for signal or background,...).
- Phenomenological interests:
 - fit of the strong coupling constant
 - precise simulation of background/signal
 - tuning/developing Monte Carlo event generators
 - design of better-behaved observables (e.g. substructure)
- Theoretical interests:
 - properties of the QCD radiation to all-orders
 - understanding of IRC singular structure (subtraction)
 - unveiling perturbative scalings in the deep IRC region
 - probing the boundary with the non-perturbative regime, and study of non-perturbative dynamics

Different approaches

- Several NLL resummations exist for a number of observables at leptonlepton (hadron) and hadron-hadron colliders (extensive literature)
- Different approaches to Sudakov resummation are available:
 - Use properties of QCD coherence (i.e. angular ordering, interference) and properties of the observable (e.g. rIRC safety) to set up a resummation program
 - Branching algorithm (many references)

[Catani, Marchesini, Trentadue, Turnock, Webber et al.]

CAESAR/ARES method

[Banfi, Salam, Zanderighi; Banfi, McAslan, Monni, Zanderighi]

- Leading kinematical regions emerge from an observabledependent (all-orders) factorisation theorem (many references)
 - Soft Collinear Effective Theory (see T. Becher's talk)

[Bauer, Fleming, Pirjol, Stewart; Beneke, Chapovski, Diehl, Feldmann et al.]

Collins-Soper-Sterman approach

[Collins, Soper, Sterman et al.]

Different approaches

- Several NLL resummations exist for a number of observables at leptonlepton (hadron) and hadron-hadron colliders (extensive literature)
- Different approaches to Sudakov resummation are available:
 - Use properties of QCD coherence (i.e. angular ordering, interference) and properties of the observable (e.g. rIRC safety) to set up a resummation program
 - Branching algorithm (many references)

[Catani, Marchesini, Trentadue, Turnock, Webber et al.]

CAESAR/ARES method

Eanfi, Salam, Zanderighi; Banfi, McAslan, Monni, Zanderighi]

- Leading kinematical regions emerge from an observabledependent (all-orders) factorisation theorem (many references)
 - Soft Collinear Effective Theory (see T. Becher's talk)

[Bauer, Fleming, Pirjol, Stewart; Beneke, Chapovski, Diehl, Feldmann et al.]

Collins-Soper-Sterman approach

[Collins, Soper, Sterman et al.]

Different approaches

- NNLL corrections are generally sizeable (count as NLO) and important for precision physics - few NNLL results exist for 2 scale observables in e+e- collisions and even fewer for hadronic collisions
- Most important limitation being the "factorisability" requirement (see later) for the observable in some (smartly defined) conjugate space resummation often leads to very tedious calculations (~ 14-16 yrs to go from NLL to the next order)
- GOAL: devise a (numerical) resummation approach that:
 - does not rely on factorisation properties of the observable
 - is NNLL accurate and extendable to higher orders
 - is fully general for a very broad category of observables (~all that can be possibly resummed to NNLL)
 - it is suitable for automation (only input: observable's routine)

Definition of the problem

- Describe the all-orders QCD radiation to a given logarithmic accuracy in a (as much as) general way
- To achieve that, we need to study the behaviour of both the squared amplitude and the observable in the presence of an arbitrary number of emissions
- We divide the problem (and its solution) in three parts
 - Observable's properties
 - Amplitudes in the logarithmic regime
 - Relevant phase space regions

Definition of the problem

- Describe the all-orders QCD radiation to a given logarithmic accuracy in a (as much as) general way
- To achieve that, we need to study the behaviour of both the squared amplitude and the observable in the presence of an arbitrary number of emissions
- We divide the problem (and its solution) in three parts
 - Observable's properties
 - Amplitudes in the logarithmic regime
 - Relevant phase space regions

- We consider an Infrared and Collinear (IRC) safe observable normalised as $V = V(\{\tilde{p}\}, k_1, ..., k_n) \le 1$, in the limit $V \to 0$
- In this limit the radiative corrections are described exclusively by virtual corrections, and collinear and/or soft real emissions -QCD amplitudes factorise in these regimes w.r.t. the Born up to regular (giving rise to non-logarithmic corrections) terms

$$|\mathcal{M}(\{\tilde{p}\}, k_1, ..., k_n)|^2 \simeq |M_{\text{Born}}(\{\tilde{p}\})|^2 |M(k_1, ..., k_n)|^2 + ...$$

- All-order treatment is possible only if factorisation of the QCD amplitudes remains true at all orders (often assumed)
- Cases of collinear factorisation breaking due to miscancellation of Glauber modes (i.e. Coulomb phases) have been found at high orders in multijet squared amplitudes

[J. R. Forshaw, M. H. Seymour, and A. Siodmok 2012]

- We consider an Infrared and Collinear (IRC) safe observable normalised as $V = V(\{\tilde{p}\}, k_1, ..., k_n) \le 1$, in the limit $V \to 0$
- In this limit the radiative corrections are described exclusively by virtual corrections, and collinear and/or soft real emissions -QCD amplitudes factorise in these regimes w.r.t. the Born up to regular (giving rise to non-logarithmic corrections) terms

$$|\mathcal{M}(\{\tilde{p}\}, k_1, ..., k_n)|^2 \simeq |M_{\text{Born}}(\{\tilde{p}\})|^2 |M(k_1, ..., k_n)|^2 + ...$$

- All-order treatment is possible only if factorisation of the QCD amplitudes remains true at all orders (often assumed)
- "Standard" approach to resummation: factorisation for the cross section is achievable if also the (constrained) phase space factorises (contains observable's definition). Resummation can be achieved once a factorisation theorem is set up (modulo complex computations)

- The observable does not trivially factorise in a product of terms arising from each kinematic mode contributing to the factorised amplitude - it often requires to transform into a conjugate space where the factorisation is explicit (e.g. Mellin - Laplace, Fourier)
 - OK for simple semi-inclusive cases: e.g. thrust in e+e-

$$1 - T \simeq \sum_{i=1}^{n} \frac{k_{ti}}{Q} e^{-\eta_i} \qquad \to \qquad \Theta(1 - T < \tau) = \int \frac{d\nu}{2\pi i\nu} e^{\nu\tau} \prod_{i=1}^{n} e^{-\nu \frac{k_{ti}}{Q}} e^{-\eta_i}$$

