Parton Showers, Matching \& Merging

Bryan Webber

Outline

- Matching to a fixed order
* NLO: MC@NLO, POWHEG, KrkNLO; automation
\% NNLO: NNLOPS, UN²LOPS, Geneva
- Matching to multiple fixed orders . MEPS@NLO, FxFx, UNLOPS,...
- Shower variables and improvements
* Coherence, colour, spin, ...
- Conclusions

NLO matching

NLO matching

- Full inclusive NLO, extra jet LO
- Still mostly MC@NLO or POWHEG
- MC@NLO:
\because PS-specific; beyond NLO is PS only; some negative weights
- POWHEG:
* Any PS; extra terms beyond NLO; positive weights
- New: KrkNLO

Top pairs at 8 TeV

CMS, $19.7 \mathrm{fb}^{-1}$ at $\sqrt{\mathrm{s}}=8 \mathrm{TeV}$

CMS, $19.7 \mathrm{fb}^{-1}$ at $\sqrt{\mathrm{s}}=8 \mathrm{TeV}$

CMS, I 505.04480

Bryan Webber, PSR I5, Cracow

Deductor MC@NLO

- $P P \rightarrow t \bar{t} j+X$

Nagy, Soper, I40I. 6364
Czakon et al., I 502.00925

Parton Showers, Matching \& Merging

Deductor MC@NLO

KrkNLO method

- Modified LO PS and PDF for full phase space
- NLO correction by multiplicative weight

KrkNLO results

- α_{s} choice is for first emission

Automatic NLO matching

- MC@NLO-type
* MadGraph5_aMC@NLO (MadLoop5)

Alwall et al., I 405.030 I

* Sherpa+OpenLoops

Höche et al., I | | |.|220; I 20 I. 5882
\% Herwig++ Matchbox+OpenLoops/GoSam
Plätzer, Gieseke, I I 09.6256; Bellm et al., I 3 I 0.6877

- POWHEG-type
\% MadGraph4+POWHEG+MCFM/GoSam
Campbell et al.,I202.5475; Luisoni et al., I502.0| 2 | 3
\because Herwig++ Matchbox+OpenLoops/GoSam

