Parton Showers, Matching & Merging

Bryan Webber

Outline

- Matching to a fixed order
 - NLO: MC@NLO, POWHEG, KrkNLO; automation
 - NNLO: NNLOPS, UN²LOPS, Geneva
- Matching to multiple fixed orders
 - MEPS@NLO, FxFx, UNLOPS,...
- Shower variables and improvements
 - Coherence, colour, spin, …
- Conclusions

NLO matching

- Full inclusive NLO, extra jet LO
- Still mostly MC@NLO or POWHEG
- MC@NLO:
 - PS-specific; beyond NLO is PS only; some negative weights
- POWHEG:
 - Any PS; extra terms beyond NLO; positive weights
- New: KrkNLO

DEDUCTOR MC@NLO

Deductor MC@NLO

Parton Showers, Matching & Merging

Bryan Webber, PSR15, Cracow

KrkNLO method

Modified LO PS and PDF for full phase space

• NLO correction by multiplicative weight

KrkNLO results

• α_s choice is for first emission

Automatic NLO matching

- MC@NLO-type
 - MadGraph5_aMC@NLO (MadLoop5)

Alwall et al., 1405.0301

Sherpa+OpenLoops

Höche et al., 1111.1220; 1201.5882

Herwig++ Matchbox+OpenLoops/GoSam

Plätzer, Gieseke, 1 109.6256; Bellm et al., 1310.6877

- POWHEG-type
 - MadGraph4+POWHEG+MCFM/GoSam

Campbell et al., 1202.5475; Luisoni et al., 1502.01213

Herwig++ Matchbox+OpenLoops/GoSam

MG5_aMC@NLO

Process	Syntax	Cross section (pb)				
Heavy quarks+vector bosons		LO 13 TeV	NLO 13 TeV			
e.1 $pp \rightarrow W^{\pm} b\bar{b}$ (4f) e.2 $pp \rightarrow Z b\bar{b}$ (4f) e.3 $pp \rightarrow \gamma b\bar{b}$ (4f)	p p > wpm b b~ p p > z b b~ p p > a b b~	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$			
$\begin{array}{ll} \mathrm{e.4}^* & pp \rightarrow W^{\pm} b \bar{b} j (\mathrm{4f}) \\ \mathrm{e.5}^* & pp \rightarrow Z b \bar{b} j (\mathrm{4f}) \\ \mathrm{e.6}^* & pp \rightarrow \gamma b \bar{b} j (\mathrm{4f}) \end{array}$	p p > wpm b b~ j p p > z b b~ j p p > a b b~ j	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$			
e.7 $pp \rightarrow t\bar{t} W^{\pm}$ e.8 $pp \rightarrow t\bar{t} Z$ e.9 $pp \rightarrow t\bar{t} \gamma$	$\begin{array}{l} p \hspace{0.1cm} p \hspace{0.1cm} > \hspace{0.1cm} t \hspace{0.1cm} t \sim \hspace{0.1cm} \texttt{wpm} \\ p \hspace{0.1cm} p \hspace{0.1cm} > \hspace{0.1cm} t \hspace{0.1cm} t \sim \hspace{0.1cm} z \\ p \hspace{0.1cm} p \hspace{0.1cm} > \hspace{0.1cm} t \hspace{0.1cm} t \sim \hspace{0.1cm} a \end{array}$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$			
$\begin{array}{ll} \mathrm{e.10}^* & pp \rightarrow t\bar{t} W^{\pm} j \\ \mathrm{e.11}^* & pp \rightarrow t\bar{t} Zj \\ \mathrm{e.12}^* & pp \rightarrow t\bar{t} \gamma j \end{array}$	$p p > t t \sim wpm j$ $p p > t t \sim z j$ $p p > t t \sim a j$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$			
$\begin{array}{lll} \mathrm{e.13^*} & pp \rightarrow t\bar{t} W^- W^+ \ (\mathrm{4f}) \\ \mathrm{e.14^*} & pp \rightarrow t\bar{t} W^\pm Z \\ \mathrm{e.15^*} & pp \rightarrow t\bar{t} W^\pm \gamma \\ \mathrm{e.16^*} & pp \rightarrow t\bar{t} ZZ \\ \mathrm{e.17^*} & pp \rightarrow t\bar{t} Z\gamma \\ \mathrm{e.18^*} & pp \rightarrow t\bar{t} \gamma\gamma \end{array}$	$p p > t t \sim w + w -$ $p p > t t \sim wpm z$ $p p > t t \sim wpm a$ $p p > t t \sim z z$ $p p > t t \sim z a$ $p p > t t \sim a a$	$\begin{array}{rl} 6.675 \pm 0.006 \cdot 10^{-3} & +30.9\% & +2.1\% \\ -21.9\% & -2.0\% \\ 2.404 \pm 0.002 \cdot 10^{-3} & +26.6\% & +2.5\% \\ -19.6\% & -1.8\% \\ 2.718 \pm 0.003 \cdot 10^{-3} & +25.4\% & +2.3\% \\ 1.349 \pm 0.014 \cdot 10^{-3} & +29.3\% & +1.7\% \\ 2.548 \pm 0.003 \cdot 10^{-3} & +30.1\% & +1.7\% \\ 2.548 \pm 0.003 \cdot 10^{-3} & +30.1\% & +1.7\% \\ -21.5\% & -1.6\% \\ 3.272 \pm 0.006 \cdot 10^{-3} & +28.4\% & +1.3\% \\ \end{array}$	$\begin{array}{llllllllllllllllllllllllllllllllllll$			