- more difficult for involved observables: e.g. jet broadening in e+eor inclusive vector-boson kt in hadron collisions
- tough/impossible for observables which mix various kinematic modes or require iterative optimisations: e.g. jet rates, thrust major
- Main idea: factorisation is an unnecessary requirement for resummation. All one needs is some scaling properties of the observable

- The observable does not trivially factorise in a product of terms arising from each kinematic mode contributing to the factorised amplitude - it often requires to transform into a conjugate space where the factorisation is explicit (e.g. Mellin - Laplace, Fourier)
 - OK for simple semi-inclusive cases: e.g. thrust in e+e-

$$1 - T \simeq \sum_{i=1}^{n} \frac{k_{ti}}{Q} e^{-\eta_i} \qquad \to \qquad \Theta(1 - T < \tau) = \int \frac{d\nu}{2\pi i\nu} e^{\nu\tau} \prod_{i=1}^{n} e^{-\nu \frac{k_{ti}}{Q}} e^{-\eta_i}$$

- more difficult for involved observables: e.g. jet broadening in e+eor inclusive vector-boson kt in hadron collisions
- tough/impossible for observables which mix various kinematic modes or require iterative optimisations: e.g. jet rates, thrust major
- Main idea: factorisation is an unnecessary requirement for resummation. All one needs is some scaling properties of the observable

Requirements on the observable

- The standard requirement of IRC safety implies that the value of the observable does not change in the presence of one or more unresolved emissions (i.e. very soft and/or collinear)
- In addition, we require recursive IRC (rIRC) safety (for a more precise formulation see backup slides), i.e.
 [Banfi, Salam, Zanderighi 2004]
 - that in the presence of multiple emissions the observable scales in the same fashion as for a single emission (IRC divergences have an exponential form)
 - this property ensures the exponentiation of leading logarithms and a cancellation of divergences to all orders;
 - that for sufficiently small \bar{v} there exists some ϵ that can be chosen independently of \bar{v} such that we can neglect any emissions at scales $\sim \epsilon \bar{v}$

$$V(\{\tilde{p}\}, k_1, \dots, k_n, \dots, k_m) \simeq V(\{\tilde{p}\}, k_1, \dots, k_n) + \epsilon^{p} v$$

 this property allows one to associate a logarithmic order to each real nemission probability, establishing a logarithmic hierarchy between correlated branchings

Requirements on the observable

- The standard requirement of IRC safety implies that the value of the observable does not change in the presence of one or more unresolved emissions (i.e. very soft and/or collinear)
- In addition, we require recursive IRC (rIRC) safety (for a more precise formulation see backup slides), i.e.
 [Banfi, Salam, Zanderighi 2004]
 - that in the presence of multiple emissions the observable scales in the

We limit ourselves to *continuously* global observables*, i.e. constrain the radiation equally everywhere in the phase space (it ensures the absence of non-global logarithms)

[Dasgupta, Salam 2001; Banfi, Marchesini, Smye 2002]

*Not a real limitation, however currently the full NNLL structure of non-global logarithms is still unknown. Important progresses recently (see Caron-Huot's talk) [Caron-Huot 2015]

 this property allows one to associate a logarithmic order to each real nemission probability, establishing a logarithmic hierarchy at NLL and beyond

Definition of the problem

- Describe the all-orders QCD radiation to a given logarithmic accuracy in a (as much as) general way
- To achieve that, we need to study the behaviour of both the squared amplitude and the observable in the presence of an arbitrary number of emissions
- We divide the problem (and its solution) in three parts
 - Observable's properties
 - Amplitudes in the logarithmic regime
 - Relevant phase space regions

- RGE evolution for virtual corrections leads to a complete exponentiation of IRC singularities. To perform the cancellation of IRC poles to all orders, some sort of factorisation of the real corrections is required!
- Solution: consider primary emissions off the Born legs *inclusive* in secondary (gluon) branchings. We introduce a resolution scale ϵ and define a subset of (unresolved) emissions, such that $V_{sc}(\{\tilde{p}\},k_i)<\epsilon v$
- The observable for unresolved emissions takes the simple (and factorising) form

$$\Theta\left(\epsilon v - \max\{V_{\mathbf{sc}}(\{\tilde{p}\}, k_1), \dots, V_{\mathbf{sc}}(\{\tilde{p}\}, k_n)\}\right)$$

- the soft-collinear approximation of the observable for unresolved emissions is enough to ensure the cancellation of the IRC poles arising from the virtual corrections (a different choice can be adopted - final result is scheme-invariant)
- details of the actual observable's scaling for several emissions away from the soft-collinear region and correct treatment of the gluon branchings are introduced at a later stage (next slides)
- rIRC ensures that these emissions do not contribute significantly to the observable, their contribution factorises at all-orders. Use virtual RGE to cancel IRC singularities

• The combination of unresolved real and virtual corrections gives rise to an exponential factor that defines the no-emission probability at scales larger than ϵv

$$P(\text{no-emissions}) \sim e^{-R(\epsilon v)}$$

• Since we're interested in vetoing emissions above v, this can be further expanded as

$$P(\text{no-emissions}) \sim e^{-R(v)-R'(v)\ln\frac{1}{\epsilon}+\frac{1}{2!}R''(v)\ln^2\frac{1}{\epsilon}+\dots}$$

- The factor R(v) is called the *radiator*, and defines the physical region where no radiation is allowed
- The logarithmic dependence on the resolution parameter cancels when all-order resolved real emissions are taken into account (rIRC safety)
- Owing to the above definition of unresolved emissions, the radiator is universal for all observables with the same soft-collinear scaling in the presence of a single emission

• The combination of unresolved real and virtual corrections gives rise to an exponential factor that defines the no-emission probability at scales larger than ϵv

$$P(\text{no-emissions}) \sim e^{-R(\epsilon v)}$$

• Since we're interested in vetoing emissions above v, this can be further expanded as

$$P(\text{no-emissions}) \sim e^{-R(v)-R'(v)\ln\frac{1}{\epsilon}+\frac{1}{2!}R''(v)\ln^2\frac{1}{\epsilon}+\dots}$$

