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Outline
• Matching to a fixed order	


✤ NLO: MC@NLO, POWHEG, KrkNLO; 
automation	


✤ NNLO: NNLOPS, UN2LOPS, Geneva	


• Matching to multiple fixed orders	


✤ MEPS@NLO, FxFx, UNLOPS,…	


• Shower variables and improvements	


✤ Coherence, colour, spin, …	


• Conclusions
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NLO matching
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NLO matching
• Full inclusive NLO, extra jet LO	


• Still mostly MC@NLO or POWHEG	


• MC@NLO: 	


✤ PS-specific; beyond NLO is PS only; 
some negative weights	


• POWHEG:	


✤ Any PS; extra terms beyond NLO; 
positive weights	


• New: KrkNLO
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Top pairs at 8 TeV

• Differences are small!
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(JHEP 09 (2013) 032)
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Figure 11: Normalized differential tt production cross section in the `+jets channels as a func-
tion of the ptt

T (top left), ytt (top right), and mtt (bottom) of the tt system. The data points are
placed at the midpoint of the bins. The inner (outer) error bars indicate the statistical (combined
statistical and systematic) uncertainties. The measurements are compared to predictions from
MADGRAPH+PYTHIA6, POWHEG+PYTHIA6, POWHEG+HERWIG6, MC@NLO+HERWIG6, and to
NLO+NNLL [14, 15] calculations, when available. The lower part of each plot shows the ratio
of the predictions to data.
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Figure 11: Normalized differential tt production cross section in the `+jets channels as a func-
tion of the ptt

T (top left), ytt (top right), and mtt (bottom) of the tt system. The data points are
placed at the midpoint of the bins. The inner (outer) error bars indicate the statistical (combined
statistical and systematic) uncertainties. The measurements are compared to predictions from
MADGRAPH+PYTHIA6, POWHEG+PYTHIA6, POWHEG+HERWIG6, MC@NLO+HERWIG6, and to
NLO+NNLL [14, 15] calculations, when available. The lower part of each plot shows the ratio
of the predictions to data.
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Figure 9: Normalized differential tt production cross section in the `+jets channels as a function
of the pt

T (top left), the tt rest frame pt⇤
T (top right), and the rapidity yt (bottom left) of the

top quarks or antiquarks, and the difference in the azimuthal angle between the top quark
and the antiquark Df(t,t̄) (bottom right). The data points are placed at the midpoint of the
bins. The inner (outer) error bars indicate the statistical (combined statistical and systematic)
uncertainties. The measurements are compared to predictions from MADGRAPH+PYTHIA6,
POWHEG+PYTHIA6, POWHEG+HERWIG6, MC@NLO+HERWIG6, and to approximate NNLO [16]
calculations, when available. The lower part of each plot shows the ratio of the predictions to
data.
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Figure 9: Normalized differential tt production cross section in the `+jets channels as a function
of the pt

T (top left), the tt rest frame pt⇤
T (top right), and the rapidity yt (bottom left) of the

top quarks or antiquarks, and the difference in the azimuthal angle between the top quark
and the antiquark Df(t,t̄) (bottom right). The data points are placed at the midpoint of the
bins. The inner (outer) error bars indicate the statistical (combined statistical and systematic)
uncertainties. The measurements are compared to predictions from MADGRAPH+PYTHIA6,
POWHEG+PYTHIA6, POWHEG+HERWIG6, MC@NLO+HERWIG6, and to approximate NNLO [16]
calculations, when available. The lower part of each plot shows the ratio of the predictions to
data.
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DEDUCTOR MC@NLO
• p p    t t j + X

6

Czakon et al., 1502.00925

Nagy, Soper, 1401.6364
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Figure 14. Differential cross section distributions as a function of the transverse momentum of
the top quark (left upper panel) and of the first jet (left lower panel) as well as the rapidity of
the top quark (right upper panel) and of the first jet (right lower panel) for pp → tt̄j + X at the
LHC with

√
s = 8 TeV. Comparison between the NLO result obtained with Helac-Nlo and results

produced by matching various NLO predictions to different parton showers. The scale choice is
µF = µR = mt. The lower panels display the relative deviation from the fixed order result.

Moreover, the scale dependence after symmetrization is below 13% for all cases but the

Powheg+Pythia8, where it is slightly larger i.e. of the order of 20%.

In the next step, we extend our comparison to differential distributions and start with

observables that are rather insensitive to parton shower effects. In Fig. 14, the transverse

momentum and rapidity distributions of the top quark and the first jet are presented.

For each observable the NLO result obtained with Helac-Nlo is plotted together with

results produced by matching various NLO predictions to different parton showers. The

lower panels display the relative deviation from the next-to-leading order result. All parton

showers reproduce the corresponding NLO result correctly, and slight deviations from the

– 40 –
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Deductor MC@NLO

7
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Figure 15. Differential cross section distributions as a function of the invariant mass of the tt̄
pair (left panel) and of the ∆Rtt̄ (right panel) for pp → tt̄j + X at the LHC with

√
s = 8 TeV.

Comparison between the NLO result obtained with Helac-Nlo and results produced by matching
various NLO predictions to different parton showers. The scale choice is µF = µR = mt. The lower
panels display the relative deviation from the fixed order result.
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Figure 16. Differential cross section distributions as a function of the transverse momentum of
the tt̄j1 system for pp → tt̄j+X at the LHC with

√
s = 8 TeV. Comparison between the NLO result

obtained with Helac-Nlo and results produced by matching various NLO predictions to different
parton showers. The scale choice is µF = µR = mt. The lower panels display the relative deviation
from the fixed order result.

fixed order calculation can only be seen in the tails of the distributions due to smaller

statistics.
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Figure 15. Differential cross section distributions as a function of the invariant mass of the tt̄
pair (left panel) and of the ∆Rtt̄ (right panel) for pp → tt̄j + X at the LHC with

√
s = 8 TeV.

Comparison between the NLO result obtained with Helac-Nlo and results produced by matching
various NLO predictions to different parton showers. The scale choice is µF = µR = mt. The lower
panels display the relative deviation from the fixed order result.
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Figure 16. Differential cross section distributions as a function of the transverse momentum of
the tt̄j1 system for pp → tt̄j+X at the LHC with

√
s = 8 TeV. Comparison between the NLO result

obtained with Helac-Nlo and results produced by matching various NLO predictions to different
parton showers. The scale choice is µF = µR = mt. The lower panels display the relative deviation
from the fixed order result.

fixed order calculation can only be seen in the tails of the distributions due to smaller

statistics.
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KrkNLO method

• Modified LO PS and PDF for full phase space	


• NLO correction by multiplicative weight

8

Figure 5: The illustration of the kinematic boundaries in the BEV algorithm with n = 2
particles. The parton no. 1 is emitted within the semi-triangular shaded (blue) area defined
by (1� z1)2 > q

2
1/(s0/z1) and s > q

2
1 > q

2
s . The parton no. 2 is generated within the second

semi-trapezoid area marked by the dashed (red) line according to (1� z2)2 > q

2
2/(s1/zz) and

q

2
1 > q

2
2 > q

2
s . The third parton is not generated, but its would-be-allowed space is marked by

the leftmost almost-trapezoid line.

Figure 6: The illustration of the kinematic of the BEV algorithm with n = 2 particles
in the extreme case when the parton no. 1 is emitted with q

2
1 > s0 = ŝ and the parton

no. 2 is generated within the area not accessible for the parton no. 1 due to a higher IR
boundary.

10

Jadach et al., 1503.06849
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KrkNLO results

• as choice is for first emission
9
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Figure 12: Comparisons of the transverse momentum distribution from MC@NLO, POWHEG
and two versions of KrkNLO for both the qq̄ and qg channels as in Fig. 11, but the parton
shower backward evolution runs to the end as normally.

in Section 3.
The change of the factorization scheme allows one to eliminate troublesome z-dependent

terms from the coe�cient function and it e↵ectively amounts to creating the MC PDFs.
In Section 4, we have discussed how such PDFs can be obtained and how they di↵er from
the standard MS parton distributions. There, we have also validated the MC factorization
scheme by studying the Drell–Yan process at the fixed-order NLO level and showing that
the MS and MC scheme results are identical up to the order O(↵s).

We have implemented the KrkNLO method on top of the Catani–Seymour type of
parton shower in the Sherpa event generator for the case of production of the electroweak
boson (hence, the initial-state parton shower). In Sectin 5, we have presented compar-
isons of the NLO-PS matched results obtained with our technique with the fixed-order
NLO results from MCFM and with other matched results, namely those of MC@NLO
and POWHEG. In particular, we have demonstrated that the KrkNLO results recover the
fixed-order NLO predictions (up to sub-percent di↵erences for the qq̄ channel only and
⇠ 5% for both channels, coming from beyond-NLO terms).

As for the comparisons of KrkNLO with MC@NLO and POWHEG at the level of di↵er-
ential distributions, all three methods turn out to give essentially identical results for the
yZ spectrum. The pT,Z distributions look somewhat di↵erent for each method and the ex-
act features depend on the initial channels and the recoil schemes. In general, the KrkNLO
method provides similar predictions to the other two well-established approaches. In par-
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Automatic NLO matching
• MC@NLO-type	


✤ MadGraph5_aMC@NLO (MadLoop5)	


	
 	
 	
 Alwall et al., 1405.0301	


✤ Sherpa+OpenLoops	


	
 	
 	
 Höche et al., 1111.1220; 1201.5882	


✤ Herwig++ Matchbox+OpenLoops/GoSam	


	
 	
 Plätzer, Gieseke, 1109.6256; Bellm et al., 1310.6877	


• POWHEG-type	


✤ MadGraph4+POWHEG+MCFM/GoSam	


	
 	
 	
 Campbell et al.,1202.5475; Luisoni et al., 1502.01213	


✤ Herwig++ Matchbox+OpenLoops/GoSam
10
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MG5_aMC@NLO

• Sampled from 172 processes	


• Mostly new at NLO
11

Alwall et al., 1405.0301

Process Syntax Cross section (pb)