- Sampled from 172 processes
- Mostly new at NLO

Alwall et al., 1405.0301

Parton Showers, Matching & Merging

Bryan Webber, PSR15, Cracow

MG5_aMC@NLO

Proces	58	Syntax	Cross section (pb)			
Top quar	rks +bosons		LO 1 TeV		NLO 1 TeV	
j.1 e^+	$^+e^- \rightarrow t\bar{t}H$	e+ e- > t t \sim h	$2.018 \pm 0.003 \cdot 10^{-3}$	$^{+0.0\%}_{-0.0\%}$	$1.911 \pm 0.006 \cdot 10^{-3}$	$^{+0.4\%}_{-0.5\%}$
j.2* e^+	$^+e^- \rightarrow t\bar{t}Hj$	e+ e- > t t \sim h j	$2.533 \pm 0.003 \cdot 10^{-4}$	$^{+9.2\%}_{-7.8\%}$	$2.658 \pm 0.009 \cdot 10^{-4}$	$^{+0.5\%}_{-1.5\%}$
j. 3^* e^+	$^+e^- \rightarrow t\bar{t}Hjj$	e+ e- > t t \sim h j j	$2.663 \pm 0.004 \cdot 10^{-5}$	$^{+19.3\%}_{-14.9\%}$	$3.278 \pm 0.017 \cdot 10^{-5}$	$^{+4.0\%}_{-5.7\%}$
j.4* e^+	$^+e^- \rightarrow t\bar{t}\gamma$	e+ e- > t t \sim a	$1.270 \pm 0.002 \cdot 10^{-2}$	$^{+0.0\%}_{-0.0\%}$	$1.335 \pm 0.004 \cdot 10^{-2}$	$^{+0.5\%}_{-0.4\%}$
j.5* e^+	$^+e^- \rightarrow t\bar{t}\gamma j$	e+ e- > t t \sim a j	$2.355 \pm 0.002 \cdot 10^{-3}$	$+9.3\% \\ -7.9\%$	$2.617 \pm 0.010 \cdot 10^{-3}$	$^{+1.6\%}_{-2.4\%}$
j.6* e^+	$^+e^- \rightarrow t\bar{t}\gamma jj$	e+ e- > t t \sim a j j	$3.103 \pm 0.005 \cdot 10^{-4}$	+19.5% -15.0%	$4.002 \pm 0.021 \cdot 10^{-4}$	$+5.4\% \\ -6.6\%$
j.7* e^+	$^+e^- \rightarrow t\bar{t}Z$	e+ e- > t t \sim z	$4.642 \pm 0.006 \cdot 10^{-3}$	$+0.0\% \\ -0.0\%$	$4.949 \pm 0.014 \cdot 10^{-3}$	$^{+0.6\%}_{-0.5\%}$
j.8* e^+	$^+e^- \rightarrow t\bar{t}Zj$	e+ e- > t t \sim z j	$6.059 \pm 0.006 \cdot 10^{-4}$	$+9.3\% \\ -7.8\%$	$6.940 \pm 0.028 \cdot 10^{-4}$	+2.0% -2.6%
j.9* e^+	$^+e^- \rightarrow t\bar{t}Zjj$	e+ e- > t t \sim z j j	$6.351 \pm 0.028 \cdot 10^{-5}$	+19.4% -15.0%	$8.439 \pm 0.051 \cdot 10^{-5}$	$+5.8\% \\ -6.8\%$
j.10* e^+	$^+e^- \rightarrow t\bar{t}W^{\pm}jj$	e+ e- > t t \sim wpm j j	$2.400 \pm 0.004 \cdot 10^{-7}$	+19.3% -14.9%	$3.723 \pm 0.012 \cdot 10^{-7}$	+9.6% -9.1%
j.11* e^+	$^+e^- \rightarrow t\bar{t}HZ$	e+ e- > t t \sim h z	$3.600 \pm 0.006 \cdot 10^{-5}$	$^{+0.0\%}_{-0.0\%}$	$3.579 \pm 0.013 \cdot 10^{-5}$	$^{+0.1\%}_{-0.0\%}$
j.12* e^+	$^+e^- \rightarrow t\bar{t}\gamma Z$	e+ e- > t t \sim a z	$2.212 \pm 0.003 \cdot 10^{-4}$	$+0.0\% \\ -0.0\%$	$2.364 \pm 0.006 \cdot 10^{-4}$	$+0.6\% \\ -0.5\%$
j.13* e^+	$^+e^- \rightarrow t\bar{t}\gamma H$	e+ e- > t t \sim a h	$9.756 \pm 0.016 \cdot 10^{-5}$	$+0.0\% \\ -0.0\%$	$9.423 \pm 0.032 \cdot 10^{-5}$	$^{+0.3\%}_{-0.4\%}$
j.14* e^+	$^+e^- \rightarrow t\bar{t}\gamma\gamma$	e+ e- > t t \sim a a	$3.650 \pm 0.008 \cdot 10^{-4}$	+0.0% -0.0%	$3.833 \pm 0.013 \cdot 10^{-4}$	$+0.4\% \\ -0.4\%$
j.15* e^+	$^+e^- \rightarrow t\bar{t}ZZ$	e+ e- > t t \sim z z	$3.788 \pm 0.004 \cdot 10^{-5}$	+0.0% -0.0%	$4.007 \pm 0.013 \cdot 10^{-5}$	$+0.5\% \\ -0.5\%$
j.16* e^+	$^+e^- \rightarrow t\bar{t}HH$	e+ e- > t t \sim h h	$1.358 \pm 0.001 \cdot 10^{-5}$	+0.0% -0.0%	$1.206 \pm 0.003 \cdot 10^{-5}$	$+0.9\% \\ -1.1\%$
j.17* e^+	$^+e^- \rightarrow t\bar{t}W^+W^-$	e+ e- > t t \sim w+ w-	$1.372 \pm 0.003 \cdot 10^{-4}$	+0.0% -0.0%	$1.540 \pm 0.006 \cdot 10^{-4}$	+1.0% -0.9%