- The factor R(v) is called the *radiator*, and defines the physical region where no radiation is allowed
- The logarithmic dependence on the resolution parameter cancels when all-order resolved real emissions are taken into account (rIRC safety)
- Owing to the above definition of unresolved emissions, the radiator is universal for all observables with the same soft-collinear scaling in the presence of a single emission

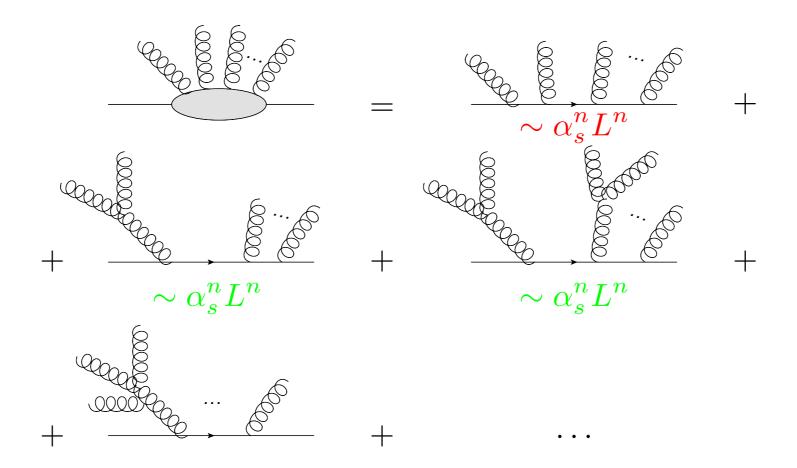
The resulting cumulative resummed cross section takes the form

$$\Sigma(v) = \int_0^v \frac{1}{\sigma_{\rm Born}} \frac{d\sigma}{dv'} dv' \sim e^{-R(v)} \mathcal{F}(v) \qquad \text{Multiple emissions function}$$

- rIRC safety ensures that all double logarithms are contained in the radiator, and that the multiple emissions function is non trivial (at most) at NLL level
- Because of the lower cutoff defined by the resolution parameter, the remaining (resolved) real emissions are bounded both from above and from below (i.e. each emission "loses" one logarithm power)

Soft (resolved) matrix elements

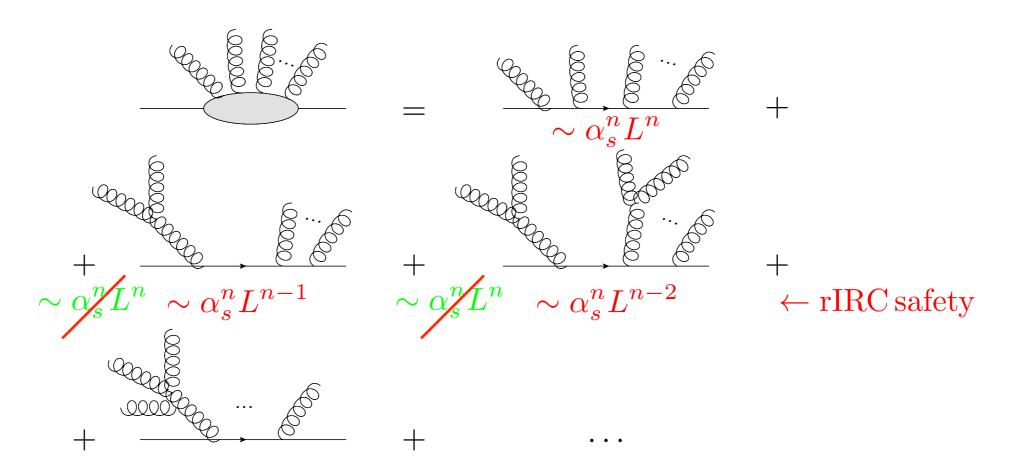
• It is useful to decompose the matrix element for n soft emissions (w.r.t. the Born) as a sum of terms with an increasing number of colour-correlated emissions (i.e. non-abelian contributions)



• Which diagrams do we need to achieve NNLL, i.e. neglect terms of order $\sim \alpha_s^n L^{n-2}$?

Soft (resolved) matrix elements

• It is useful to decompose the matrix element for n soft emissions (w.r.t. the Born) as a sum of terms with an increasing number of colour-correlated emissions (i.e. non-abelian contributions)



• Which diagrams do we need to achieve NNLL, i.e. neglect terms of order $\sim \alpha_s^n L^{n-2}$?

Collinear (resolved) matrix elements

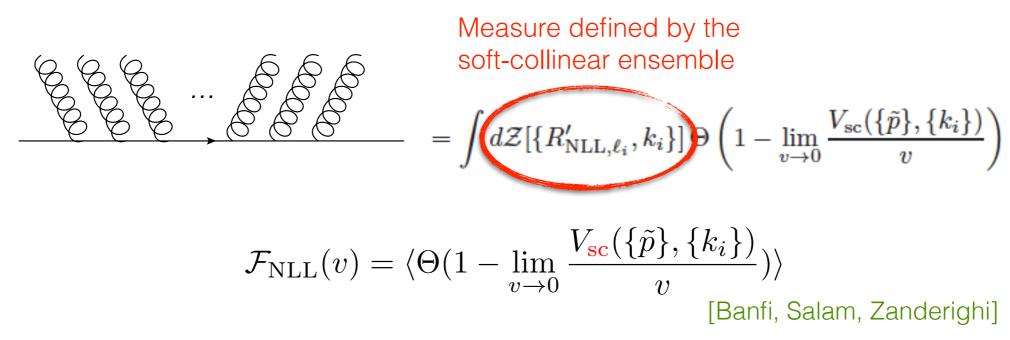
- The above counting allows us to keep (at NNLL) only configurations with an arbitrary number of independent softcollinear emissions, and a single soft gluon branching either in a quarks or gluons pair
- This neglects contributions from the real matrix element which would give rise to subleading contributions
- Analogously, if we repeat the same analysis in the hard collinear limit, we find that only a single hard emission can be emitted collinearly to the Born hard leg at this logarithmic order (accompanied by the usual ensemble of soft-collinear emissions)
- Terms beyond this accuracy can be systematically included for extensions to higher orders (if ever necessary)

Definition of the problem

- Describe the all-orders QCD radiation to a given logarithmic accuracy in a (as much as) general way
- To achieve that, we need to study the behaviour of both the squared amplitude and the observable in the presence of an arbitrary number of emissions
- We divide the problem (and its solution) in three parts
 - Observable's properties
 - Amplitudes in the logarithmic regime
 - Relevant phase space regions