Heavy quarks+vector bosons LO 13 TeV NLO 13 TeV

e.1 pp→W± bb̄ (4f) p p > wpm b b∼ 3.074± 0.002 · 102 +42.3%
−29.2%

+2.0%
−1.6% 8.162± 0.034 · 102 +29.8%

−23.6%
+1.5%
−1.2%

e.2 pp→Z bb̄ (4f) p p > z b b∼ 6.993± 0.003 · 102 +33.5%
−24.4%

+1.0%
−1.4% 1.235± 0.004 · 103 +19.9%

−17.4%
+1.0%
−1.4%

e.3 pp→ γ bb̄ (4f) p p > a b b∼ 1.731± 0.001 · 103 +51.9%
−34.8%

+1.6%
−2.1% 4.171± 0.015 · 103 +33.7%

−27.1%
+1.4%
−1.9%

e.4∗ pp→W± bb̄ j (4f) p p > wpm b b∼ j 1.861± 0.003 · 102 +42.5%
−27.7%

+0.7%
−0.7% 3.957± 0.013 · 102 +27.0%

−21.0%
+0.7%
−0.6%

e.5∗ pp→Z bb̄ j (4f) p p > z b b∼ j 1.604± 0.001 · 102 +42.4%
−27.6%

+0.9%
−1.1%

2.805± 0.009 · 102 +21.0%
−17.6%

+0.8%
−1.0%

e.6∗ pp→ γ bb̄ j (4f) p p > a b b∼ j 7.812± 0.017 · 102 +51.2%
−32.0%

+1.0%
−1.5% 1.233± 0.004 · 103 +18.9%

−19.9%
+1.0%
−1.5%

e.7 pp→ tt̄W± p p > t t∼ wpm 3.777± 0.003 · 10−1 +23.9%
−18.0%

+2.1%
−1.6% 5.662± 0.021 · 10−1 +11.2%

−10.6%
+1.7%
−1.3%

e.8 pp→ tt̄ Z p p > t t∼ z 5.273± 0.004 · 10−1 +30.5%
−21.8%

+1.8%
−2.1% 7.598± 0.026 · 10−1 +9.7%

−11.1%
+1.9%
−2.2%

e.9 pp→ tt̄ γ p p > t t∼ a 1.204± 0.001 · 100 +29.6%
−21.3%

+1.6%
−1.8%

1.744± 0.005 · 100 +9.8%
−11.0%

+1.7%
−2.0%

e.10∗ pp→ tt̄W±j p p > t t∼ wpm j 2.352± 0.002 · 10−1 +40.9%
−27.1%

+1.3%
−1.0%

3.404± 0.011 · 10−1 +11.2%
−14.0%

+1.2%
−0.9%

e.11∗ pp→ tt̄ Zj p p > t t∼ z j 3.953± 0.004 · 10−1 +46.2%
−29.5%

+2.7%
−3.0% 5.074± 0.016 · 10−1 +7.0%

−12.3%
+2.5%
−2.9%

e.12∗ pp→ tt̄ γj p p > t t∼ a j 8.726± 0.010 · 10−1 +45.4%
−29.1%

+2.3%
−2.6% 1.135± 0.004 · 100 +7.5%

−12.2%
+2.2%
−2.5%

e.13∗ pp→ tt̄W−W+ (4f) p p > t t∼ w+ w- 6.675± 0.006 · 10−3 +30.9%
−21.9%

+2.1%
−2.0% 9.904± 0.026 · 10−3 +10.9%

−11.8%
+2.1%
−2.1%

e.14∗ pp→ tt̄W±Z p p > t t∼ wpm z 2.404± 0.002 · 10−3 +26.6%
−19.6%

+2.5%
−1.8%

3.525± 0.010 · 10−3 +10.6%
−10.8%

+2.3%
−1.6%

e.15∗ pp→ tt̄W±γ p p > t t∼ wpm a 2.718± 0.003 · 10−3 +25.4%
−18.9%

+2.3%
−1.8% 3.927± 0.013 · 10−3 +10.3%

−10.4%
+2.0%
−1.5%

e.16∗ pp→ tt̄ ZZ p p > t t∼ z z 1.349± 0.014 · 10−3 +29.3%
−21.1%

+1.7%
−1.5%

1.840± 0.007 · 10−3 +7.9%
−9.9%

+1.7%
−1.5%

e.17∗ pp→ tt̄ Zγ p p > t t∼ z a 2.548± 0.003 · 10−3 +30.1%
−21.5%

+1.7%
−1.6% 3.656± 0.012 · 10−3 +9.7%

−11.0%
+1.8%
−1.9%

e.18∗ pp→ tt̄ γγ p p > t t∼ a a 3.272± 0.006 · 10−3 +28.4%
−20.6%

+1.3%
−1.1%

4.402± 0.015 · 10−3 +7.8%
−9.7%

+1.4%
−1.4%

Table 6: Sample of LO and NLO total rates for the production of heavy quarks in association with vector bosons, possibly within cuts

and in association with jets, at the 13-TeV LHC; we also report the integration errors, and the fractional scale (left) and PDF (right)

uncertainties. Processes that explicitly involve b-quarks in the final state, and process e.13, are calculated in the four-flavour scheme,

while all of the others are in the five-flavour scheme. Results are available in the literature for Wbb̄ [66, 305–308], Zbb̄ [66, 307, 309],

tt̄γ [310], tt̄Z [66,311,312], tt̄W [66,312,313] production. For the majority of the processes in this table, NLO corrections are calculated

in this work for the first time.

–
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MG5_aMC@NLO

12

Process Syntax Cross section (pb)

Top quarks +bosons LO 1 TeV NLO 1 TeV

j.1 e+e−→ tt̄H e+ e- > t t∼ h 2.018± 0.003 · 10−3 +0.0%
−0.0%

1.911± 0.006 · 10−3 +0.4%
−0.5%

j.2∗ e+e−→ tt̄Hj e+ e- > t t∼ h j 2.533± 0.003 · 10−4 +9.2%
−7.8% 2.658± 0.009 · 10−4 +0.5%

−1.5%

j.3∗ e+e−→ tt̄Hjj e+ e- > t t∼ h j j 2.663± 0.004 · 10−5 +19.3%
−14.9%

3.278± 0.017 · 10−5 +4.0%
−5.7%

j.4∗ e+e−→ tt̄γ e+ e- > t t∼ a 1.270± 0.002 · 10−2 +0.0%
−0.0% 1.335± 0.004 · 10−2 +0.5%

−0.4%

j.5∗ e+e−→ tt̄γj e+ e- > t t∼ a j 2.355± 0.002 · 10−3 +9.3%
−7.9% 2.617± 0.010 · 10−3 +1.6%

−2.4%

j.6∗ e+e−→ tt̄γjj e+ e- > t t∼ a j j 3.103± 0.005 · 10−4 +19.5%
−15.0% 4.002± 0.021 · 10−4 +5.4%

−6.6%

j.7∗ e+e−→ tt̄Z e+ e- > t t∼ z 4.642± 0.006 · 10−3 +0.0%
−0.0% 4.949± 0.014 · 10−3 +0.6%

−0.5%

j.8∗ e+e−→ tt̄Zj e+ e- > t t∼ z j 6.059± 0.006 · 10−4 +9.3%
−7.8% 6.940± 0.028 · 10−4 +2.0%

−2.6%

j.9∗ e+e−→ tt̄Zjj e+ e- > t t∼ z j j 6.351± 0.028 · 10−5 +19.4%
−15.0% 8.439± 0.051 · 10−5 +5.8%

−6.8%

j.10∗ e+e−→ tt̄W±jj e+ e- > t t∼ wpm j j 2.400± 0.004 · 10−7 +19.3%
−14.9%

3.723± 0.012 · 10−7 +9.6%
−9.1%

j.11∗ e+e−→ tt̄HZ e+ e- > t t∼ h z 3.600± 0.006 · 10−5 +0.0%
−0.0%

3.579± 0.013 · 10−5 +0.1%
−0.0%

j.12∗ e+e−→ tt̄γZ e+ e- > t t∼ a z 2.212± 0.003 · 10−4 +0.0%
−0.0% 2.364± 0.006 · 10−4 +0.6%

−0.5%

j.13∗ e+e−→ tt̄γH e+ e- > t t∼ a h 9.756± 0.016 · 10−5 +0.0%
−0.0% 9.423± 0.032 · 10−5 +0.3%

−0.4%

j.14∗ e+e−→ tt̄γγ e+ e- > t t∼ a a 3.650± 0.008 · 10−4 +0.0%
−0.0% 3.833± 0.013 · 10−4 +0.4%

−0.4%

j.15∗ e+e−→ tt̄ZZ e+ e- > t t∼ z z 3.788± 0.004 · 10−5 +0.0%
−0.0% 4.007± 0.013 · 10−5 +0.5%

−0.5%

j.16∗ e+e−→ tt̄HH e+ e- > t t∼ h h 1.358± 0.001 · 10−5 +0.0%
−0.0% 1.206± 0.003 · 10−5 +0.9%

−1.1%

j.17∗ e+e−→ tt̄W+W− e+ e- > t t∼ w+ w- 1.372± 0.003 · 10−4 +0.0%
−0.0% 1.540± 0.006 · 10−4 +1.0%

−0.9%

Table 11: Sample of LO and NLO rates for the production of top quarks in association with bosons, possibly within cuts and in

association with jets, at a 1-TeV e+e− collider, and the fractional scale uncertainties. Cross sections are calculated in the five-flavour

scheme; see table 1 for the meaning of wpm. Results at NLO accuracy for tt̄H production can be found in ref. [342]. All of the other

processes are computed here for the first time at the NLO.

–
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NNLO matching
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NNLO matching
• Fully inclusive NNLO, one extra jet NLO	


• So far, limited to DY, H	


✤ MiNLO-NNLOPS	


	
 	
 	
 Hamilton et al.,1309.0017, 1407.3773	


✤ UN2LOPS	


	
 	
 	
 Höche, Li, Prestel, 1405.3607,1407.3773	


✤ Geneva	


	
 	
 	
 Alioli et al., 1311.0286
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MiNLO-NNLOPS
• Modified DY/H+jet POWHEG with NNLL Sudakov (B2)	


• Reweighted to NNLO	


!

• Z pT, rapidity	


!

!

!

• W d0,1 (kt alg.)

15

efficiency.
We observe a very good agreement between the two approaches for R = 0.4 and 0.5,

whereas for R = 1 differences are more marked. Few comments are in order here: first,
the pattern shown in the plots is consistent with what was already observed in the Higgs
case (fig. 7 of ref. [31]), namely differences up to few percents, and good band overlap, for
smaller values of R, and larger differences for R = 1. For very large values of R, the leading-
jet momentum will balance against the transverse momentum of the vector boson. Given
what we observed for pT,Z, it is therefore no surprise that, when R = 1, we have O(3� 5)%

differences with respect to the resummed result for values of pT,veto ⇠ 25� 30 GeV, as used
currently by ATLAS and CMS in Higgs production.

4 Comparison to data

In this section we compare our predictions with a number of available data from ATLAS,
both for Z and for W production.

4.1 Z production

We show here a comparison to a number of measurements performed by ATLAS at 7
TeV [46–48]. ATLAS applied the following cuts: they consider the leptonic decay of the
Z boson to electrons or muons and require an electron (muon) and a positron (anti-muon)
with pT > 20 GeV and rapidity |y| < 2.4. The invariant mass of the di-lepton pair should
lie in the window 66 GeV < mll < 116 GeV.

We begin by showing in Fig. 9 a comparison of NNLOPS results (with two versions of

 40
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Figure 9. Comparison of NNLOPS prediction obtained with Pythia8 (left) and Pythia6 (right) to
data (black) from ref. [46] for the Z boson rapidity distribution at 7 TeV LHC.

