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Instead of having defined LO, NLO and shower calculation separately and patching the gap between them by 
matching schemes 

we should define a new shower concept that can naturally 
cooperate with NLO calculations

ZN, DIS 2007 April 16, 2007 Plenary Talk
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NLO Shower

NNLO 
calculations

NLO 
calculations

Born 
calculations

LO Shower

Or, one can be more ambitious and define this 
framework at NLO level.

Back to 2015: Actually we need an all order pQCD definition of the parton shower.
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• Let us consider an infrared safe observable and it has a typical resolution scale     .  This means 
every radiation under this scale is unresolvable and not visible by the observable.  

• The all order cross section can be written in a factorised form. The soft and hard part is separated 
by the factorisation (or shower) scale    .  

• It is important that we factorise out the parton emissions (real and virtual) instead of some kind of 
jet, soft and hard function. 

• We work with states and operators in the statistical space. 

• We don’t have an all order proof for this factorisation, yet. (But we are working on it…) 

• We know the QCD amplitudes factorise in the singular limits and that what we use here.

“Soft part”
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This is the soft part and every
radiation with k2

?, q
2, · · · < µ2 are

considered here.

This is the hard part and every radiation with
k2
?, q

2, · · · > µ2 are considered here.
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The inverse operator of D is analogous to that is usually called to NLO subtraction term

Collinear counter-terms
with explicit poles

Partonic splitting operator 
with explicit and implicit 
singularities

Renormalized PDF
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Defines the 
shower scheme
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Now, what happens when the factorization scale is much bigger than the jet resolution scale 

In this case the soft part suffers on large logarithms

➟ This indicates that we have to choose the factorization scale to be small, something like 

➟ Now the operator           describes only soft or collinear emissions and the observable is 
insensitive to them    

➟ We want to keep                free from large perturbative correction to be able to replace it with 
hadronization.  

Meanwhile on 
the hard side…
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When the factorization scale is small then the hard part suffers on large logarithms 

➟ This demands large factorization scale otherwise the hard part will be completely unreliable. It is 
clear that the 1GeV scale choice would be a disaster here. 

Born level hard part



Visible Logs

7

When the factorization scale is small then the hard part suffers on large logarithms 

➟ This demands large factorization scale otherwise the hard part will be completely unreliable. It is 
clear that the 1GeV scale choice would be a disaster here. 

Born level hard part



Visible Logs

7

When the factorization scale is small then the hard part suffers on large logarithms 

➟ This demands large factorization scale otherwise the hard part will be completely unreliable. It is 
clear that the 1GeV scale choice would be a disaster here. 

Born level hard part

The gap between the hard and 
soft parts has to be bridged by 

partons shower. 
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When the factorization scale is small then the hard part suffers on large logarithms 

➟ This demands large factorization scale otherwise the hard part will be completely unreliable. It is 
clear that the 1GeV scale choice would be a disaster here. 

Born level hard part

The gap between the hard and 
soft parts has to be bridged by 

partons shower. 

“Soft part” “Hard part”

Renormalization Group Equation



Standard Shower
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As a first approximation: If we define the NLO (NNLO,…) subtraction scheme then we can have a 
reasonable parton shower algorithm. According to the previous slides we have to make sure that 

This can be 
easily done… Unitarity!

Unitarity condition: Do NOT define subtraction term directly for the 1-loop graphs, use the inclusive 
version of the real subtraction term via  
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✓ This certainly fulfils our requirement 

✓ This leads to a good NLO subtraction 
scheme. 

✓ The meaning of the factorization scale is 
still debatable (kT, virtuality, angle or 
something else). See Bryan’s talk! 

✗ Is that all? Unfortunately not!

This is the definitions of the inclusive splitting operator.
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Let us consider the total cross section of the Drell-Yan process. It is fully inclusive quantity,               . 
This can be calculated analytically and the partonic cross section is 

Threshold logs 

➠ We have these large contributions in the hard state at large scale at               .  
➠ Obviously these logs have to summed up, but can the standard shower deal with it? 
➠ Obviously, standard parton shower cannot deal with it at all.  

It is easy to see from the unitarity condition

All the threshold contributions remain 
in the hard part. The shower doesn’t 
sum them up.



Shower Compatibility
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After applying the subtraction scheme the NLO cross section is 

This is the NLO correction of the hard part.  
- At large shower scale it is free from direct 

logarithms of the factorization scale. 
- At large scale it has to be free from threshold 

logarithms and other potentially large 
contributions. 

This is the soft part.  
- It has to be free from direct logs at  

low factorization scale. 
- At low scale it has to be free from 

threshold logs avoiding to tune large 
perturbative contributions into the 
hadronization.



Fixed Order & Parton Shower

11
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�
The fixed order cross section (at all order level) is 

All the elements of this expression 
here is well defined in 4 dimension

Since we cannot calculate all order, these series are always truncated, so we have to do resummation

This leads to the parton shower cross section:

Solving the 
renormalization 
group equation

IMPORTANT: The primary goal of the parton showers is to sum up parton emissions (both real and virtual).
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Collinear counter-terms
with explicit poles

Partonic splitting operator 
with explicit and implicit 
singularities

Renormalized PDF

Dnp(µ
2) =

⇥
Ff.s.(µ

2) �Kf.s.(µ
2) � ZF (µ

2)
⇤
D(µ2)

⇥
Ff.s.(µ
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Defines the 
factorization scheme

Let us start with the singular operator. This operator also defines the subtraction terms.
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Let us start with the singular operator. This operator also defines the subtraction terms.