All new at NLO except ttH

NNLO matching

- Fully inclusive NNLO, one extra jet NLO
- So far, limited to DY, H
 - MiNLO-NNLOPS

Hamilton et al., 1309.0017, 1407.3773

✤ UN²LOPS

Höche, Li, Prestel, 1405.3607, 1407.3773

Geneva

Alioli et al., 1311.0286

MiNLO-NNLOPS

Modified DY/H+jet POWHEG with NNLL Sudakov (B2)

Parton Showers, Matching & Merging

15

Bryan Webber, PSR15, Cracow

UN²LOPS

Höche, Li, Prestel, 1405.3607

- Phase space slicing at q_T ~ I GeV (DY, H)
- qT subtraction: NNLO in zero bin
- extra jet at NLO

$$\begin{split} \langle O \rangle^{(\mathrm{UN}^{2}\mathrm{LOPS})} &= \int \mathrm{d}\Phi_{0} \,\bar{\mathrm{B}}_{0}^{q_{T,\mathrm{cut}}}(\Phi_{0}) \,O(\Phi_{0}) \\ &+ \int_{q_{T,\mathrm{cut}}} \mathrm{d}\Phi_{1} \left[1 - \Pi_{0}(t_{1},\mu_{Q}^{2}) \left(w_{1}(\Phi_{1}) + w_{1}^{(1)}(\Phi_{1}) + \Pi_{0}^{(1)}(t_{1},\mu_{Q}^{2}) \right) \right] \mathrm{B}_{1}(\Phi_{1}) \,O(\Phi_{0}) \\ &+ \int_{q_{T,\mathrm{cut}}} \mathrm{d}\Phi_{1} \,\Pi_{0}(t_{1},\mu_{Q}^{2}) \left(w_{1}(\Phi_{1}) + w_{1}^{(1)}(\Phi_{1}) + \Pi_{0}^{(1)}(t_{1},\mu_{Q}^{2}) \right) \mathrm{B}_{1}(\Phi_{1}) \,\bar{\mathcal{F}}_{1}(t_{1},O) \\ &+ \int_{q_{T,\mathrm{cut}}} \mathrm{d}\Phi_{1} \left[1 - \Pi_{0}(t_{1},\mu_{Q}^{2}) \right] \tilde{\mathrm{B}}_{1}^{\mathrm{R}}(\Phi_{1}) \,O(\Phi_{0}) + \int_{q_{T,\mathrm{cut}}} \mathrm{d}\Phi_{1} \Pi_{0}(t_{1},\mu_{Q}^{2}) \,\tilde{\mathrm{B}}_{1}^{\mathrm{R}}(\Phi_{1}) \,\bar{\mathcal{F}}_{1}(t_{1},O) \\ &+ \int_{q_{T,\mathrm{cut}}} \mathrm{d}\Phi_{2} \left[1 - \Pi_{0}(t_{1},\mu_{Q}^{2}) \right] \mathrm{H}_{1}^{\mathrm{R}}(\Phi_{2}) \,O(\Phi_{0}) + \int_{q_{T,\mathrm{cut}}} \mathrm{d}\Phi_{2} \,\Pi_{0}(t_{1},\mu_{Q}^{2}) \,\mathrm{H}_{1}^{\mathrm{R}}(\Phi_{2}) \,\mathcal{F}_{2}(t_{2},O) \\ &+ \int_{q_{T,\mathrm{cut}}} \mathrm{d}\Phi_{2} \, \mathrm{H}_{1}^{\mathrm{E}}(\Phi_{2}) \,\mathcal{F}_{2}(t_{2},O) \end{split}$$