Pythia) to data from ref. [46] for the Z boson rapidity distribution. As expected, our result
displays a quite narrow uncertainty band, due to having included NNLO corrections. Since
this is a fully inclusive observable, the absolute value of the cross-section and the size of
uncertainty band will be driven by the NNLO reweighting: hence, Pythia6 and Pythia8

– 17 –

results are almost indistinguishable, as expected. We also observe that we agree with data
within the errors for central rapidities. At high rapidity, however, there seems to be a
tension between data and our results. This discrepancy between data and pure NNLO
was already observed in the original ATLAS paper, although the NNLO results shown in
ref. [46] have a slightly larger uncertainty band since they also contain PDF uncertainties.
We note that, at the moment, the dominant error is coming from data. We therefore expect
the agreement to improve, as more data become available, although systematic errors are
non-negligible [46].

In Fig. 10 we now show the same comparison for the Z boson transverse momentum

Figure 10. Comparison to data from ref. [47] for the Z boson transverse distribution at 7 TeV LHC.
Normalised data compared to NNLOPS showered with Pythia8 (left plot, red) and Pythia6 (right
plot, blue). Uncertainty bands for the theoretical predictions are obtained by first normalising all
scale choices, as described in Sec. 3.1 and then taking the associated envelope of these normalised
distributions.
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Figure 11. As in previous figure, but with more luminosity, thinner binnings, and up to larger
values of pT,Z. Data are now from taken from ref. [49].
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Figure 15. Comparison to 7 TeV LHC data from ref. [52] for the W boson kT splitting scale
p
d1

as defined in eq. (4.1) using Pythia8 (left) and Pythia6 (right).

Figure 16. Comparison to 7 TeV LHC data from ref. [52] for the W boson ratio of the kT splitting
scales

p
d0 and

p
d1 using Pythia8 (left) and Pythia6 (right).

in predicting d1 and d0 should be partially compensated when plotting d1/d0. It is therefore
no surprise that the agreement with data is better than in Figs. 14 and 15.

4.3 W and Z polarization

Recently both ATLAS [53] and CMS [54] have published results on the polarization of the
W boson at 7 TeV confirming the Standard Model prediction, that W bosons are mostly
left-handed in pp collisions at large transverse momenta [55]. Knowledge about the W

boson polarization is important, as it provides a discriminant in searches for new physics.
We first very briefly review how to measure the polarization in terms of angular coeffi-

cients but refer the reader to the literature for a complete description of the topic [55–62].
Here we will follow the derivation of [55]. We then continue to compare ATLAS data [53]

– 22 –

where

diB = p2T,i ,

dij = min(p2T,i, p
2
T,j)

(�Rij)
2

R2
, (4.2)

are the usual distances used in the kT-algorithm. Among other reasons, these observables
are interesting because they can be used as a probe of the details of matching and merg-
ing schemes. Due to the underlying Zj-MiNLO simulation, our NNLOPS prediction is NLO
accurate for large values of pT,j1

, and it is at least LL accurate in describing the 1 ! 0

jet transition, which is measured in the d0 distribution. The second jet spectrum and the
2 ! 1 jet transition (which is encapsulated in d1) are instead described at LO+LL, due to
the underlying POWHEG simulation. Since the definition of d1 contains d12, this observable is
a measure of the internal structure of the first jet, and not only of the second jet transverse
momentum.

In Figs. 14 and 15 we show our NNLOPS predictions against ATLAS data, using as
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Figure 14. Comparison of NNLOPS prediction (red) to 7 TeV LHC data (black) from ref. [52] for
the W boson kT splitting scale

p
d0 as defined in the text using Pythia8 (left) and Pythia6 (right).

jet radius R = 0.6. We find good agreement, especially when
p
di > 10 GeV. Below this

value, we are still compatible with the experimental uncertainty bands, although we are
systematically lower than data. Once more, one should consider that the region below
5 � 10 GeV will be affected also by non-perturbative effects. For large values of di we are
instead sensitive to the level of accuracy that we reach in describing hard emissions. In this
respect, it is no surprise that we have a better agreement with data than the POWHEG results
shown in ref. [52], where d1 is poorly described since the second emission is only described
in the shower approximation. NLO corrections to the W + 1 jet region are included in the
NNLOPS simulation, and are very likely the reason why we have a description of d0 that is
better than what was observed in ref. [52].

Finally in Fig. 16 we show the distribution for the ratio d1/d0, for events with
p
d0 >

20 GeV. Due to the ratio nature of this quantity, a simultaneous over- or underestimation

– 21 –

Karlberg, Re, Zanderighi, 1407.2940

(scale but no PDF          
uncertainty)
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UN2LOPS

• Phase space slicing at qT ~ 1 GeV (DY, H)	


• qT subtraction: NNLO in zero bin	


• extra jet at NLO

16

4

The generating functional of the MC@NLO is

F̃1(t, O) = ⇧̃1(tc, t1)O(�1) +

Z

tc

d�̂1
S1(�1, �̂1)

B1(�1)
⇧̃1(t̂, t1)F2(t̂, O) , (14)

with the no-branching probability given by parton-shower unitarity:

⇧̃1(t, t
0,�

n

) = exp

(
�
Z

t

0

t

d�̂1
S1(�1, �̂1)

B1(�1)

)
. (15)

Note that we choose q
T,cut  1 GeV, which is below the cuto↵ of the initial-state parton shower.

Equation (12) produces the correct dependence on the observable O at next-to-leading QCD for q
T

> q
T,cut. It can

thus be used to complement the exclusive NNLO calculation in the zero-q
T

bin. However, the two calculations cannot
be naively added as in Eq. (8), since this would spoil the O(↵2

s

) accuracy of the full result. This problem was also
addressed by NLO merging methods [7–10], and by the MINLO scale setting procedure [28]. The O(↵

s

) contribution to
the fixed-order expansion of the parton shower must first be subtracted, which can be achieved e�ciently by omitting
the first emission in a truncated shower [8], or by explicit subtraction [7, 9]. Correspondingly, any O(↵

s

) contribution
must be subtracted from the corrective weight, Eq. (9). The full formula describing our combination method can be
written as

hOi(UN2LOPS) =

Z
d�0

¯̄B
qT,cut

0 (�0)O(�0)

+

Z

qT,cut

d�1

h
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2
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)
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(1)
1 (�1) +⇧(1)
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2
Q

)
⌘i
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+
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2
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)
⇣
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(1)
1 (�1) +⇧(1)

0 (t1, µ
2
Q

)
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B1(�1) F̄1(t1, O)

+
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+
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d�2 HE
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(16)

We have defined B̃R = B̃� B and the regular and exceptional part of the hard remainder

HR
1 (�2) = H1(�2)⇥ (t1 � t2)⇥ (t2 � t

c

) , HE
1 (�2) = H1(�2)�HR

1 (�2) . (17)

The exceptional contributions HE
1 contain phase space regions for which no ordered parton shower history can be

identified, as well as two-parton states that do not allow an interpretation as having evolved from a zero- or one-parton
state via QCD-type parton splittings. Exceptional contributions do not undergo the truncated parton showering used
to produce ⇧0(t1, µ2

Q

), as they do not generate logarithmic corrections at parton shower accuracy. Ambiguities in the
matched result due to exceptional configurations will be important for matching at higher logarithmic accuracy, and
can be resolved as soon as the parton shower is amended with the necessary sub-leading logarithmic corrections and
electroweak splittings. This will allow to treat such states in the same manner as the regular configurations.
The subtraction terms for the no-branching probability of the parton shower, and for the weight w1, are given by
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(18)

They are generated by the Monte-Carlo procedure outlined below Eq. (9). Note that 1� ⇧0

�
w1 + w

(1)
1 + ⇧(1)

0

�
is of

order ↵2
s

. Therefore, it is easy to see that the method does not spoil the accuracy of the fixed-order calculation. To
investigate if the logarithmic accuracy of the parton shower resummation is maintained, we take the collinear limit,
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FIG. 2. Transverse momentum and rapidity spectrum of the electron. The gray solid (blue hatched) band shows scale
uncertainties obtained by varying µR/F (µQ) in the range mll/2  µ  2mll.
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FIG. 3. UN2LOPS prediction for the transverse momentum spectrum of the Drell-Yan lepton pair in comparison to ATLAS
data from [39] (left) and CMS data from [38] (right). The gray solid (blue hatched) band shows scale uncertainties obtained
by varying µR/F (µQ) in the range mll/2  µ  2mll.

V. OUTLOOK

We have presented a simple method for matching NNLO calculations in perturbative QCD to existing parton
showers, based on the UNLOPS technique. In contrast to the original implementation of UNLOPS, the event generation
algorithm does not lead to large cancellations, and convergence of the Monte Carlo integration is much improved.
Remaining uncertainties of the method are related to the treatment of finite remainders of the virtual corrections after
UV renormalization and IR subtraction, and to the treatment of exceptional configurations in the hard remainder of
double real corrections. Our method can be applied to arbitrary processes, and it can be systematically improved by
using parton showers with higher logarithmic accuracy, which is currently an area of active research. The combination

Höche, Li, Prestel, 1405.3607
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FIG. 2. Rapidity spectrum of the Higgs boson in individual matching (left) and factorized matching (right). See Sec. IV for
details.
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FIG. 3. Transverse momentum spectrum of the Higgs boson in individual matching (left) and factorized matching (right). See
Sec. IV for details.

In order to cross-check our implementation we first compare the total cross section to results obtained from
HNNLO [6, 7]. Table I shows that the predictions agree within the permille-level statistical uncertainty of the Monte-
Carlo integration. Additionally, we have checked that our results are identical when varying qT,cut between 0.1 GeV
and 1 GeV. The default value is qT,cut =1 GeV. Figure 1 shows a comparison of the Higgs rapidity and transverse
momentum spectrum between Sherpa and HNNLO. The excellent agreement over a wide range of phase space confirms
the correct implementation of the NNLO calculation in Sherpa.
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Merging at NLO (?)

• Separate samples by jet resolution, e.g. dcut	


• Make NLO for di+1< dcut < di	


• Avoid double counting	


• Reduce dcut dependence	


✤ MEPS@NLO:  Höche et al., 1207.5030	


✤ FxFx:  Frederix, Frixione, 1209.6215	


✤ Geneva:  Alioli et al., 1211.7049	


✤ UNLOPS:  Lönnblad, Prestel, 1211.7278, Plätzer, 1211.5467
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MEPS@NLO
• W+0,1,2 jets at NLO	


• W+3,4 jets at LO
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Höche et al., 1207.5030
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Figure 1: Cross section as a function of the inclusive jet multiplicity (left) and their ratios (right) in W+jets
events measured by ATLAS [50].