Phase space at NLL with n = 2 legs

- At NLL the multiple emission function is given by an ensemble of soft and collinear independent (abelian) emissions widely separated in rapidity (coherence)
- Non-abelian effects are completely accounted for in the radiator (i.e. inclusive gluon branching treatment -> CMW scheme)

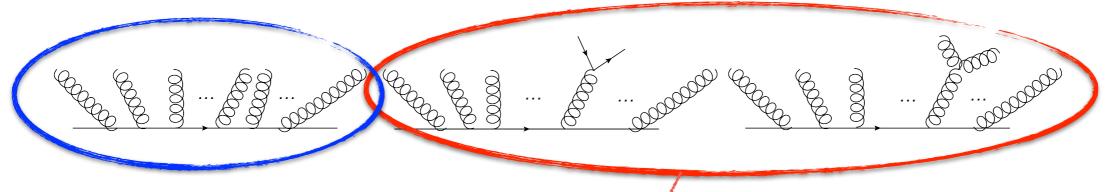


 Differences in rapidity bounds of different emissions contribute at NNLL (can be neglected at this order)

Phase space at NNLL with n=2 legs

[Banfi, McAslan, Monni, Zanderighi]

- Extension to NNLL involves additional kinematic configurations:
 - (at most) two soft-collinear emissions get close in rapidity



Clustering correction (jet algorithms only)

Correlated corrections

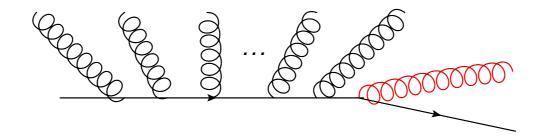
$$\delta \mathcal{F}_{\text{correl}}(\lambda) = \int_{0}^{\infty} \frac{d\zeta_{a}}{\zeta_{a}} \int_{0}^{2\pi} \frac{d\phi_{a}}{2\pi} \sum_{\ell_{a}=1,2} \left(\frac{2C_{\ell_{a}}\lambda}{\beta_{0}} \frac{R_{\ell_{a}}^{"}(v)}{\alpha_{s}(Q)} \right) \int_{0}^{\infty} \frac{d\kappa}{\kappa} \int_{-\infty}^{\infty} d\eta \int_{0}^{2\pi} \frac{d\phi}{2\pi} \frac{1}{2!} C_{ab}(\kappa, \eta, \phi) \times \int d\mathcal{Z}[\{R_{\text{NLL},\ell_{i}}^{"}, k_{i}\}] \left[\Theta\left(v - V_{\text{sc}}(\{\tilde{p}\}, k_{a}, k_{b}, \{k_{i}\})\right) - \Theta\left(v - V_{\text{sc}}(\{\tilde{p}\}, k_{a} + k_{b}, \{k_{i}\})\right)\right]$$

$$C_{ab}(\kappa, \eta, \phi) = \frac{\tilde{M}^2(k_a, k_b)}{M_{\rm sc}^2(k_a)M_{\rm sc}^2(k_b)}$$
 All corrections in terms of four-dimensional integrals

four-dimensional integrals

Phase space at NNLL with n=2 legs

- Extension to NNLL involves additional kinematic configurations:
 - (at most) one collinear emission can carry a significant fraction of the energy of the hard emitter (which recoils against it)



Corrections affect both matrix element (hc) and observable (rec)

$$\begin{split} \delta \mathcal{F}_{\text{hc}}(\lambda) &= \sum_{\ell=1,2} \frac{\alpha_s(v^{1/(a+b_\ell)}Q)}{\alpha_s(Q)(a+b_\ell)} \int_0^\infty \frac{d\zeta}{\zeta} \int_0^{2\pi} \frac{d\phi}{2\pi} \int d\mathcal{Z}[\{R'_{\text{NLL},\ell_i},k_i\}] \times \\ &\times \int_0^1 \frac{dz}{z} \left(zp_\ell(z) - 2C_\ell\right) \left[\Theta\left(1 - \lim_{v \to 0} \frac{V_{\text{sc}}(\{\tilde{p}\},k,\{k_i\})}{v}\right) - \Theta\left(1 - \lim_{v \to 0} \frac{V_{\text{sc}}(\{\tilde{p}\},\{k_i\})}{v}\right) \Theta(1-\zeta)\right] \end{split}$$

$$\delta \mathcal{F}_{\text{rec}}(\lambda) = \sum_{\ell=1,2} \frac{\alpha_s(v^{1/(a+b_\ell)}Q)}{\alpha_s(Q)(a+b_\ell)} \int_0^\infty \frac{d\zeta}{\zeta} \int_0^{2\pi} \frac{d\phi}{2\pi} \int d\mathcal{Z}[\{R'_{\text{NLL},\ell_i}, k_i\}] \times \\ \times \int_0^1 dz \, p_\ell(z) \left[\Theta\left(1 - \lim_{v \to 0} \frac{V_{\text{hc}}^{(k')}(\{\tilde{p}\}, k', \{k_i\})}{v}\right) - \Theta\left(1 - \lim_{v \to 0} \frac{V_{\text{sc}}(\{\tilde{p}\}, k, \{k_i\})}{v}\right) \right]$$

Phase space at NNLL with n = 2 legs**

- Extension to NNLL involves additional kinematic configurations:
 - (at most) one soft-collinear emission has the correct rapidity bounds (approximated in the NLL ensemble)

$$\delta \mathcal{F}_{sc}(\lambda) = \frac{\pi}{\alpha_s(Q)} \int_0^\infty \frac{d\zeta}{\zeta} \int_0^{2\pi} \frac{d\phi}{2\pi} \sum_{\ell=1,2} \left(\delta R'_{NNLL,\ell} + R''_{\ell_i} \ln \frac{d_{\ell}g_{\ell}(\phi)}{\zeta} \right) \int d\mathcal{Z}[\{R'_{NLL,\ell_i}, k_i\}] \times \left[\Theta\left(1 - \lim_{v \to 0} \frac{V_{sc}(\{\tilde{p}\}, k, \{k_i\})}{v}\right) - \Theta(1 - \zeta)\Theta\left(1 - \lim_{v \to 0} \frac{V_{sc}(\{\tilde{p}\}, \{k_i\})}{v}\right) \right],$$