UN²LOPS results (DY)

FIG. 2. Transverse momentum and rapidity spectrum of the electron. The gray solid (blue hatched) band shows scale uncertainties obtained by varying $\mu_{R/F}$ (μ_Q) in the range $m_{ll}/2 \le \mu \le 2 m_{ll}$.

FIG. 3. UN²LOPS prediction for the transverse momentum spectrum of the Drell-Yan lepton pair in comparison to ATLAS data from [39] (left) and CMS data from [38] (right). The gray solid (blue hatched) band shows scale uncertainties obtained by varying $\mu_{R/F}$ (μ_Q) in the range $m_{ll}/2 \le \mu \le 2 m_{ll}$.

Parton Showers, Matching & Merging

Bryan Webber, PSR 15, Cracow

UN²LOPS results (Higgs)

FIG. 2. Rapidity spectrum of the Higgs boson in individual matching (left) and factorized matching (right). See Sec. IV for details.

FIG. 3. Transverse momentum spectrum of the Higgs boson in individual matching (left) and factorized matching (right). See

Sec. IV for details.

Parton Showers, Matching & Merging

Bryan Webber, PSR 15, Cracow

Matching to multiple fixed orders

Merging at NLO (?)

- Separate samples by jet resolution, e.g. d_{cut}
- Make NLO for $d_{i+1} < d_{cut} < d_i$
- Avoid double counting
- Reduce d_{cut} dependence
 - MEPS@NLO: Höche et al., 1207.5030
 - FxFx: Frederix, Frixione, 1209.6215
 - Geneva: Alioli et al., 1211.7049
 - * UNLOPS: Lönnblad, Prestel, 1211.7278, Plätzer, 1211.5467

MEPS@NLO

W+0, I, 2 jets at NLO

Höche et al., 1207.5030

• W+3,4 jets at LO

 Figure 1: Cross section as a function of the inclusive jet multiplicity (left) and their ratios (right) in W+jets

 events measured by ATLAS [50].

 Parton Showers, Matching & Merging

 21

 Bryan Webber, PSR15, Cracow

FxFx merging

Frederix, Frixione, 1209.6215

• S and \mathbb{H} event samples for each multiplicity $(D(d_i) \approx \Theta(\mu_2 - d_i))$

$$\begin{split} d\bar{\sigma}_{\mathbb{S},0} &= T_0 + V_0 - T_0 \mathcal{K} + T_0 \mathcal{K}_{\rm MC} D(d_1(\Xi_{\mathbb{H},0})) \,, \\ d\bar{\sigma}_{\mathbb{H},0} &= \left[T_1 - T_0 \mathcal{K}_{\rm MC} \right] D(d_1(\Xi_{\mathbb{H},0})) \,, \\ d\bar{\sigma}_{\mathbb{S},i} &= \left[T_i + V_i - T_i \mathcal{K} + T_i \mathcal{K}_{\rm MC} D(d_{i+1}(\Xi_{\mathbb{H},i})) \right] \\ &\times (1 - D(d_i(\Xi_{\mathbb{S},i}))) \,\Theta \left(d_{i-1}(\Xi_{\mathbb{S},i}) - \mu_2 \right) \,, \\ d\bar{\sigma}_{\mathbb{H},i} &= \left[T_{i+1} \left(1 - D(d_i(\Xi_{\mathbb{H},i})) \right) \Theta \left(d_{i-1}(\Xi_{\mathbb{H},i}) - \mu_2 \right) \right] D(d_{i+1}(\Xi_{\mathbb{H},i})) \,, \\ d\bar{\sigma}_{\mathbb{S},N} &= \left[T_N + V_N - T_N \mathcal{K} + T_N \mathcal{K}_{\rm MC} \right] \\ &\times (1 - D(d_N(\Xi_{\mathbb{S},N}))) \,\Theta \left(d_{N-1}(\Xi_{\mathbb{S},N}) - \mu_2 \right) \,, \\ d\bar{\sigma}_{\mathbb{H},N} &= T_{N+1} \left(1 - D(d_N(\Xi_{\mathbb{H},N})) \right) \Theta \left(d_{N-1}(\Xi_{\mathbb{H},N}) - \mu_2 \right) \\ &- T_N \mathcal{K}_{\rm MC} \left(1 - D(d_N(\Xi_{\mathbb{S},N})) \right) \Theta \left(d_{N-1}(\Xi_{\mathbb{S},N}) - \mu_2 \right) \,. \end{split}$$

Parton Showers, Matching & Merging

Bryan Webber, PSR15, Cracow

FxFx Z results (I)

Frederix, Frixione, Papaefstathiou, Prestel, Torrielli, in prep.