5 Conclusions

In this publication we have introduced a new method to consistently combine towers of matrix elements, at
next-to leading order, with increasing jet multiplicity into one inclusive sample. Our method respects, at
the same time, the fixed order accuracy of the matrix elements in their respective section of phase space
and the logarithmic accuracy of the parton shower. The analysis of scale dependencies allows for a solid
understanding of the corresponding theory uncertainties in the merged samples. Employing next-to leading
order matrix elements leads, of course, to a dramatic reduction of the dependence on the renormalisation
and factorisation scale and a much improved description of data. The same findings also apply to the case
of e�e+ annihilations into hadrons, cf. [40].

This allows, for the first time, to use Monte Carlo tools to generate inclusive multijet samples and analyse
their uncertainty due to the truncation of the perturbative series in the matrix elements in a systematic and
meaningful way.

Acknowledgements

SH’s work was supported by the US Department of Energy under contract DE–AC02–76SF00515, and in
part by the US National Science Foundation, grant NSF–PHY–0705682, (The LHC Theory Initiative). MS’s
work was supported by the Research Executive Agency (REA) of the European Union under the Grant
Agreement number PITN-GA-2010-264564 (LHCPhenoNet). FS’s work was supported by the German Re-
search Foundation (DFG) via grant DI 784/2-1. We gratefully thank the bwGRiD project for computational
resources.

References

[1] A. Denner and S. Dittmaier, Reduction schemes for one-loop tensor integrals, Nucl. Phys. B734 (2006),
62–115, [arXiv:hep-ph/0509141 [hep-ph]].

10

W+0 NLO, 1-4 LO



Parton Showers, Matching & Merging Bryan Webber, PSR15, Cracow

FxFx merging

•   and     event samples for each multiplicity (                         )

22

see eq. (2.9)). While this condition is imposed at the matrix-element level, one should

keep in mind that the MC subtraction term, T0KMC, appears in eq. (2.27) in order to

prevent double counting at the NLO. Hence, consistency demands that its modification

due to the D-dependent prefactor be accompanied by a prescription for the shower scale

that limits emissions within the same hardness range. Given the NLO accuracy of the

MC subtraction terms, this can be conveniently done by means of the LH-interface [65]

parameter SCALUP, which will be chosen event-by-event in a random manner (so as to

avoid biases) according to the inverse of the function D (for example, with a sharp D

function and SCALUP having the meaning of relative pT , such a scale will be always set

equal to µQ). The modifications of the shower scale and of the MC subtraction term in

H events imply that the MC subtraction term must be modified in S events as well; this

is the reason for the factor D(d1(ΞH,0)) in eq. (2.26). As far as the 1-parton sample is

concerned (eqs. (2.28) and (2.29)), the factors 1−D limit from below what is essentially

the relative pT of the Born-level parton – in the case of a sharp D function, this is therefore

equivalent to imposing hard Born-level cuts. Thus, it should be intuitively clear, and could

be formally proven using again the techniques of appendix B of ref. [15], that the proper

1−D prefactor for the H-event MC subtraction term is that in eq. (2.29), and not that in

eq. (2.25).

2.2.2 The general case

What is done in sect. 2.2.1 is sufficient to sketch the procedure one has to follow in order

to convert the naive prescriptions of eqs. (2.13) and (2.14) into correct expressions for

MC@NLO short-distance cross sections. We obtain:

dσ̄S,0 = T0 + V0 − T0K+ T0KMCD(d1(ΞH,0)) , (2.30)

dσ̄H,0 =
[

T1 − T0KMC

]

D(d1(ΞH,0)) , (2.31)

dσ̄S,i =
[

Ti + Vi − TiK + TiKMCD(di+1(ΞH,i))
]

(2.32)

× (1−D(di(ΞS,i))) Θ (di−1(ΞS,i)− µ2) ,

dσ̄H,i =
[

Ti+1 (1−D(di(ΞH,i)))Θ (di−1(ΞH,i)− µ2) (2.33)

−TiKMC (1−D(di(ΞS,i)))Θ (di−1(ΞS,i)− µ2)
]

D(di+1(ΞH,i)) ,

dσ̄S,N =
[

TN + VN − TNK + TNKMC

]

(2.34)

× (1−D(dN (ΞS,N )))Θ (dN−1(ΞS,N )− µ2) ,

dσ̄H,N = TN+1 (1−D(dN (ΞH,N )))Θ (dN−1(ΞH,N)− µ2) (2.35)

− TNKMC (1−D(dN (ΞS,N )))Θ (dN−1(ΞS,N )− µ2) .

We stress that eqs. (2.30) and (2.31) are redundant, since they are just eqs. (2.32) and (2.33)

respectively, with i = 0; we report them explicitly only for the sake of clarity. Furthermore,

eqs. (2.34) and (2.35) are identical to eqs. (2.32) and (2.33) respectively, with i = N , except

for the fact that the hardness of the (N + 1)th parton is not bounded from above. This is

correct, since there is no higher multiplicity whose Born-level kinematics could compensate

for the lack of hard emissions in the N -parton sample.

– 12 –

D(di) ⇡ ⇥(µ2 � di)

radiation w.r.t. a given (Born) kinematic configuration5. The (i + 1)th parton can be

arbitrarily soft or collinear to any other parton (which implies pBorn
T

≃ small), but also

hard and well separated (where pBorn
T

≃ large). All the other O(αb+i+1
S ) contributions to

the cross section have an (S + i)-body kinematics, identical to that of the Born; these are

the S-event configurations in MC@NLO.

After processing hard events with parton showers, one will obtain configurations quite

different from those of the S and H events; in particular, final-state multiplicities will have

greatly increased. However, these differences may be irrelevant to physics observables,

which may be almost identical, in shape and normalization, to those resulting from an

NLO parton-level computation6. For this not to be the case, two conditions must be

fulfilled. Firstly, the observable must be IR-sensitive (i.e., large logarithms can appear

in the coefficients of its perturbative expansion). Secondly, one must be in an IR phase-

space region, where partons are soft and/or collinear (which causes those logarithms to

grow large); this corresponds to having pBorn
T

≃ small. When this happens, the shape

of the observable is determined by the MC (large logarithms are resummed), while its

normalization is still dictated by the underlying NLO matrix elements (thanks to the

unitarity property of the shower). This implies, in particular, that the value of pBorn
T

of the

configuration emerging from the shower can be markedly different from that relevant to

the H event from where the shower started (which is trivially true for S events, since they

have pBorn
T

= 0). On average, one can say that in the IR regions S and H events provide

the normalization, while the kinematics is controlled by the MC.

Let us now consider the hard regions, where pBorn
T

≃ large. S events do not contribute

there, since in order to do so the shower would have to provide all the extra radiation

leading to pBorn
T

(which is still possible, but at the price of choosing unjustifiably large

shower scales). On the other hand, H events do contribute; more specifically, the values

of pBorn
T

before and after the shower do not differ significantly. Thus, on average, in

the hard regions H events provide one with both the normalization and the kinematic

configurations. Finally, it should be stressed that the characteristics of the S and H events

discussed here are quite directly related to the fact that MC@NLO is designed to perturb

in a minimal manner both the MC and the matrix-element results (in particular, there are

no contributions of relative O(α2
S
) which are not of MC origin).

The above observations underpin the proposal for the NLO-merging strategy that we

sketch here.

1. For any given Born multiplicity, except for the largest one considered, there must not

be contributions to the hard regions. This implies, in particular, that in such regions

real emissions must not occur, and the corresponding matrix elements must rather

be viewed as defining the Born process for the next (i.e., one unit larger) multiplicity.

2. Suitable choices of veto scales in showers must be made for consistency with item 1.

5Other variables can be devised so as to distinguish Born from real-emission configurations; they are all

equivalent for the sake of the present discussion.
6In some cases, hadronization effects can blur this picture, and is therefore convenient to consider them

switched off in MCs for the time being.
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Frederix, Frixione, Papaefstathiou, Prestel, Torrielli, in prep.
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FxFx W results (2)
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FxFx W results (3)
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Geneva merging (e+e )
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Figure 5. The peak region of the T2 distribution from Geneva after showering with Pythia 8. The
contribution from showered events originating from 2-, 3-, and 4-parton events is shown along with
their sum, including scale variation (blue band histogram).

the separate contribution of 2-, 3-, and 4-parton events after showering for the central value

in the peak region. The shape of the 2-parton showered histogram is determined by Pythia

and the area under the histogram is the cumulant d�/d�2(T cut
2 ) calculated at NNLL0+LO3.

The relative contribution of 3-parton and 4-parton events is determined by T cut
3 = 2GeV,

for which the 4-parton contribution is well behaved, giving 15% of the total cross section

and no large cancellation with 3-parton events. These contributions all combine smoothly to

generate the total Geneva showered result.

The action of the shower on 3-parton and 4-parton events, which make up the spectrum

above T cut
2 , is restricted to not change T2 by more than a power suppressed amount � T2,

as discussed in section 3.1.3. This controls the allowed shift from the Geneva partonic to

showered histograms in figure 4. We can see that there is excellent agreement, including

uncertainties, between the two in the peak and transition regions. This validates that with

our choice of �, the higher-order accuracy of the resummed T2 spectrum is not compromised

by the shower. (Increasing �, we do observe at some point a shift of showered results away

from partonic.) The showering does shift the T2 spectrum in the far tail away from the

partonic result which matches the NLO3 curve, as can be see in figure 4(c). This is allowed,

since our partonic prediction in this region becomes only leading order for 4 partons.

3.2.3 Hadronized Results and Comparison to Data

The full prediction for the jet resolution spectrum is obtained by turning on the hadronization

in Pythia. This gives rise to a shift in the T2 spectrum, shown in figure 6, where “default”

refers to the default running parameters ↵s(mZ) = 0.1135 and Pythia e+e� tune 1. As

discussed in section 3.1.3, we use the standard Pythia 8 tunes without modifying any internal

parameters. For comparison we show the Geneva hadronized result for tune 3 as well as

for tune 1 with the world average value ↵s(mZ) = 0.1184. We also show a comparison to
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Figure 6. The showered NNLL0+NLO3 Geneva prediction with and without hadronization using
the default values Pythia 8 e+e� tune 1 and ↵

s

(m
Z

) = 0.1135 compared to data from ALEPH [71] in
the (a) peak, (b) transition, and (c) tail regions and to OPAL [72] in the peak and transition regions.
The ratio of Geneva predictions to the ALEPH data is shown in (d). Also shown is the Geneva
prediction at the central scale with ↵

s

(m
Z

) = 0.1184 and e+e� tune 3.

experimental data from ALEPH [71] and OPAL [72]. We only show ALEPH data in the tail,

since the OPAL data in this region is sparse. These measurements are fully corrected to the

particle level, allowing us to directly compare to our hadronized predictions. Since the data

are normalized to the total cross section, we rescale them to the total NNLO cross section

and convert from thrust T to T2 = Ecm(1� T ). This allows us to directly compare the data

to the absolute cross section predictions in Geneva, unlike a comparison between normalized

spectra which would only test the shape. The Geneva prediction at the default values agrees

impressively well with the data within uncertainties across the peak and transition regions

and into the tail. The di↵erence in the far tail is expected since here fixed-order contributions

beyond LO4 are important, which are not yet included in our results.