(at most) one soft emission can have very small rapidity (wide angle)

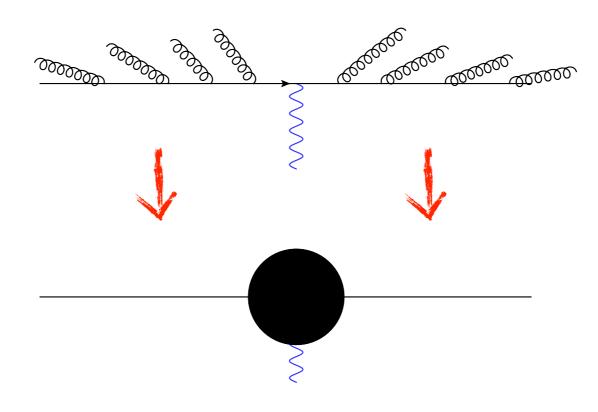
$$\delta \mathcal{F}_{wa}(\lambda) = \frac{2C_F}{a} \frac{\alpha_s(v^{1/a}Q)}{\alpha_s(Q)} \int_0^\infty \frac{d\zeta}{\zeta} \int_{-\infty}^\infty d\eta \int_0^{2\pi} \frac{d\phi}{2\pi} \int d\mathcal{Z}[\{R'_{\text{NLL},\ell_i}, k_i\}]$$

$$\times \left[\Theta\left(1 - \lim_{v \to 0} \frac{V_{\text{wa}}^{(k)}(\{\tilde{p}\}, k, \{k_i\})}{v} \right) - \Theta\left(1 - \lim_{v \to 0} \frac{V_{\text{sc}}(\{\tilde{p}\}, k, \{k_i\})}{v} \right) \right]$$

^{**}With n>2 there are additional (NLL) contributions due to the quantum interference between hard legs

Physical interpretation

- The NLL multiple emission function is given by soft-collinear gluons strongly ordered in angle (i.e. far in rapidity), each inclusive in the secondary branching (i.e. running coupling scheme)
- This ensemble defines the Born level answer (i.e. NLL order)

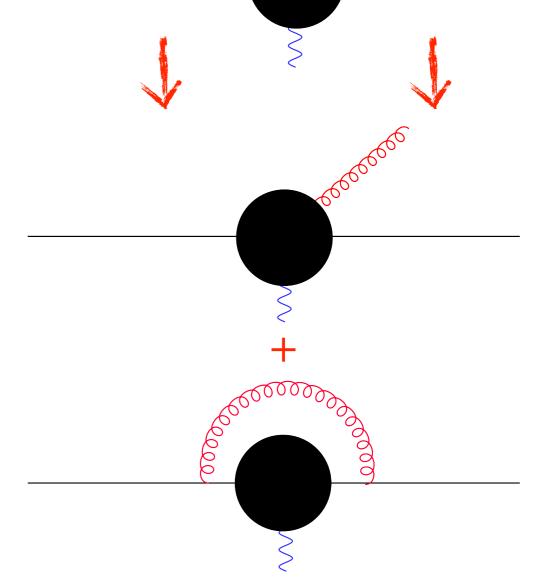


Physical interpretation

 The NNLL answer corresponds precisely to computing the NLO correction to this configuration, i.e. one exact soft and/or collinear real emission (everywhere in the phase space) and the corresponding (full) one-loop virtual corrections

 In addition, add corrections to the running coupling scheme (i.e. exact treatment of the secondary gluon splitting)

 Definition of NNLL real corrections can be seen as a subtraction scheme



Application to processes with n = 2 legs

[Banfi, McAslan, Monni, Zanderighi]

 Observables with very different logarithmic structures can be modelled with the same method

correction type	$p_{ m t,veto}$	1-T	B_T	B_W	C	ρ_H	T_{M}	0	$y_3^{ m Dur.}$	$y_3^{ m Cam.}$
$\mathcal{F}_{\mathrm{NLL}}$	✓	✓	✓	✓	✓	✓	1	√		1
$\delta \mathcal{F}_{ m rap}$	x	✓	✓	✓	✓	✓	✓	✓	✓	x
$\delta\mathcal{F}_{ ext{wa}}$	x	x	x	X	✓	X	X	x	✓	✓
$\delta \mathcal{F}_{ m hc}$	X	✓	✓	✓	✓	✓	✓	✓	✓	x
$\delta\mathcal{F}_{ m rec}$	x	✓	✓	✓	✓	✓	✓	✓	✓	X
$\delta {\cal F}_{ m clust}$	✓	X	X	X	x	X	X	x	✓	✓
$\delta\mathcal{F}_{ ext{correl}}$	✓	X	✓	✓	x	X	✓	✓	✓	✓

Reproduce existing results in the literature up to NNLL:

jet veto, thrust, jet broadenings, heavy-jet mass, C-parameter

32

[Banfi, Monni, Salam, Zanderighi] [Becher, Schwartz] [Becher, Bell] [Chien, Schwartz] [Hoang et al.]