Parton Showers, Matching & Merging

Bryan Webber, PSR 15, Cracow

FxFx Z results (2)

FxFxW results (I)

FxFxW results (2)

FxFxW results (3)

Geneva merging (e⁺e⁻)

Parton Showers, Matching & Merging

Bryan Webber, PSR15, Cracow

UNLOPS merging

Lönnblad, Prestel, 1211.7278

 Merging scale dependence

Ren/fac scale
 dependence

Parton Showers, Matching & Merging

Bryan Webber, PSR 15, Cracow

Parton Showers

Antenna (Lund) shower

In the rest frame of dipole (jk), emission *i* has transverse momentum p_t and rapidity *y* where

$$p_t^2 = 2\frac{p_i \cdot p_j p_i \cdot p_k}{p_j \cdot p_k},\tag{1}$$

$$y = \frac{1}{2} \ln \frac{p_i \cdot p_k}{p_i \cdot p_j} \tag{2}$$

and the leading contribution of this emission is

$$d\sigma_{n+1}^{(jk)} = d\sigma_n \frac{\alpha_s}{2\pi} (-2\mathbf{T}_j \cdot \mathbf{T}_k) \frac{dp_t^2}{p_t^2} dy.$$
(3)

The phase space for emission is $p_i \cdot p_j$, $p_i \cdot p_k < p_j \cdot p_k = Q^2/2$ where Q is the dipole mass. Hence

$$-\ln\frac{Q}{p_t} < y < \ln\frac{Q}{p_t}.$$
(4)

• Three jets in e^+e^- annihilation

The p_t resolution is Q_0 where $Q_0^2/Q^2 = y_{\text{cut}}$. Hence the 3-jet rate is

$$R_3^d = \frac{\alpha_s}{2\pi} 2C_F \int_{Q_0}^Q 2\frac{dp_t}{p_t} \int_{-\ln Q/p_t}^{\ln Q/p_t} dy = \frac{1}{2}C_F aL^2$$
(5)

where $a = \alpha_s / \pi$ and $L = \ln y_{\text{cut}}$.

Bryan Webber, PSR15, Cracow

Antenna shower

Parton Showers, Matching & Merging

Dipole partition

$$D_{jk} = \frac{p_j \cdot p_k}{p_j \cdot q \, p_k \cdot q} = D_{jk}^{(j)} + D_{jk}^{(k)}$$

• Catani-Seymour
$$D_{jk}^{(j)} = D_{jk} \frac{p_k \cdot q}{(p_j + p_k) \cdot q}$$

• Nagy-Soper
$$D_{jk}^{(j)} = D_{jk} \frac{p_k \cdot q \ p_j \cdot Q}{p_j \cdot q \ p_k \cdot Q + p_k \cdot q \ p_j \cdot Q}$$

• Angular-ordered
$$D_{jk}^{(j)} = \frac{1}{2}D_{jk} + \frac{1}{2 q \cdot Q} \left(\frac{p_j \cdot Q}{p_j \cdot q} - \frac{p_k \cdot Q}{p_k \cdot q} \right)$$

AO parton shower

Coherent emission from (jk)

$$d\sigma_{n+1}^{(jk)} = g_{s}^{2} d\sigma_{n} \frac{d^{3} \mathbf{q}_{i}}{(2\pi)^{3} 2\omega_{i}} (-\mathbf{T}_{j} \cdot \mathbf{T}_{k}) \frac{p_{j} \cdot p_{k}}{p_{j} \cdot p_{i}, p_{k} \cdot p_{i}}$$
$$= \frac{\alpha_{s}}{2\pi} d\sigma_{n} \frac{d\omega_{i}}{\omega_{i}} \frac{d\Omega_{i}}{2\pi} (-\mathbf{T}_{j} \cdot \mathbf{T}_{k}) \frac{\xi_{jk}}{\xi_{ij} \xi_{ik}}$$

where $\xi_{jk} = 1 - \cos \theta_{jk}$. Now

$$\frac{d\Omega_i}{2\pi} \frac{\xi_{jk}}{\xi_{ij}\,\xi_{ik}} = \frac{d\xi_{ij}}{\xi_{ij}} \frac{d\phi_{ij}}{2\pi} \frac{1}{2} \left(\frac{\xi_{jk} - \xi_{ij}}{\xi_{ik}} + 1\right) + (j \leftrightarrow k)$$

• After azimuthal integration, this is exactly

$$\frac{d\xi_{ij}}{\xi_{ij}}\Theta(\xi_{jk}-\xi_{ij}) + \frac{d\xi_{ik}}{\xi_{ik}}\Theta(\xi_{jk}-\xi_{ik})$$