The partonic Geneva prediction does not include nonperturbative e↵ects in the soft

– 36 –

Alioli et al., 1211.7049



Parton Showers, Matching & Merging Bryan Webber, PSR15, Cracow

UNLOPS merging

• Merging scale 
dependence

29

Lönnblad, Prestel, 1211.7278

ATLAS data
NL3 tMS=15 GeV, cc
NL3 tMS=30 GeV, cc
NL3 tMS=45 GeV, cc

10 1

10 2

10 3

Inclusive Jet Multiplicity

σ
(W

+
≥

N
je

t
je

ts
)

[p
b

]

0 1 2 3 4
0

0.5

1

1.5

2

Njet

M
C

/
d

at
a

ATLAS data
UNLOPS tMS=15 GeV, cc
UNLOPS tMS=30 GeV, cc
UNLOPS tMS=45 GeV, cc

10 1

10 2

10 3

Inclusive Jet Multiplicity

σ
(W

+
≥

N
je

t
je

ts
)

[p
b

]

0 1 2 3 4
0

0.5

1

1.5

2

Njet

M
C

/
d

at
a

ATLAS data
NL3 tMS=30 GeV, ll
NL3 tMS=30 GeV, cc
NL3 tMS=30 GeV, hh

10 1

10 2

10 3

Inclusive Jet Multiplicity

σ
(W

+
≥

N
je

t
je

ts
)

[p
b

]

0 1 2 3 4
0

0.5

1

1.5

2

Njet

M
C

/
d

at
a

ATLAS data
UNLOPS tMS=30 GeV, ll
UNLOPS tMS=30 GeV, cc
UNLOPS tMS=30 GeV, hh

10 1

10 2

10 3

Inclusive Jet Multiplicity

σ
(W

+
≥

N
je

t
je

ts
)

[p
b

]

0 1 2 3 4
0

0.5

1

1.5

2

Njet

M
C

/
d

at
a

Figure 9: Jet multiplicity in W-boson production, as measured by ATLAS [46]. The MC results
were obtained by merging up to two additional partons at LO, and zero and one additional par-
ton at NLO. MC results are shown for three different merging scales (top panels) and for three
different renormalisation/factorisation scales (bottom panels). Effects of multiple scatterings and
hadronisation are included. Left panels: Results of NL3. Right panels: Results of UNLOPS.

In figure 9, we show that the jet multiplicity is well under control in NLO merged

predictions. The left panel of Figure 8 shows that, as expected, it is not possible to

describe the number of zero-jet events with a W+jet NLO calculation. This is of course

exactly the strength of merged calculations: Observables with different jet multiplicities

can be described in a single inclusive sample.

The transverse momentum of the hardest jet in association with a W-boson is shown

in figure 10 and the right panel of Figure 8. It is clear that the NLO merged results do

not agree with data. We have chosen this particular observable because it our exhibits

the most unsatisfactory description of data that we have encountered while testing our

NLO merging methods. The reason for this disagreement is multifold. First, we have

already mentioned that correcting for inclusive NLO input produces harder p⊥1 tails. The
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Figure 10: Transverse momentum of the hardest jet in W-boson production, as measured by
ATLAS [46]. The MC results were obtained by merging up to two additional partons at LO, and
zero and one additional parton at NLO. MC results are shown for three different merging scales
(top panels) and for three different renormalisation/factorisation scales (bottom panels). Effects
of multiple scatterings and hadronisation are included. Left panels: Results of NL3. Right panels:
Results of UNLOPS.

two-jet sample will eventually dominate the tail. We have chosen to rescale the two-jet

contribution with a K-factor above unity. It could also be argued that the POWHEG-BOX

result in Figure 8 has slight tendency to overshoot. This might indicate that some part

of the “giant K-factor effect” due to enhancements of O
(
αs ln

p2
⊥1

M2
W

)
is developing in the

W+jet NLO calculation of p⊥1 because of soft/collinear W-bosons. The last two points

are correlated, since two-jet configurations have a major impact on the p⊥1-dependence of

the NLO result, and increasing the two-jet contribution can enhance the visibility of giant

K-factors.

The NL3 and UNLOPS descriptions of data exhibit high similarity. We have already

noted the semblance of both methods in section 4.1. This observation is specific to W-boson

production, and does not hold for other processes, as for instance illustrated in section 4.2.

– 32 –

• Ren/fac scale 
dependence



Parton Showers, Matching & Merging Bryan Webber, PSR15, Cracow

Parton Showers

30



Parton Showers, Matching & Merging Bryan Webber, PSR15, Cracow

Antenna (Lund) shower 

31

1 Dipole shower

In the rest frame of dipole (jk), emission i has transverse momentum pt and
rapidity y where

p2t = 2
pi · pjpi · pk

pj · pk
, (1)

y =
1

2
ln

pi · pk
pi · pj

(2)

and the leading contribution of this emission is

d�(jk)
n+1 = d�n

↵s

2⇡
(�2Tj ·Tk)

dp2t
p2t

dy . (3)

The phase space for emission is pi · pj , pi · pk < pj · pk = Q2/2 where Q is
the dipole mass. Hence

� ln
Q

pt
< y < ln

Q

pt
. (4)

1.1 Three jets in e+e� annihilation

The pt resolution is Q0 where Q2
0/Q

2 = ycut. Hence the 3-jet rate is

Rd
3 =

↵s

2⇡
2CF

Z Q

Q0

2
dpt
pt

Z lnQ/pt

� lnQ/pt
dy =

1

2
CFaL

2 (5)

where a = ↵s/⇡ and L = ln ycut.

1.2 Four jets in e+e� annihilation

This is represented by the diagram in fig. 1. There is a dipole stretched
from the quark to the first gluon emission and one from the gluon to the
antiquark. The colour factor is CF for a surface bounded by a quark (or
antiquark) and CA for that bounded by a gluon. Hence the rate is

Rd
4 =

✓
↵s

2⇡

◆2

2CF

Z Q
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2
dpt1
pt1

2 ln
Q

pt1
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Z pt1
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2 ln
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2 ln
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Q0

�
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✓
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1
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CFCA

◆
a2L4 , (6)

which is the same as that for an angular-ordered parton shower, R✓
4.
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1 Dipole shower
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Figure 1: Lund “origami” diagram for e+e� ! 4 jets.
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Djk =
pj · pk

pj · q pk · q = D(j)
jk +D(k)

jk

D(j)
jk = Djk

pk · q
(pj + pk) · q

D(j)
jk = Djk

pk · q pj ·Q
pj · q pk ·Q+ pk · q pj ·Q

D(j)
jk =

1

2
Djk +

1

2 q ·Q

✓
pj ·Q
pj · q

� pk ·Q
pk · q

◆

• Nagy-Soper

• Angular-ordered
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i
j

k

Coherent parton shower

1 One soft gluon emission

Denoting the 4-momentum of soft gluon i by pµi = (!i,qi), we can write the
coherent emission from (jk) as

d�(jk)
n+1 = g2s d�n

d3qi

(2⇡)32!i
(�Tj ·Tk)

pj · pk
pj · pi , pk · pi

=
↵s

2⇡
d�n

d!i

!i

d⌦i

2⇡
(�Tj ·Tk)

⇠jk
⇠ij ⇠ik

(1)

where ⇠jk = 1� cos ✓jk, etc. Now if we write

d⌦i

2⇡

⇠jk
⇠ij ⇠ik

=
d⇠ij
⇠ij

d�ij

2⇡

1

2

✓
⇠jk � ⇠ij

⇠ik
+ 1

◆
+ (j $ k) (2)

then the term shown has no collinear divergence along pk. Furthermore
when we integrate it over �ij , and the other term over �ik, we get exactly

d⇠ij
⇠ij

⇥(⇠jk � ⇠ij) +
d⇠ik
⇠ik

⇥(⇠jk � ⇠ik) (3)

so that each leg radiates into a cone bounded by ✓jk and radiation outside
the cones averages to zero. Thus after azimuthal averaging we can write the
emission as a sum over individual legs

d�n+1 =
X

j

d�(j)
n+1 (4)

where

d�(j)
n+1 =

↵s

⇡
d�n

d!i

!i

X

k 6=j

(�Tj ·Tk)
d⇠ij
⇠ij

⇥(⇠jk � ⇠ij) (5)

1.1 e+e� ! qq̄g

We have Tq +Tq̄ = 0 and hence

�Tq ·Tq̄ =
1

2

⇣
T2

q +T2
q̄

⌘
= CF . (6)

The condition to resolve the gluon emission using the kt-algorithm is

yiq = 2!2
i ⇠iq/Q

2 > yc (7)

and similarly for yiq̄, so the three-jet rate at resolution yc is

R3 = 2
↵s

⇡
CF

Z Q/2

Q
p
yc/2

d!i

!i

Z 2

Q2yc/2!2
i

d⇠ij
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2⇡
CFL

2 (8)

where L = ln yc.
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• Each parton j radiates into cone qij < qjk  

exactly
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• Two gluon emission

2 Two soft gluon emissions

We saw that one soft gluon emission i can be written as a sum over individual
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The terms on the first line represent incoherent emission from i and j inside
cones bounded by ✓ij . The term on the second line represents coherent
emission from i and j outside the cones, described as if it came from j
before the emission of i. Therefore it is already included in the previous
stage of an angular-ordered shower. The term on the last line is neglected in
the angular-ordered shower. It has no collinear divergences and is therefore
suppressed by two logarithms relative to the terms included. In fact

I(⇠jk) ⌘
Z ⇠jk

0

d⇠ij
⇠ij

Z 2⇡

0

d�ij

2⇡

 Z ⇠ik

⇠ij

d⇠`i
⇠`i

�
Z ⇠jk

⇠ij

d⇠`j
⇠`j

!

=
Z ⇠jk

0

d⇠ij
⇠ij

Z 2⇡

0

d�ij

2⇡
ln

⇠ik
⇠jk

= �
Z ⇠jk

0

d⇠ij
⇠ij

ln
✓
1� 1

2
⇠ij

◆
= Li2

✓
1

2
⇠jk

◆
. (12)

2.1 e+e� ! qq̄gg

Neglecting the last term in (12), we have

d�4 = d�(iq)
4 + d�(iq̄)

4 (13)

2

where

2 Two soft gluon emissions

We saw that one soft gluon emission i can be written as a sum over individual
legs. Consider the term associated with leg j when another (softer) gluon `
is emitted. On emission of i, the colour operator of j became T0

j = Tj �Ti.
After azimuthal averaging we therefore have

d�(ij)
n+2 =

↵s

⇡
d�(j)

n+1
d!`

!`

(

(�Ti ·T0
j)
Z ⇠ij

 
d⇠`i
⇠`i

+
d⇠`j
⇠`j

!