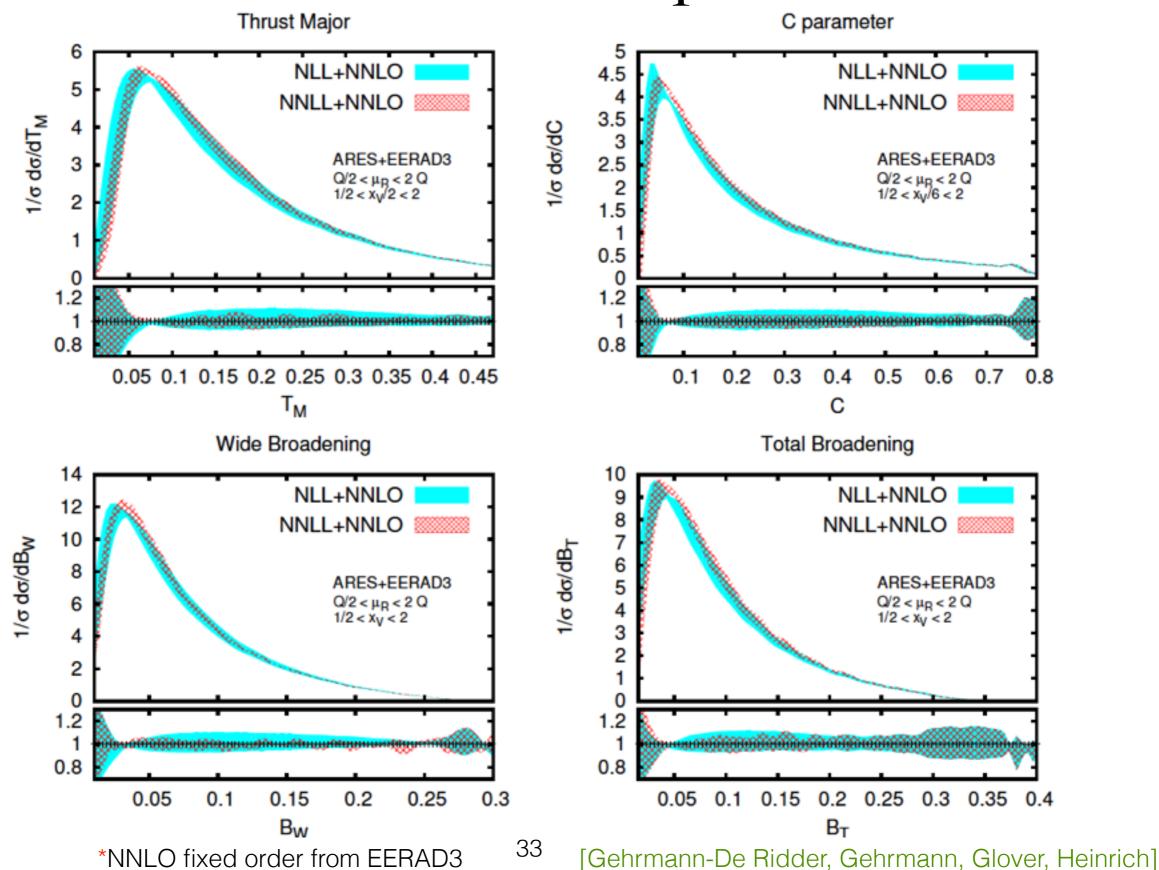
[Becher, Neubert, Rothen] [Gehrmann, Luisoni, Monni]

[Stewart, Tackmann, Walsh, Zuberi]

Obtain new results for involved observables (no factorisation theorem)

e.g. Thrust major:
$$T_M \equiv \max_{\vec{n}\cdot\vec{n_T}=0} \frac{\sum_i |\vec{p_i}\cdot\vec{n}|}{Q}$$

e+e- event shapes*



New results: the two-jet rate in e+e-

- The three-jet resolution parameter defines the maximum value of $y_{\rm cut}$ that leads to two QCD jets in the final state
- Clustering is performed according to a jet algorithm defined by a ordering variable v_{ij} and a test variable y_{ij}
 - Durham kt clustering:

$$y_{ij}^{(D)} = v_{ij}^{(D)} = 2 \frac{\min\{E_i, E_j\}^2}{Q^2} (1 - \cos \theta_{ij})$$

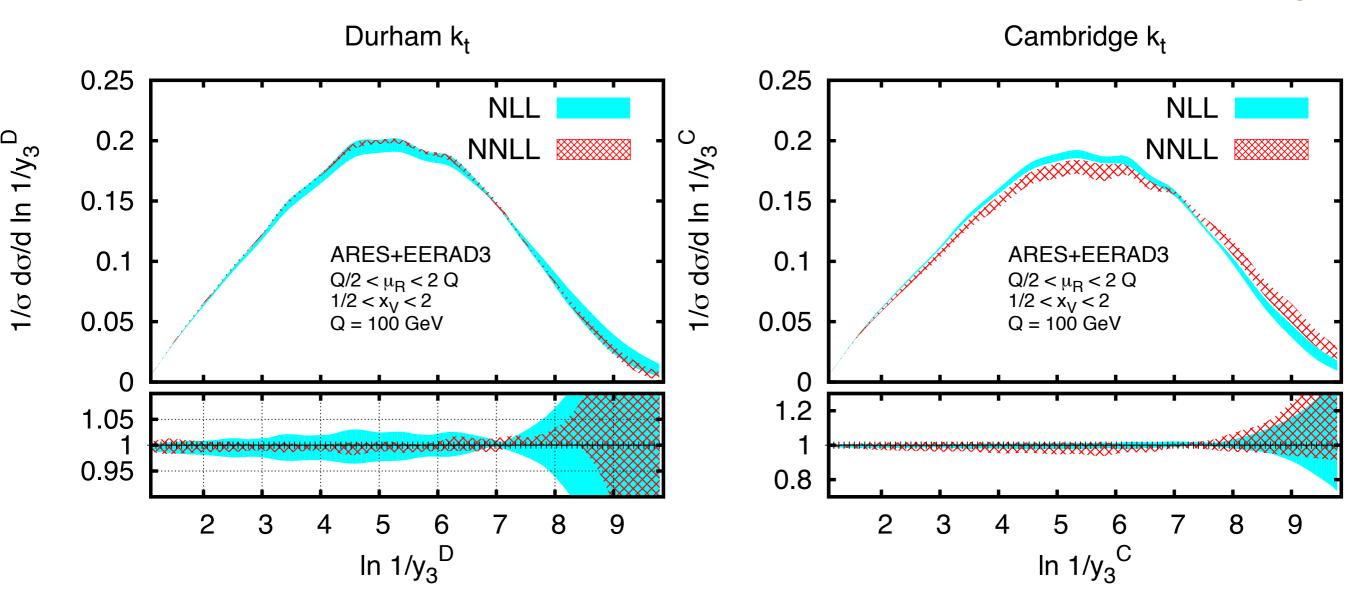
Cambridge kt clustering:

$$y_{ij}^{(C)} = y_{ij}^{(D)}, \quad v_{ij}^{(C)} = 2(1 - \cos\theta_{ij}), + \text{soft freezing}$$

- No analytic expression for the observable beyond leading-log order - observable defined in a algorithmic way
- Clustering of emissions far in rapidity (e.g. soft and hardcollinear) is allowed in the Durham algorithm

New results: the two-jet rate in e+e-**

[Banfi, McAslan, Monni, Zanderighi]