• Each parton j,k radiates into cone θ_{ij} , $\theta_{ik} < \theta_{jk}$

AO parton shower

Coherent emission from (jk)

$$d\sigma_{n+1}^{(jk)} = g_{s}^{2} d\sigma_{n} \frac{d^{3} \mathbf{q}_{i}}{(2\pi)^{3} 2\omega_{i}} (-\mathbf{T}_{j} \cdot \mathbf{T}_{k}) \frac{p_{j} \cdot p_{k}}{p_{j} \cdot p_{i}, p_{k} \cdot p_{i}}$$
$$= \frac{\alpha_{s}}{2\pi} d\sigma_{n} \frac{d\omega_{i}}{\omega_{i}} \frac{d\Omega_{i}}{2\pi} (-\mathbf{T}_{j} \cdot \mathbf{T}_{k}) \frac{\xi_{jk}}{\xi_{ij} \xi_{ik}}$$

where $\xi_{jk} = 1 - \cos \theta_{jk}$. Now

$$\frac{d\Omega_i}{2\pi} \frac{\xi_{jk}}{\xi_{ij}\,\xi_{ik}} = \frac{d\xi_{ij}}{\xi_{ij}} \frac{d\phi_{ij}}{2\pi} \frac{1}{2} \left(\frac{\xi_{jk} - \xi_{ij}}{\xi_{ik}} + 1\right) + (j \leftrightarrow k)$$

• After azimuthal integration, this is exactly

$$\frac{d\xi_{ij}}{\xi_{ij}}\Theta(\xi_{jk}-\xi_{ij}) + \frac{d\xi_{ik}}{\xi_{ik}}\Theta(\xi_{jk}-\xi_{ik})$$

• Each parton j,k radiates into cone θ_{ij} , $\theta_{ik} < \theta_{jk}$

AO parton shower

Coherent emission from (jk)

$$d\sigma_{n+1}^{(jk)} = g_{s}^{2} d\sigma_{n} \frac{d^{3} \mathbf{q}_{i}}{(2\pi)^{3} 2\omega_{i}} (-\mathbf{T}_{j} \cdot \mathbf{T}_{k}) \frac{p_{j} \cdot p_{k}}{p_{j} \cdot p_{i}, p_{k} \cdot p_{i}}$$
$$= \frac{\alpha_{s}}{2\pi} d\sigma_{n} \frac{d\omega_{i}}{\omega_{i}} \frac{d\Omega_{i}}{2\pi} (-\mathbf{T}_{j} \cdot \mathbf{T}_{k}) \frac{\xi_{jk}}{\xi_{ij} \xi_{ik}}$$

where $\xi_{jk} = 1 - \cos \theta_{jk}$. Now

$$\frac{d\Omega_i}{2\pi} \frac{\xi_{jk}}{\xi_{ij}\,\xi_{ik}} = \frac{d\xi_{ij}}{\xi_{ij}} \frac{d\phi_{ij}}{2\pi} \frac{1}{2} \left(\frac{\xi_{jk} - \xi_{ij}}{\xi_{ik}} + 1\right) + (j \leftrightarrow k)$$

After azimuthal integration, this is exactly

$$\frac{d\xi_{ij}}{\xi_{ij}}\Theta(\xi_{jk}-\xi_{ij}) + \frac{d\xi_{ik}}{\xi_{ik}}\Theta(\xi_{jk}-\xi_{ik})$$

• Each parton j radiates into cone $\theta_{ij} < \theta_{jk}$

AO parton shower

Two gluon emission

$$d\sigma_{n+2}^{(ij)} = \frac{\alpha_{s}}{\pi} d\sigma_{n+1}^{(j)} \frac{d\omega_{\ell}}{\omega_{\ell}} \left\{ \left(-\mathbf{T}_{i} \cdot \mathbf{T}_{j}^{\prime} \right) \int^{\xi_{ij}} \left(\frac{d\xi_{\ell i}}{\xi_{\ell i}} + \frac{d\xi_{\ell j}}{\xi_{\ell j}} \right) + \sum_{k \neq i,j} \left[\left(-\mathbf{T}_{i} \cdot \mathbf{T}_{k} \right) \int^{\xi_{ik}} \frac{d\xi_{\ell i}}{\xi_{\ell i}} + \left(-\mathbf{T}_{j}^{\prime} \cdot \mathbf{T}_{k} \right) \int^{\xi_{jk}} \frac{d\xi_{\ell j}}{\xi_{\ell j}} \right] \right\}$$

where
$$\mathbf{T}'_j = \mathbf{T}_j - \mathbf{T}_i$$
 and $\mathbf{T}_i + \mathbf{T}'_j + \sum_{k \neq i,j} \mathbf{T}_k = 0$