+
X

k 6=i,j

"

(�Ti ·Tk)
Z ⇠ik d⇠`i

⇠`i
+ (�T0

j ·Tk)
Z ⇠jk d⇠`j

⇠`j

#)

. (9)

Collecting terms in ⇠`i and ⇠`j and using

Ti +T0
j +

X

k 6=i,j

Tk = 0 (10)

we have

d�(ij)
n+2 =

↵s

⇡
d�(j)

n+1
d!`

!`

(

Ti ·Ti

Z ⇠ij d⇠`i
⇠`i

+T0
j ·T0

j

Z ⇠ij d⇠`j
⇠`j

� Tj ·
X

k 6=i,j

Tk

Z ⇠jk

⇠ij

d⇠`j
⇠`j

� Ti ·
X

k 6=i,j

Tk

 Z ⇠ik

⇠ij

d⇠`i
⇠`i

�
Z ⇠jk

⇠ij

d⇠`j
⇠`j

!)

. (11)

The terms on the first line represent incoherent emission from i and j inside
cones bounded by ✓ij . The term on the second line represents coherent
emission from i and j outside the cones, described as if it came from j
before the emission of i. Therefore it is already included in the previous
stage of an angular-ordered shower. The term on the last line is neglected in
the angular-ordered shower. It has no collinear divergences and is therefore
suppressed by two logarithms relative to the terms included. In fact

I(⇠jk) ⌘
Z ⇠jk

0

d⇠ij
⇠ij

Z 2⇡

0

d�ij

2⇡

 Z ⇠ik

⇠ij

d⇠`i
⇠`i

�
Z ⇠jk

⇠ij

d⇠`j
⇠`j

!

=
Z ⇠jk

0

d⇠ij
⇠ij

Z 2⇡

0

d�ij

2⇡
ln

⇠ik
⇠jk

= �
Z ⇠jk

0

d⇠ij
⇠ij

ln
✓
1� 1

2
⇠ij

◆
= Li2

✓
1

2
⇠jk

◆
. (12)

2.1 e+e� ! qq̄gg

Neglecting the last term in (12), we have

d�4 = d�(iq)
4 + d�(iq̄)

4 (13)

2

• Collecting terms in      and     , we find

2 Two soft gluon emissions

We saw that one soft gluon emission i can be written as a sum over individual
legs. Consider the term associated with leg j when another (softer) gluon `
is emitted. On emission of i, the colour operator of j became T0

j = Tj �Ti.
After azimuthal averaging we therefore have

d�(ij)
n+2 =

↵s

⇡
d�(j)

n+1
d!`

!`

(

(�Ti ·T0
j)
Z ⇠ij

 
d⇠`i
⇠`i

+
d⇠`j
⇠`j

!

+
X

k 6=i,j

"

(�Ti ·Tk)
Z ⇠ik d⇠`i

⇠`i
+ (�T0

j ·Tk)
Z ⇠jk d⇠`j

⇠`j

#)

. (9)

Collecting terms in ⇠`i and ⇠`j and using

Ti +T0
j +

X

k 6=i,j

Tk = 0 (10)

we have

d�(ij)
n+2 =

↵s

⇡
d�(j)

n+1
d!`

!`

(

Ti ·Ti

Z ⇠ij d⇠`i
⇠`i

+T0
j ·T0

j

Z ⇠ij d⇠`j
⇠`j

� Tj ·
X

k 6=i,j

Tk

Z ⇠jk

⇠ij

d⇠`j
⇠`j

� Ti ·
X

k 6=i,j

Tk

 Z ⇠ik

⇠ij

d⇠`i
⇠`i

�
Z ⇠jk

⇠ij

d⇠`j
⇠`j

!)

. (11)

The terms on the first line represent incoherent emission from i and j inside
cones bounded by ✓ij . The term on the second line represents coherent
emission from i and j outside the cones, described as if it came from j
before the emission of i. Therefore it is already included in the previous
stage of an angular-ordered shower. The term on the last line is neglected in
the angular-ordered shower. It has no collinear divergences and is therefore
suppressed by two logarithms relative to the terms included. In fact

I(⇠jk) ⌘
Z ⇠jk

0

d⇠ij
⇠ij

Z 2⇡

0

d�ij

2⇡

 Z ⇠ik

⇠ij

d⇠`i
⇠`i

�
Z ⇠jk

⇠ij

d⇠`j
⇠`j

!

=
Z ⇠jk

0

d⇠ij
⇠ij

Z 2⇡

0

d�ij

2⇡
ln

⇠ik
⇠jk

= �
Z ⇠jk

0

d⇠ij
⇠ij

ln
✓
1� 1

2
⇠ij

◆
= Li2

✓
1

2
⇠jk

◆
. (12)

2.1 e+e� ! qq̄gg

Neglecting the last term in (12), we have

d�4 = d�(iq)
4 + d�(iq̄)

4 (13)

2

and

2 Two soft gluon emissions

We saw that one soft gluon emission i can be written as a sum over individual
legs. Consider the term associated with leg j when another (softer) gluon `
is emitted. On emission of i, the colour operator of j became T0

j = Tj �Ti.
After azimuthal averaging we therefore have

d�(ij)
n+2 =

↵s

⇡
d�(j)

n+1
d!`

!`

(

(�Ti ·T0
j)
Z ⇠ij

 
d⇠`i
⇠`i

+
d⇠`j
⇠`j

!

+
X

k 6=i,j

"

(�Ti ·Tk)
Z ⇠ik d⇠`i

⇠`i
+ (�T0

j ·Tk)
Z ⇠jk d⇠`j

⇠`j

#)

. (9)

Collecting terms in ⇠`i and ⇠`j and using

Ti +T0
j +

X

k 6=i,j

Tk = 0 (10)

we have

d�(ij)
n+2 =

↵s

⇡
d�(j)

n+1
d!`

!`

(

Ti ·Ti

Z ⇠ij d⇠`i
⇠`i

+T0
j ·T0

j

Z ⇠ij d⇠`j
⇠`j

� Tj ·
X

k 6=i,j

Tk

Z ⇠jk

⇠ij

d⇠`j
⇠`j

� Ti ·
X

k 6=i,j

Tk

 Z ⇠ik

⇠ij

d⇠`i
⇠`i

�
Z ⇠jk

⇠ij

d⇠`j
⇠`j

!)

. (11)

The terms on the first line represent incoherent emission from i and j inside
cones bounded by ✓ij . The term on the second line represents coherent
emission from i and j outside the cones, described as if it came from j
before the emission of i. Therefore it is already included in the previous
stage of an angular-ordered shower. The term on the last line is neglected in
the angular-ordered shower. It has no collinear divergences and is therefore
suppressed by two logarithms relative to the terms included. In fact

I(⇠jk) ⌘
Z ⇠jk

0

d⇠ij
⇠ij

Z 2⇡

0

d�ij

2⇡

 Z ⇠ik

⇠ij

d⇠`i
⇠`i

�
Z ⇠jk

⇠ij

d⇠`j
⇠`j

!

=
Z ⇠jk

0

d⇠ij
⇠ij

Z 2⇡

0

d�ij

2⇡
ln

⇠ik
⇠jk

= �
Z ⇠jk

0

d⇠ij
⇠ij

ln
✓
1� 1

2
⇠ij

◆
= Li2

✓
1

2
⇠jk

◆
. (12)

2.1 e+e� ! qq̄gg

Neglecting the last term in (12), we have

d�4 = d�(iq)
4 + d�(iq̄)

4 (13)

2

2 Two soft gluon emissions

We saw that one soft gluon emission i can be written as a sum over individual
legs. Consider the term associated with leg j when another (softer) gluon `
is emitted. On emission of i, the colour operator of j became T0

j = Tj �Ti.
After azimuthal averaging we therefore have

d�(ij)
n+2 =

↵s

⇡
d�(j)

n+1
d!`

!`

(

(�Ti ·T0
j)
Z ⇠ij

 
d⇠`i
⇠`i

+
d⇠`j
⇠`j

!

+
X

k 6=i,j

"

(�Ti ·Tk)
Z ⇠ik d⇠`i

⇠`i
+ (�T0

j ·Tk)
Z ⇠jk d⇠`j

⇠`j

#)

. (9)

Collecting terms in ⇠`i and ⇠`j and using

Ti +T0
j +

X

k 6=i,j

Tk = 0 (10)

we have

d�(ij)
n+2 =

↵s

⇡
d�(j)

n+1
d!`

!`

(

Ti ·Ti

Z ⇠ij d⇠`i
⇠`i

+T0
j ·T0

j

Z ⇠ij d⇠`j
⇠`j

� Tj ·
X

k 6=i,j

Tk

Z ⇠jk

⇠ij

d⇠`j
⇠`j

� Ti ·
X

k 6=i,j

Tk

 Z ⇠ik

⇠ij

d⇠`i
⇠`i

�
Z ⇠jk

⇠ij

d⇠`j
⇠`j

!)

. (11)

The terms on the first line represent incoherent emission from i and j inside
cones bounded by ✓ij . The term on the second line represents coherent
emission from i and j outside the cones, described as if it came from j
before the emission of i. Therefore it is already included in the previous
stage of an angular-ordered shower. The term on the last line is neglected in
the angular-ordered shower. It has no collinear divergences and is therefore
suppressed by two logarithms relative to the terms included. In fact

I(⇠jk) ⌘
Z ⇠jk

0

d⇠ij
⇠ij

Z 2⇡

0

d�ij

2⇡

 Z ⇠ik

⇠ij

d⇠`i
⇠`i

�
Z ⇠jk

⇠ij

d⇠`j
⇠`j

!

=
Z ⇠jk

0

d⇠ij
⇠ij

Z 2⇡

0

d�ij

2⇡
ln

⇠ik
⇠jk

= �
Z ⇠jk

0

d⇠ij
⇠ij

ln
✓
1� 1

2
⇠ij

◆
= Li2

✓
1

2
⇠jk

◆
. (12)

2.1 e+e� ! qq̄gg

Neglecting the last term in (12), we have

d�4 = d�(iq)
4 + d�(iq̄)

4 (13)

2

2 Two soft gluon emissions

We saw that one soft gluon emission i can be written as a sum over individual
legs. Consider the term associated with leg j when another (softer) gluon `
is emitted. On emission of i, the colour operator of j became T0

j = Tj �Ti.
After azimuthal averaging we therefore have

d�(ij)
n+2 =

↵s

⇡
d�(j)

n+1
d!`

!`

(

(�Ti ·T0
j)
Z ⇠ij

 
d⇠`i
⇠`i

+
d⇠`j
⇠`j

!