- Good convergence for the Durham algorithm, reduction of uncertainties at NNLL
- The Cambridge algorithm gets sensitive to multiple emissions at NNLL: sizeable corrections (uncertainties underestimated at NLL)

Conclusions

- Novel general method for the resummation of any rIRC safe, global two-scales observable at NNLL order
 - rIRC safety as only applicability condition
 - Contribution of resolved real radiation formulated in terms of four dimensional integrals, which is suitable for efficient numerical implementation, currently automated for final-state radiation
 - NNLL corrections systematically derived, each correction has clear physical interpretation. Method extendable to higher orders
- Formulation in a "pseudo" parton-shower framework important hints on what's needed for a NNLL parton shower
- Modulo technical work, NNLL resummation for this (broad) class of observables in processes with 2 coloured Born legs is a theoretically solved problem

Conclusions

- Novel general method for the resummation of any rIRC safe, global two-scales observable at NNLL order
 - rIRC safety as only applicability condition
 - Contribution of resolved real radiation formulated in terms of four dimensional integrals, which is suitable for efficient numerical implementation, currently automated for final-state radiation
 - NNLL corrections systematically derived, each correction has clear physical interpretation. Method extendable to higher orders
- Formulation in a "pseudo" parton-shower framework important hints on what's needed for a NNLL parton shower
- Modulo technical work, NNLL resummation for this (broad) class of observables in processes with 2 coloured Born legs is a theoretically solved problem

Outlook

- A number of problems need to be attacked in order to treat the most general resummable observable
- Extension to more than two hard legs requires a parametrisation of QCD interference between different hard emitters (trivial in the 2-legs case)

[Botts, Sterman (1989)]

• simple at NLL [S]

[Sterman et al. (1996 - 2000)]

[Banfi, Marchesini, et al. (2000 - 2002)]

[Bonciani, Catani, Mangano, Nason (2003)]

 slightly more technical at NNLL, but not overly complex (singular structure for multi-jet amplitudes known)

[Catani; Dixon, Magnea, Sterman; Gardi, Magnea; Becher, Neubert]

- Many jet observables (e.g. > 0 jet rates) at the LHC defined in a non-global way
 - solution for NNLL non-global logarithms (see Caron-Huot's talk)

recent progress in [Caron-Huot (2015)]. See also [Larkoski, Moult, Neill (2015)]

 Some observables contain more sources of large logarithms at once (e.g. H +1 jet rate; small-R effects in H+0 jet rate)

see e.g. [Liu, Petriello (2012)][Dasgupta, Dreyer, Salam, Soyez (2014)]

not clear how to resum them simultaneously at NNLL in a general way

Thank you for your attention

Parametrisation for single emission and collinear splitting

$$V(\{\tilde{p}\}, \kappa_i(\zeta_i)) = \zeta_i; \qquad \kappa_i(\zeta) \to \{\kappa_{ia}, \kappa_{ib}\}(\zeta, \mu), \ \mu^2 = (\kappa_{ia} + \kappa_{ib})^2 / \kappa_{ti}^2$$

The standard requirement of IRC safety implies that

$$\lim_{\zeta_{m+1}\to 0} V(\{\tilde{p}\}, \kappa_1(\bar{v}\zeta_1), \dots, \kappa_m(\bar{v}\zeta_m), \kappa_{m+1}(\bar{v}\zeta_{m+1}))$$

$$= V(\{\tilde{p}\}, \kappa_1(\bar{v}\zeta_1), \dots, \kappa_m(\bar{v}\zeta_m))$$

$$\lim_{\mu\to 0} V(\{\tilde{p}\}, \kappa_1(\bar{v}\zeta_1), \dots, \{\kappa_{ia}, \kappa_{ib}\}(\bar{v}\zeta_i, \mu), \dots, \kappa_m(\bar{v}\zeta_m))$$

$$= V(\{\tilde{p}\}, \kappa_1(\bar{v}\zeta_1), \dots, \kappa_i(\bar{v}\zeta_i), \dots, \kappa_m(\bar{v}\zeta_m))$$

 We limit ourselves to continuously global observables*, i.e. the transverse momentum dependence is the same everywhere (it ensures the absence of non-global logarithms)

^{*}Not a real limitation, although currently NNLL structure of non-global logarithms unknown

Parametrisation for single emission and collinear splitting

$$V(\{\tilde{p}\}, \kappa_i(\zeta_i)) = \zeta_i; \qquad \kappa_i(\zeta) \to \{\kappa_{ia}, \kappa_{ib}\}(\zeta, \mu), \ \mu^2 = (\kappa_{ia} + \kappa_{ib})^2 / \kappa_{ti}^2$$

Impose the following conditions, known as recursive IRC (rIRC)
 [Banfi, Salam, Zanderighi]

$$\lim_{\bar{v}\to 0} \frac{1}{\bar{v}} V(\{\tilde{p}\}, \kappa_1(\bar{v}\zeta_1), \dots, \kappa_m(\bar{v}\zeta_m)) \tag{1}$$

- The above limit must be well defined and non-zero (except possibly in a phase space region of zero measure)
- Condition (1) simply requires the observable to scale in the same fashion for multiple emissions as for a single emission (IRC divergences have an exponential form)
- It is enough to ensure the exponentiation of double logarithms to all orders

Parametrisation for single emission and collinear splitting

$$V(\{\tilde{p}\}, \kappa_i(\zeta_i)) = \zeta_i; \qquad \kappa_i(\zeta) \to \{\kappa_{ia}, \kappa_{ib}\}(\zeta, \mu), \ \mu^2 = (\kappa_{ia} + \kappa_{ib})^2 / \kappa_{ti}^2$$