Real subtraction term 
(implicit singularities)

Virtual subtraction term 
(explicit 1/∊ singularities)

Collinear counter-term 
(explicit 1/∊ singularities)
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It is still useful to introduce the inclusive splitting operator and its approximation as

Defines the shower scheme 
(only power suppressed terms)
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Let us start with the singular operator. This operator also defines the subtraction terms.

Real subtraction term 
(implicit singularities)

Virtual subtraction term 
(explicit 1/∊ singularities)

Collinear counter-term 
(explicit 1/∊ singularities)

It is still useful to introduce the inclusive splitting operator and its approximation as

Defines the shower scheme 
(only power suppressed terms)

Finite in d=4 dimension

Unitary part, this leads to the standard shower

Completely neglected in 
the standard showers. The 
threshold contributions are 
here.



Inclusive Splitting Operator
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We have to study the approximated inclusive splitting operator and we are interested in the 
contribution that describes initial state splittings

The initial state operator is 

The color structure has to be matched 
to the 1-loop color structure.

Defines the singular region

NOTE: This is nothing else but the integral of the initial state NLO real subtraction term over a limited 
phase space region.
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Soft x Collinear + Collinear

Wide angle soft
After performing the y integral, we have
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Soft x Collinear + Collinear

Wide angle soft
After performing the y integral, we have

Wide angle soft singularity 
Cancelled by the 1-loop graphs
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Soft x Collinear + Collinear

Wide angle soft
After performing the y integral, we have

Threshold logs with the right behaviour. 
They disappear in the             limit, 
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After performing the y integral, we have
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Daâ(µ

2/Q2, z)
| {z }

��aâ
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Paâ(z)

+ P (✏)
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1

1� z

(1� z)��1

r?(z)

�

+

+ 2Ca�aâ
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Collinear singularity,
taken by the PDF renormalization
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+ Paâ (z) ✓
�
(1� z)�+1 < z y r?(z)

� (1� z)�+1

z y r?(z)

+ �(1� z) �aâ
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Soft and collinear singularities and 
logs. They are cancelled by the 1-
loop graphs.
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Threshold logs with the right behaviour. 
They disappear in the             limit, 
thus they are summed up in the shower 
evolution.
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Wide angle soft
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(4⇡ y )✏

�(1� ✏)

⇢
1

✏2
Ca +

1

✏
�a +

⇡2

6
Ca

�

� �(1� z) �aâ 2Ca
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Threshold logs, they DON’T disappear 
in the             limit. 
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Wide angle soft
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Some of the threshold logarithms has to be summed up by the PDF functions by choosing 
factorisation scheme appropriately. The first order kernel of the factorisation scheme is 

- For                we don't have to change the factorisation scheme. MSbar works perfectly. 

- For                the PDFs get frozen. 

✓ Transverse momentum ordered shower

✓ For other orderings (virtuality and angular)
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Unitary part

Threshold contribution

Now the shower evolution operator is  

✓ This leads to a non-unitary shower. 

✓ The threshold splitting operator doesn’t change the number of 
the partons and their momenta. It operates in the colour and 
flavour space only. 

✓ In LC+ approximation it leads to an extra factor that we have to 
insert after every step of the shower evolution.
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Direct term with diagonal color

Colour interference part of the threshold logs
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✓ We have defined parton shower. 
➠ We defined parton shower based on pQCD and factorisation of QCD density matrices. The aim is 

the gain as much control as possible on the approximations (like unitarity condition)… 
➠ We still need the all order proof of the factorisation of the physical states. We want a constructive 

proof. Splitting operators (with many loops), momentum mapping, shower scale definition, …  
➠ At higher order it is not possible to turn every subtraction scheme to parton shower. 

✓ It works at NLO level.   
➠ We recovered what is called “Standard Shower”. 
➠ We obtained threshold resummation basically for free. Shower is not unitary! 
➠ If you want unitary shower, you need process dependent PDFs.    
➠ Some threshold logs get resummed in the PDFs. MSbar PDFs only for transverse momentum 

ordered showers. In other shower schemes the PDF factorisation scheme has to be adjusted. 
➠ There is a plan to implement the new factorisation schemes in HERAFITTER. 

✗ I didn’t discuss in the talk. 
➠ We obtained NLO matching for free, it is just part of the scheme. 
➠ Genuine loop effects like          terms. 
➠ Final state heavy flavour threshold logs

⇡/✏
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• DEDUCTOR is designed to do a better job with color, spin and resummation of large logarithms compared 
to other shower generators. 

• Lambda ordering with and without initial state massive quarks 

• LC+ color treatment. It allows us to do color evolution at amplitude level  

• Spin correlations are not yet computed 

• Next version is available soon… 

• The shower equation is implemented at very abstract level. It allows us to use other ordering 
variables like kT or angle (massless or massive initial state partons). 

• Initial state threshold log resummation. 

• Subleading (wide angle subleading colour, Coulomb gluon,… ) contribution perturbative.  

• It is available at

http://www.desy.de/~znagy/deductor 
http://pages.uoregon.edu/soper/deductor

http://www.desy.de/~znagy/deductor
http://pages.uoregon.edu/soper/
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