+
X

k 6=i,j

"

(�Ti ·Tk)
Z ⇠ik d⇠`i

⇠`i
+ (�T0

j ·Tk)
Z ⇠jk d⇠`j

⇠`j

#)

. (9)

Collecting terms in ⇠`i and ⇠`j and using

Ti +T0
j +

X

k 6=i,j

Tk = 0 (10)

we have

d�(ij)
n+2 =

↵s

⇡
d�(j)

n+1
d!`

!`

(

Ti ·Ti

Z ⇠ij d⇠`i
⇠`i
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j ·T0

j

Z ⇠ij d⇠`j
⇠`j

� Tj ·
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� Ti ·
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⇠ij

d⇠`i
⇠`i

�
Z ⇠jk

⇠ij

d⇠`j
⇠`j

!)

. (11)

The terms on the first line represent incoherent emission from i and j inside
cones bounded by ✓ij . The term on the second line represents coherent
emission from i and j outside the cones, described as if it came from j
before the emission of i. Therefore it is already included in the previous
stage of an angular-ordered shower. The term on the last line is neglected in
the angular-ordered shower. It has no collinear divergences and is therefore
suppressed by two logarithms relative to the terms included. In fact

I(⇠jk) ⌘
Z ⇠jk

0

d⇠ij
⇠ij

Z 2⇡

0

d�ij

2⇡

 Z ⇠ik

⇠ij

d⇠`i
⇠`i

�
Z ⇠jk

⇠ij

d⇠`j
⇠`j

!

=
Z ⇠jk

0

d⇠ij
⇠ij

Z 2⇡

0

d�ij

2⇡
ln

⇠ik
⇠jk

= �
Z ⇠jk

0

d⇠ij
⇠ij

ln
✓
1� 1

2
⇠ij

◆
= Li2

✓
1

2
⇠jk

◆
. (12)

2.1 e+e� ! qq̄gg

Neglecting the last term in (12), we have

d�4 = d�(iq)
4 + d�(iq̄)

4 (13)

2

each parton emits 
into its cone

non-singular, 2 logs 
down, neglected

coherent emission outside cones, 
done in previous step

j0
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e+e   qqgg

• 4-jet rate (kt-algorithm):

38

d�(ij)
n+2 =

↵S

⇡
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2 > yc !m = min{!`,!i}

L = log(1/yc)where

• AO parton shower:
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To resolve both emissions we need
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and similarly for �(iq̄)
4 , so

R4 = (�(iq)
4 + �(iq̄)

4 )/�2 =
✓
↵s

⇡

◆2

CF

✓
1

8
CF +

1

48
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◆
L4 . (17)

3

where

where
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e+e   qqgg

• Compare with MadGraph5 at 1 TeV	


✤ Mij >100 MeV        L < 18.4

39

• 4-jet rate (kt-algorithm) vs L = log(1/ycut)

C = ?? (fitted)

1

�B

d�4

dL
=


↵S(s)

⇡

�2 �
4AL3 + 3BL2 + 2CL+ . . .

�

A = C2
F /8 + CFCA/48

B = �3C2
F /4� 5CFCA/18
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e+e   qqgg

• Dashed is LCA (refitting C)

40
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e+e   qqggg
• 5-jet rate (kt-algorithm) vs

41

• Compare with MadGraph5 at 1 TeV again

L = log(1/ycut)

A = C3
F /48 + C2

FCA/96 + CFC
2
A/720

1

�B

d�5

dL
=


↵S(s)

⇡

�3 �
6AL5 + 5BL4 + 4CL3 + . . .

�

C = ?? (fitted)

B = �3C3
F /16� 49C2

FCA/288� 91CFC
2
A/2880
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e+e   qqggg

• Dashed is LCA (refitting C)

42
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Subleading colour

• Number of partons 
(pTjet>200 GeV, ktmin=1GeV)

43

Nagy, Soper, 1202.4496,1501.00778

Figure 4. The distribution ⇢n(n) for the number n of partons in a jet with pT > 200 GeV and
|y| < 2. We compare the distribution calculated with the LC+ approximation (solid red histogram)
with the with the same distribution calculated with the LC approximation (dashed blue histogram).
The results are very close for n < 10. The jets are constructed using the kT algorithm with R = 0.4.

It is of some importance to understand the gap fraction f because it is often useful in

experimental investigations to impose a requirement that there be some minimum number

of high p
T

jets in an event but no jets beyond this that have p
T

greater than some value

pcut
T

. In addition, the behavior of f as a function of how the gap is defined is a matter

of substantial theoretical interest because it brings together several issues concerning the

structure of QCD. Many of these issues are reviewed in ref. [16].

In figure 5, we plot f(pcut
T

), versus pcut
T

. For large values of pcut
T

, we expect f(pcut
T

) to

be close to 1. However, it is typically rather easy to produce low transverse momentum

jets, so for small pcut
T

, we expect f(pcut
T

) to be small. This is what we see in figure 5. We

have calculated pcut
T

both in the LC approximation and in the LC+ approximation. We see

that there is about a 10% di↵erence between the two results at small values of pcut
T

. This

level of di↵erence is similar to what we saw for the distribution of the number of partons

in a jet in section 5. In the remainder of this section, we will use the LC+ approximation

and examine how f(pcut
T

) is a↵ected by the color structure of the state just after the hard

scattering.

The rate of decrease of f(pcut
T

) as pcut
T

decreases is controlled by the color flow in

the event. To see this from the point of view of a dipole based parton shower, consider

gluon-gluon scattering, as depicted in figure 6. Partons “a” and “b” scatter to produce

final state partons 1 and 2. Parton “a” has infinite positive rapidity, while parton “b” has

infinite negative rapidity. Scattering via gluon exchange, as here, has a large probability

to be small angle scattering, so this diagram is a leading diagram for the case of interest,

in which parton 1 has large positive rapidity and parton 2 has large negative rapidity. In a

– 10 –

• Gap fraction (|y|<2)

Figure 5. For events with at least one jet with transverse momentum pT > 200 GeV and rapidity
y > 2 and at least one jet with transverse momentum pT > 200 GeV and rapidity y < �2, we
plot the fraction f(pcutT ) of events that have no jets with transverse momentum greater than pcutT

in the rapidity range �2 < y < 2. The blue dashed curve shows the result obtained with the LC
approximation and the red solid curve shows the result obtained with the LC+ approximation.

Figure 6. Gluon-gluon scattering via gluon exchange

leading color picture, partons “a” and “b” are color connected, as are “a” and 1, “b” and

2, and 1 and 2, as indicated in figure 6. There is another color configuration in which “a”

is connected to 2 and “b” is connected to 1.

These parton pairs form color dipoles. In a parton shower, the a-1 pair produces soft

radiation in the angular region between ~p
a

and ~p
1

. That is, this radiation has large positive

rapidity. Similarly, the b-2 dipole produces soft radiation with large negative rapidity. The

a-b dipole produces soft radiation with any rapidity between a large positive value and a

large negative value. Similarly, the 1-2 dipole produces soft radiation with any rapidity

between the large positive rapidity of parton 1 and a large negative rapidity of parton 2.

– 11 –

• DEDUCTOR pp at 14 TeV

(1/Nc, c<6)
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Subleading colour
• q q    q q  evolution matrix elements

44

Plätzer, 1312.2448
Simon Plätzer: Summing Large-N Towers in Colour Flow Evolution 5
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Fig. 3. Real and imaginary parts of a diagonal evolution ma-
trix element for quark-quark scattering at s = 100 GeV2,
µ2 = 25 GeV2 as a function of the momentum transfer |t|,
comparing the exact results to various approximations. This
matrix elements describes the amplitude to keep a t-channel
colour flow σ.

For the other configurations contributing to QCD 2 →
2 scattering we find a similar pattern of convergence through
successive orders. We note, however, that some of the ma-
trix elements for processes with more and more colour
flows are non-zero starting only from a high enough or-
der.

5 Outlook on Possible Applications

The work presented here is relevant to cases where soft
gluon evolution is a required ingredient for precise predic-
tions, but not feasible in exact form owing to a large num-
ber of external legs present. This, in particular, applies to
improved parton shower algorithms but also to analytic re-

-0.02

0

0.02

0.04

0 20 40 60 80 100

|t|/GeV2

Re((eΩ)στ )

exact
LC

NLC

-0.086

-0.084

-0.082

-0.08

0 20 40 60 80 100

|t|/GeV2

Im((eΩ)στ )

exact
NLC

NNLC

Fig. 4. Same as figure 3 for an off-diagonal matrix element.
The matrix element considered describes the transition from a
u-channel colour flow τ to a t-channel one, σ.

summation for observables of multi-jet final states. Look-
ing at the convergence of the NdLC expansions, which can
easily be implemented in an algorithmic way, one can gain
confidence of providing a reliable resummed prediction at
some truncation of the exponentiation. As for the case of
parton showers, the colour flow basis, being itself ingre-
dient to many highly efficient matrix element generators,
offers unique possibilities to perform Monte Carlo sums
over explicit colour structures or charges, such that effi-
cient algorithms in this case seem to be within reach. The
requirement to study soft gluon dynamics for a large num-
ber of legs is as well at the heart of the dynamics behind
non-global logarithms [25], when considered to more than
the first order in which they appear, and beyond lead-
ing colour. Another application (which, in part, triggered
the present work) is to gain insight into the dynamics of
colour reconnection models. A QCD motivated and feasi-
ble colour reconnection model based on summing large-N

Diagonal Off-diagonal
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Shower ordering

45
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Figure 1: Parton branching diagrams for e+e� ! 4 jets. Here only the small
angles and momentum fractions (giving the leading logs) are shown. All the
others are ⇠ 1.

1 q2
-ordered shower

For a branching a ! b+ c we have the kinematic relation

q2a =
q2b
zb

+
q2c
zc

+
q2T
zbzc

(1)

where q2i are the virtualities, zb and zc = 1�zb are the momentum fractions,
qT ' zbzcq0a✓a is the relative transverse momentum and ✓a is the splitting
angle.

When the branching is generated, we assume q2b = q2c = 0. So

q2a ' zbzc(q
0
a✓a)

2 . (2)

Now we generate the next branching, say c ! d+ e. We have

q2c ' zdze(q
0
c✓c)

2 (3)

where q0c = zcq0a and by kinematics q2c < zcq2a. Thus q
2-ordering means

zdze✓
2
c < zb✓

2
a . (4)

1.1 Four jets in e+e� annihilation

Now consider the contribution (b) in Fig. 1. We have zb = z1, zc ⇠ 1,
zd = z2, ze ⇠ 1, ✓a = ✓1, ✓c = ✓2. So q2-ordering corresponds to

z2✓
2
2 < z1✓

2
1 . (5)

To resolve 4 jets with the kT -algorithm we need z1✓1 , z2✓2 > ✏ where
✏ =

p
ycut. So the contribution of (b) to the 4-jet rate, with q2- ordering but
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Figure 1: Parton branching diagrams for e+e� ! 4 jets. Here only the small
angles and momentum fractions (giving the leading logs) are shown. All the
others are ⇠ 1.