Impose the following conditions, known as recursive IRC (rIRC)
 [Banfi, Salam, Zanderighi]

$$\lim_{\bar{v}\to 0} \frac{1}{\bar{v}} V(\{\tilde{p}\}, \kappa_{1}(\bar{v}\zeta_{1}), \dots, \kappa_{m}(\bar{v}\zeta_{m})) \qquad (1)$$

$$\lim_{\zeta_{m+1}\to 0} \lim_{\bar{v}\to 0} \frac{1}{\bar{v}} V(\{\tilde{p}\}, \kappa_{1}(\bar{v}\zeta_{1}), \dots, \kappa_{m}(\bar{v}\zeta_{m}), \kappa_{m+1}(\bar{v}\zeta_{m+1}))$$

$$= \lim_{\bar{v}\to 0} \frac{1}{\bar{v}} V(\{\tilde{p}\}, \kappa_{1}(\bar{v}\zeta_{1}), \dots, \kappa_{m}(\bar{v}\zeta_{m})) \qquad (2.a)$$

$$\lim_{\mu\to 0} \lim_{\bar{v}\to 0} \frac{1}{\bar{v}} V(\{\tilde{p}\}, \kappa_{1}(\bar{v}\zeta_{1}), \dots, \{\kappa_{ia}, \kappa_{ib}\}(\bar{v}\zeta_{i}, \mu), \dots, \kappa_{m}(\bar{v}\zeta_{m}))$$

$$= \lim_{\bar{v}\to 0} \frac{1}{\bar{v}} V(\{\tilde{p}\}, \kappa_{1}(\bar{v}\zeta_{1}), \dots, \kappa_{i}(\bar{v}\zeta_{i}), \dots, \kappa_{m}(\bar{v}\zeta_{m})) \qquad (2.b)$$

Parametrisation for single emission and collinear splitting

$$V(\{\tilde{p}\}, \kappa_i(\zeta_i)) = \zeta_i; \qquad \kappa_i(\zeta) \to \{\kappa_{ia}, \kappa_{ib}\}(\zeta, \mu), \ \mu^2 = (\kappa_{ia} + \kappa_{ib})^2 / \kappa_{ti}^2$$

Impose the following conditions, known as recursive IRC (rIRC)
 [Banfi, Salam, Zanderighi]

$$\lim_{\bar{v}\to 0} \frac{1}{\bar{v}} V(\{\tilde{p}\}, \kappa_{1}(\bar{v}\zeta_{1}), \dots, \kappa_{m}(\bar{v}\zeta_{m})) \qquad (1)$$

$$\lim_{\zeta_{m+1}\to 0} \lim_{\bar{v}\to 0} \frac{1}{\bar{v}} V(\{\tilde{p}\}, \kappa_{1}(\bar{v}\zeta_{1}), \dots, \kappa_{m}(\bar{v}\zeta_{m}), \kappa_{m+1}(\bar{v}\zeta_{m+1}))$$

$$= \lim_{\bar{v}\to 0} \frac{1}{\bar{v}} V(\{\tilde{p}\}, \kappa_{1}(\bar{v}\zeta_{1}), \dots, \kappa_{m}(\bar{v}\zeta_{m})) \qquad (2.a)$$

$$\lim_{\mu\to 0} \lim_{\bar{v}\to 0} \frac{1}{\bar{v}} V(\{\tilde{p}\}, \kappa_{1}(\bar{v}\zeta_{1}), \dots, \{\kappa_{ia}, \kappa_{ib}\}(\bar{v}\zeta_{i}, \mu), \dots, \kappa_{m}(\bar{v}\zeta_{m}))$$

$$= \lim_{\bar{v}\to 0} \frac{1}{\bar{v}} V(\{\tilde{p}\}, \kappa_{1}(\bar{v}\zeta_{1}), \dots, \kappa_{i}(\bar{v}\zeta_{i}), \dots, \kappa_{m}(\bar{v}\zeta_{m})) \qquad (2.b)$$

Parametrisation for single emission and collinear splitting

$$V(\{\tilde{p}\}, \kappa_i(\zeta_i)) = \zeta_i; \qquad \kappa_i(\zeta) \to \{\kappa_{ia}, \kappa_{ib}\}(\zeta, \mu), \ \mu^2 = (\kappa_{ia} + \kappa_{ib})^2 / \kappa_{ti}^2$$

- Impose the following conditions, known as recursive IRC (rIRC)
 [Banfi, Salam, Zanderighi]
- Conditions (2.a) and (2.b), in addition to plain IRC safety, require that for sufficiently small \bar{v} there exists some ϵ that can be chosen *independently* of \bar{v} such that we can neglect any emissions at scales $\sim \epsilon \bar{v}$
- The order with which one takes the limit is different in fixed-order and resummed calculations, and the final result must not change

$$\lim_{\mu \to 0} \lim_{\bar{v} \to 0} \frac{1}{\bar{v}} V(\{\tilde{p}\}, \kappa_1(\bar{v}\zeta_1), \dots, \{\kappa_{ia}, \kappa_{ib}\}(\bar{v}\zeta_i, \mu), \dots \kappa_m(\bar{v}\zeta_m))$$

$$= \lim_{\bar{v} \to 0} \frac{1}{\bar{v}} V(\{\tilde{p}\}, \kappa_1(\bar{v}\zeta_1), \dots, \kappa_i(\bar{v}\zeta_i), \dots \kappa_m(\bar{v}\zeta_m)) \qquad (2.b)$$

Event shapes definition

thrust and heavy jet mass

$$T \equiv \max_{\vec{n}} \frac{\sum_{i} |\vec{p_i} \cdot \vec{n}|}{Q} \qquad \qquad \rho_H \equiv \max_{i=1,2} \frac{M_i^2}{Q^2}, \qquad M_i^2 \equiv \left(\sum_{j \in \mathcal{H}^{(i)}} p_j\right)^2$$

total and wide jet broadening

$$B_L \equiv \sum_{i \in \mathcal{H}^{(1)}} \frac{|\vec{p_i} \times \vec{n_T}|}{2Q}, \quad B_R \equiv \sum_{i \in \mathcal{H}^{(2)}} \frac{|\vec{p_i} \times \vec{n_T}|}{2Q} \qquad B_W \equiv \max\{B_L, B_R\} \qquad B_T \equiv B_L + B_R$$

C parameter

$$C \equiv 3 \left(1 - \frac{1}{2} \sum_{i,j} \frac{(p_i \cdot p_j)^2}{(p_i \cdot Q)(p_j \cdot Q)} \right)$$

thrust major and oblateness

$$T_M \equiv \max_{\vec{n} \cdot \vec{n_T} = 0} \frac{\sum_i |\vec{p_i} \cdot \vec{n}|}{Q}$$
 $T_m \equiv \frac{\sum_i |p_{i,x}|}{Q}$ $O \equiv T_M - T_m$