• Collecting terms in $\xi_{\ell i}$ and $\xi_{\ell j}$, we find

$$d\sigma_{n+2}^{(ij)} = \frac{\alpha_{\rm s}}{\pi} d\sigma_{n+1}^{(j)} \frac{d\omega_{\ell}}{\omega_{\ell}} \left\{ \mathbf{T}_{i} \cdot \mathbf{T}_{i} \int^{\xi_{ij}} \frac{d\xi_{\ell i}}{\xi_{\ell i}} + \mathbf{T}_{j}' \cdot \mathbf{T}_{j}' \int^{\xi_{ij}} \frac{d\xi_{\ell j}}{\xi_{\ell j}} \right\} \stackrel{\text{each parton emits into its cone}}{= \mathbf{T}_{j} \cdot \sum_{k \neq i,j} \mathbf{T}_{k} \int_{\xi_{ij}}^{\xi_{jk}} \frac{d\xi_{\ell j}}{\xi_{\ell j}} \stackrel{\text{coherent emission outside cones,}}{\text{done in previous step}} \\ - \mathbf{T}_{i} \cdot \sum_{k \neq i,j} \mathbf{T}_{k} \left(\int_{\xi_{ij}}^{\xi_{ik}} \frac{d\xi_{\ell i}}{\xi_{\ell i}} - \int_{\xi_{ij}}^{\xi_{jk}} \frac{d\xi_{\ell j}}{\xi_{\ell j}} \right) \right\} \stackrel{\text{non-singular, 2 logs}}{= \mathbf{d}_{ij} \mathbf{d}_{ij}}$$

e⁺e⁻→qq̄gg

• AO parton shower:

$$d\sigma_{n+2}^{(ij)} = \frac{\alpha_{\rm S}}{\pi} d\sigma_{n+1}^{(j)} \frac{d\omega_{\ell}}{\omega_{\ell}} \left\{ \mathbf{T}_{i} \cdot \mathbf{T}_{i} \int^{\xi_{ij}} \frac{d\xi_{\ell i}}{\xi_{\ell i}} + \mathbf{T}_{j}' \cdot \mathbf{T}_{j}' \int^{\xi_{ij}} \frac{d\xi_{\ell j}}{\xi_{\ell j}} - \mathbf{T}_{j} \cdot \sum_{k \neq i,j} \mathbf{T}_{k} \int^{\xi_{jk}}_{\xi_{ij}} \frac{d\xi_{\ell j}}{\xi_{\ell j}} \right\}$$
$$\rightarrow d\sigma_{4}^{(iq)} = \frac{\alpha_{\rm S}}{\pi} d\sigma_{3}^{(q)} \frac{d\omega_{\ell}}{\omega_{\ell}} \left\{ C_{A} \int^{\xi_{iq}} \frac{d\xi_{\ell i}}{\xi_{\ell i}} + C_{F} \int^{\xi_{q}\bar{q}} \frac{d\xi_{\ell q}}{\xi_{\ell q}} \right\} \text{ where } d\sigma_{3}^{(q)} = \frac{\alpha_{\rm S}}{\pi} \sigma_{2} C_{F} \frac{d\omega_{i}}{\omega_{i}} \int^{\xi_{q}\bar{q}} \frac{d\xi_{iq}}{\xi_{iq}}$$

• 4-jet rate (k_t-algorithm):

$$y_{\ell q} = 2\omega_{\ell}^2 \xi_{\ell q} / Q^2 > y_{\rm c}, \quad y_{\ell i} = 2\omega_m^2 \xi_{\ell i} / Q^2 > y_{\rm c} \text{ where } \omega_m = \min\{\omega_{\ell}, \omega_i\}$$

$$\sigma_4^{(iq)} = \left(\frac{\alpha_{\rm S}}{\pi}\right)^2 \sigma_2 C_F \int_{Q\sqrt{y_{\rm c}}/2}^{Q/2} \frac{d\omega_i}{\omega_i} \int_{Q\sqrt{y_{\rm c}}/2}^{Q/2} \frac{d\omega_\ell}{\omega_\ell} \int_{Q^2 y_{\rm c}/2\omega_i^2}^2 \frac{d\xi_{iq}}{\xi_{iq}} \left\{ C_A \ln\left(\frac{2\omega_m^2 \xi_{iq}}{Q^2 y_{\rm c}}\right) + C_F \ln\left(\frac{4\omega_\ell^2}{Q^2 y_{\rm c}}\right) \right\}$$

$$R_4 = (\sigma_4^{(iq)} + \sigma_4^{(i\bar{q})})/\sigma_2 = \left(\frac{\alpha_s}{\pi}\right)^2 C_F \left(\frac{1}{8}C_F + \frac{1}{48}C_A\right) L^4 \text{ where } L = \log(1/y_c)$$

e⁺e⁻→qāgg

• 4-jet rate (k_t-algorithm) vs $L = \log(1/y_{cut})$

$$\frac{1}{\sigma_{\rm B}} \frac{d\sigma_4}{dL} = \left[\frac{\alpha_{\rm S}(s)}{\pi}\right]^2 \left(4AL^3 + 3BL^2 + 2CL + \ldots\right)$$

$$A = C_F^2 / 8 + C_F C_A / 48$$

$$P = 2C_F^2 / 4 = 5C_F C_A / 48$$

$$B = -3C_F^2/4 - 5C_F C_A/18$$

- C = ?? (fitted)
- Compare with MadGraph5 at I TeV

✤ M_{ij} > 100 MeV → L < 18.4</p>

e⁺e⁻→qq̄gg

Dashed is LCA (refitting C)