1 q2
-ordered shower

For a branching a ! b+ c we have the kinematic relation

q2a =
q2b
zb

+
q2c
zc

+
q2T
zbzc

(1)

where q2i are the virtualities, zb and zc = 1�zb are the momentum fractions,
qT ' zbzcq0a✓a is the relative transverse momentum and ✓a is the splitting
angle.

When the branching is generated, we assume q2b = q2c = 0. So

q2a ' zbzc(q
0
a✓a)

2 . (2)

Now we generate the next branching, say c ! d+ e. We have
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2 (3)

where q0c = zcq0a and by kinematics q2c < zcq2a. Thus q
2-ordering means
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1.1 Four jets in e+e� annihilation

Now consider the contribution (b) in Fig. 1. We have zb = z1, zc ⇠ 1,
zd = z2, ze ⇠ 1, ✓a = ✓1, ✓c = ✓2. So q2-ordering corresponds to
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To resolve 4 jets with the kT -algorithm we need z1✓1 , z2✓2 > ✏ where
✏ =

p
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1

(b) z2✓
2
2 < z1✓

2
1

(c) z2✓
2
2 < ✓21

same as AO
larger than AO

RAO
4 =

⇣↵S

⇡

⌘2 CF

8

✓
CF +

1

6
CA

◆
L4

Rq2

4 =
⇣↵S

⇡

⌘2 CF

8

✓
CF +

1

4
CA

◆
L4

vs
25

12

22

12

Virtuality-ordered shower



Parton Showers, Matching & Merging Bryan Webber, PSR15, Cracow

Coherence tests
• Z0    4 jets (LEP OPAL data)

46

Fischer et al., 1505.01636

• Herwig 6, Pythia 6 comparisons
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Figure 3: The corrected distributions of a) the emission angle ✓

14

, b) the mass ratio ⇢ = M

2

L/M
2

H ,
c) the difference in opening angles ✓

⇤, and d) the 2-point double ratio C

(1/5)
2

, in comparison with
the predictions of the HERWIG 6 and PYTHIA 6 Monte Carlo event generators at the hadron level.
The error bars limited by the horizontal lines indicate the statistical uncertainties, while the total
uncertainties correspond to the full error bars.
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Coherence tests
• Z0    4 jets (LEP OPAL data)

47

Fischer et al., 1505.01636

• Herwig++, Pythia 8 comparisons
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Figure 4: The corrected distribution of the emission angle ✓

14

of the soft fourth jet in comparison
with the predictions of a) HERWIG++ and b) PYTHIA 8 and VINCIA. The thin solid lines correspond
to HERWIG++ with angular-ordering (q̃2), the thick solid lines to the dipole shower of HERWIG++
with ordering in p

2

?dip

, and the dash-dotted lines to ordering in q

2

dip

. VINCIA with ordering in p

2

?ant

is shown with medium solid lines, ordering in m

2

ant

with dashed lines, and PYTHIA 8 is shown with
dotted lines. The error bars limited by the horizontal lines indicate the statistical uncertainties, while
the total uncertainties correspond to the full error bars. The ratio plots show the deviation of the
predictions from the data in units of the total uncertainty.

6.2 Difference in opening angles: ✓⇤

In Figs. 6 a) and b) we show the normalized distribution of the difference in opening angles between
the third and the fourth jet with respect to the second jet, ✓⇤ = ✓

24

� ✓

23

. All models are seen to
provide an adequate description of the data, with the exception of the region around ✓

⇤ ⇡ 0.07⇡

(second bin of Figs. 6 a) and b)), where the models predict somewhat fewer events than are observed.
The largest discrepancy in this region arises from the HERWIG++ q

2

dip

model.

We show the asymmetry as a function of the dividing point ✓⇤
0

in the Figs. 6 c) and d). The largest
discriminating power is found for ✓

0

⇤ = 0.16⇡, where the q

2

dip

-ordered dipole shower of HERWIG++
generates a deviation of almost four standard deviations with respect to the data. The number of
events with large differences in the opening angles of the third and fourth jets is overestimated by
this non-coherent shower model. The p

2

?dip

-ordered HERWIG++ shower, based on the same shower
kernels, but respecting coherence due to the choice of evolution variable, gives a better description of
the asymmetry. This emphasizes the need for coherence in order to describe the data properly.
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b) Difference in opening angles, ✓⇤, VINCIA, PYTHIA 8
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Figure 6: The distribution of the difference in opening angles ✓⇤ for a) HERWIG++ and b) PYTHIA 8
and VINCIA. The asymmetry with respect to the dividing point ✓⇤

0

is shown for c) HERWIG++ and
d) PYTHIA 8 and VINCIA. The thin solid lines correspond to HERWIG++ with angular-ordering (q̃2),
the thick solid lines to the dipole shower of HERWIG++ with ordering in p

2

?dip

, and the dash-dotted
lines to ordering in q

2

dip

. VINCIA with ordering in p

2

?ant

is shown with medium solid lines, ordering
in m

2

ant

with dashed lines and PYTHIA 8 is shown with dotted lines. The error bars limited by the
horizontal lines indicate the statistical uncertainties, while the total uncertainties correspond to the
full error bars. The ratio plots show the deviation of the predictions from the data in units of the total
uncertainty.
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Coherence tests
• Z0    4 jets (LEP OPAL data)

48

Fischer et al., 1505.01636

• Herwig++ virtuality ordering does worst
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Figure 7: The distribution of the difference in opening angles C

(1/5)
2

for a) HERWIG++ and b)
PYTHIA 8 and VINCIA. The asymmetry with respect to the dividing point C(1/5)

2,0 is shown for c)
HERWIG++ and d) PYTHIA 8 and VINCIA. The thin solid lines correspond to HERWIG++ with
angular-ordering (q̃2), the thick solid lines to the dipole shower of HERWIG++ with ordering in p

2

?dip

,
and the dash-dotted lines to ordering in q

2

dip

. VINCIA with ordering in p

2

?ant

is shown with medium
solid lines, ordering in m

2

ant

with dashed lines and PYTHIA 8 is shown with dotted lines. The error
bars limited by the horizontal lines indicate the statistical uncertainties, while the total uncertainties
correspond to the full error bars. The ratio plots show the deviation of the predictions from the data in
units of the total uncertainty.
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Figure 8: The distribution of the difference in opening angles ⇢ = M

2

L/M
2

H for a) HERWIG++
and b) PYTHIA 8 and VINCIA. The asymmetry with respect to the dividing point ⇢

0

is shown for
c) HERWIG++ and d) PYTHIA 8 and VINCIA. The thin solid lines correspond to HERWIG++ with
angular-ordering (q̃2), the thick solid lines to the dipole shower of HERWIG++ with ordering in p

2

?dip

,
and the dash-dotted lines to ordering in q

2

dip

. VINCIA with ordering in p

2

?ant

is shown with medium
solid lines, ordering in m

2

ant

with dashed lines and PYTHIA 8 is shown with dotted lines. The error
bars limited by the horizontal lines indicate the statistical uncertainties, while the total uncertainties
correspond to the full error bars. The ratio plots show the deviation of the predictions from the data in
units of the total uncertainty.
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Spin in showers

• No effect in q   qg (helicity conservation)	


• Opposite in g   gg and g   qq	


✤ Cancel when Nf = Nc

49

2pipj = −
k2
⊥

z(1 − z)
, k⊥ → 0 . (4.8)

In Eq. (4.8) the light-like (p2 = 0) vector pµ denotes the collinear direction, while nµ is
an auxiliary light-like vector which is necessary to specify the transverse component k⊥

(k2
⊥ < 0) (k⊥p = k⊥n = 0) or, equivalently, how the collinear direction is approached. In

the small-k⊥-limit (i.e. neglecting terms that are less singular than 1/k2
⊥), the m+1-parton

matrix element behaves as follows [25]

m+1,a..< 1, ...., m + 1; a, ...||1, ...., m + 1; a, ... >m+1,a..→
1

pipj

4πµ2ϵαS m,a..< 1, ..., m + 1; a, ..| P̂(ij),i(z, k⊥; ϵ) |1, ...., m + 1; a, ... >m,a.. .(4.9)

The m-parton matrix element on the right-hand side of Eq. (4.9) is obtained by replacing
the partons i and j in Mm+1,a... with a single parton denoted by ij. This parton carries the
quantum numbers of the pair i + j in the collinear limit. In other words, its momentum is
pµ and its other quantum numbers (flavour, colour) are obtained according to the following
rule: anything + gluon gives anything and quark + antiquark gives gluon.

The kernel P̂(ij),i in Eq. (4.9) is the d-dimensional Altarelli-Parisi splitting function. It
depends not only on the momentum fraction z involved in the collinear splitting ij → i+j,
but also on the transverse momentum k⊥ and on the helicity of the parton ij in the m-
parton matrix element. More precisely, P̂(ij),i is a matrix acting on the spin indices of the
parton ij in m,a..< 1, ..., m + 1; a, ..| and |1, ...., m + 1; a, ... >m,a... Because of these spin
correlations, the square of the m-parton matrix element cannot be simply factorized on the
right-hand side of Eq. (4.9).

The explicit expressions of P̂ab(z, k⊥; ϵ) for the splitting processes

a(p) → b(zp + k⊥ + O(k2
⊥)) + c((1 − z)p − k⊥ + O(k2

⊥)) (4.10)

are as follows

< s|P̂qq(z, k⊥; ϵ)|s′ >= δss′ CF

[
1 + z2

1 − z
− ϵ(1 − z)

]

, (4.11)

< s|P̂qg(z, k⊥; ϵ)|s′ >= δss′ CF

[
1 + (1 − z)2

z
− ϵz

]

, (4.12)

< µ|P̂gq(z, k⊥; ϵ)|ν >= TR

[

−gµν + 4z(1 − z)
kµ
⊥kν

⊥

k2
⊥

]

, (4.13)

< µ|P̂gg(z, k⊥; ϵ)|ν >= 2CA

[

−gµν
(

z

1 − z
+

1 − z

z

)
− 2(1 − ϵ)z(1 − z)

kµ
⊥kν

⊥

k2
⊥

]

, (4.14)

where the spin indices of the parent parton a have been denoted by s, s′ if a is a fermion
and µ, ν if a is a gluon.
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Spin in showers

• Bengtsson-Zerwas angle in e+e   4 jets
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Conclusions
• Matching at NLO	


✤ SM processes automated, EW and BSM soon	


• Matching at NNLO	


✤ So far only DY & H, others much harder	


• Merging at NLO	


✤ Still in a state of flux; FxFx automated	


• Parton showers	


✤ Coherence effects visible	


✤ Spin and subleading colour effects small	


✤ Hadronization important, but little effort/progress
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Thanks for listening!
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