• 5-jet rate (k_t-algorithm) vs $L = \log(1/y_{cut})$

$$\frac{1}{\sigma_{\rm B}} \frac{d\sigma_5}{dL} = \left[\frac{\alpha_{\rm S}(s)}{\pi}\right]^3 \left(6AL^5 + 5BL^4 + 4CL^3 + \ldots\right)$$

$$A = C_F^3/48 + C_F^2 C_A/96 + C_F C_A^2/720$$

$$B = -3C_F^3/16 - 49C_F^2 C_A/288 - 91C_F C_A^2/2880$$

$$C = ?? \text{ (fitted)}$$

• Compare with MadGraph5 at I TeV again

e

Dashed is LCA (refitting C)

Subleading colour

DEDUCTOR pp at I4 TeV

Number of partons

Nagy, Soper, 1202.4496, 1501.00778

Gap fraction (|y|<2)

Subleading colour

Fig. 3. Real and imaginary parts of a diagonal evolution matrix element for quark-quark scattering at $s = 100 \text{ GeV}^2$, $\mu^2 = 25 \text{ GeV}^2$ as a function of the momentum transfer |t|, comparing the exact results to various approximations. This matrix elements describes the amplitude to keep a *t*-channel colour flow σ .

Fig. 4. Same as figure 3 for an off-diagonal matrix element. The matrix element considered describes the transition from a u-channel colour flow τ to a t-channel one, σ .

Parton Showers, Matching & Merging

Bryan Webber, PSR 15, Cracow

Shower ordering

Virtuality-ordered shower

$$q_a^2 = \frac{q_b^2}{z_b} + \frac{q_c^2}{z_c} + \frac{q_T^2}{z_b z_c}$$

$$\begin{aligned} z_b & z_c & z_b z_c \\ q_T \simeq z_b z_c E_a \theta_a & q_a^2 \simeq z_b z_c (E_a \theta_a)^2 \\ q_c^2 \simeq z_c^2 z_d z_e (E_a \theta_c)^2 < z_c q_a^2 \simeq z_c^2 z_b (E_a \theta_a)^2 \\ \hline z_d z_e \theta_c^2 < z_b \theta_a^2 \end{aligned}$$

Bryan Webber, PSR15, Cracow

Coherence tests

• $Z^0 \rightarrow 4$ jets (LEP OPAL data) Fischer et al., 1505.01636

Herwig 6, Pythia 6 comparisons

Coherence tests

• $Z^0 \rightarrow 4$ jets (LEP OPAL data) Fischer et al., 1505.01636

Coherence tests

• $Z^0 \rightarrow 4$ jets (LEP OPAL data) Fischer et al., 1505.01636

Herwig++ virtuality ordering does worst

Spin in showers

$$< s |\hat{P}_{qq}(z, k_{\perp}; \epsilon)| s' > = \delta_{ss'} C_F \left[\frac{1+z^2}{1-z} - \epsilon(1-z) \right] ,$$

$$\langle s|\hat{P}_{qg}(z,k_{\perp};\epsilon)|s'\rangle = \delta_{ss'} C_F \left[\frac{1+(1-z)^2}{z}-\epsilon z\right] ,$$

$$<\mu|\hat{P}_{gq}(z,k_{\perp};\epsilon)|\nu>=T_{R}\left[-g^{\mu\nu}+4z(1-z)\frac{k_{\perp}^{\mu}k_{\perp}^{\nu}}{k_{\perp}^{2}}\right] ,$$

$$<\mu|\hat{P}_{gg}(z,k_{\perp};\epsilon)|\nu>=2C_{A}\left[-g^{\mu\nu}\left(\frac{z}{1-z}+\frac{1-z}{z}\right)-2(1-\epsilon)z(1-z)\frac{k_{\perp}^{\mu}k_{\perp}^{\nu}}{k_{\perp}^{2}}\right]$$

- No effect in q→qg (helicity conservation)
- Opposite in $g \rightarrow gg$ and $g \rightarrow q\overline{q}$
 - Cancel when $N_f = N_c$

Spin in showers

Bengtsson-Zerwas angle in e⁺e⁻→4 jets

Conclusions

- Matching at NLO
 - SM processes automated, EW and BSM soon
- Matching at NNLO
 - So far only DY & H, others much harder
- Merging at NLO
 - Still in a state of flux; FxFx automated
- Parton showers
 - Coherence effects visible
 - Spin and subleading colour effects small
 - Hadronization important, but little effort/progress

Thanks for listening!