MG5_aMC@NLO

- Sampled from 172 processes

Alwall et al., I405.030 I

MG5_aMC@NLO

Process Top quarks + bosons		Syntax	Cross section (pb)				
		LO 1 TeV	NLO 1 TeV				
j. 1	$e^{+} e^{-} \rightarrow t \bar{t} H$		e+ $\mathrm{e}^{-}>\mathrm{t}$ t $\sim \mathrm{h}$	$2.018 \pm 0.003 \cdot 10^{-3}$	$+0.0 \%$	$1.911 \pm 0.006 \cdot 10^{-3}$	$+0.4 \%$
j. 2^{*}	$e^{+} e^{-} \rightarrow t \bar{t} H j$	e+ e->t t~ h j	$2.533 \pm 0.003 \cdot 10^{-4}$	${ }_{-7.8 \%}^{+9.2 \%}$	$2.658 \pm 0.009 \cdot 10^{-4}$	${ }_{-1.5 \%}^{+0.5 \%}$	
j. 3^{*}	$e^{+} e^{-} \rightarrow t \bar{t} H j j$	e+ $e^{-}>\mathrm{t}$ t $\sim \mathrm{h} j \mathrm{j}$	$2.663 \pm 0.004 \cdot 10^{-5}$	$\begin{aligned} & { }_{-14.3 \%}^{+19.0 \%} \end{aligned}$	$3.278 \pm 0.017 \cdot 10^{-5}$	${ }_{-5.7 \%}^{+4.0 \%}$	
j. 4^{*}	$e^{+} e^{-} \rightarrow t \bar{t} \gamma$	e+ e->t t~ a	$1.270 \pm 0.002 \cdot 10^{-2}$	${ }_{-0.0 \%}^{+0.0 \%}$	$1.335 \pm 0.004 \cdot 10^{-2}$	${ }_{-0.4 \%}^{+0.5 \%}$	
j. 5 *	$e^{+} e^{-} \rightarrow t \bar{t} \gamma j$	$e^{+} e^{-}>\mathrm{t}$ t~ a j	$2.355 \pm 0.002 \cdot 10^{-3}$	${ }_{-7.9 \%}^{+9.3 \%}$	$2.617 \pm 0.010 \cdot 10^{-3}$	${ }_{-2.4 \%}^{+1.6 \%}$	
j. 6^{*}	$e^{+} e^{-} \rightarrow t \bar{t} \gamma j j$	$e^{+} e^{-}>t t \sim a j j$	$3.103 \pm 0.005 \cdot 10^{-4}$	$\begin{aligned} & +19.5 \% \\ & { }_{-15.0 \%}^{+10} \end{aligned}$	$4.002 \pm 0.021 \cdot 10^{-4}$	${ }_{-6.6 \%}^{+5.4 \%}$	
j. 7^{*}	$e^{+} e^{-} \rightarrow t \bar{t} Z$	e+ e->t t~ z	$4.642 \pm 0.006 \cdot 10^{-3}$	${ }_{\text {l }}{ }_{-0.0 \%}^{+0.0 \%}$	$4.949 \pm 0.014 \cdot 10^{-3}$	${ }_{-0.5 \%}^{+0.6 \%}$	
j. 8^{*}	$e^{+} e^{-} \rightarrow t \bar{t} Z j$	e+ e- > t t~ z j	$6.059 \pm 0.006 \cdot 10^{-4}$	${ }_{-7.8 \%}^{+9.3 \%}$	$6.940 \pm 0.028 \cdot 10^{-4}$	${ }_{-2.6 \%}^{+2.0 \%}$	
j.9*	$e^{+} e^{-} \rightarrow t \bar{Z} Z j j$	$e^{+} e^{-}>t t \sim z j^{\prime}$	$6.351 \pm 0.028 \cdot 10^{-5}$	${ }^{+19.4 \%}$	$8.439 \pm 0.051 \cdot 10^{-5}$	${ }^{+5.8 \%}$	
j.10*	$e^{+} e^{-} \rightarrow t \bar{t} W^{ \pm} j j$	e+ e->t t \sim wpm j j	$2.400 \pm 0.004 \cdot 10^{-7}$	$\begin{aligned} & -19.3 \% \\ & \begin{array}{l} +19.3 \% \\ -14.9 \% \end{array} \end{aligned}$	$3.723 \pm 0.012 \cdot 10^{-7}$	$\begin{aligned} & -6.6 \% \\ & { }_{-9.1 \%}^{+9.6 \%} \end{aligned}$	
j.11*	$e^{+} e^{-} \rightarrow t \bar{t} H Z$	e+ $\mathrm{e}->\mathrm{t}$ t $\sim \mathrm{hzz}$	$3.600 \pm 0.006 \cdot 10^{-5}$	${ }_{-0.0 \%}^{+0.0 \%}$	$3.579 \pm 0.013 \cdot 10^{-5}$	${ }_{-0.0 \%}^{+0.1 \%}$	
j.12*	$e^{+} e^{-} \rightarrow t \bar{t} \gamma Z$	e+ $\mathrm{e}^{->} \mathrm{t}$ t $\sim \mathrm{az}$	$2.212 \pm 0.003 \cdot 10^{-4}$	$\begin{aligned} & { }_{-0.0 \%}^{+0.0 \%} \end{aligned}$	$2.364 \pm 0.006 \cdot 10^{-4}$	${ }_{-0.5 \%}^{+0.6 \%}$	
j.13*	$e^{+} e^{-} \rightarrow t \bar{t} \gamma H$	e+ $e^{-}>\mathrm{t}$ t $\sim \mathrm{a} h$	$9.756 \pm 0.016 \cdot 10^{-5}$	$\begin{aligned} & { }_{-0.0 \%}^{+0.0 \%} \end{aligned}$	$9.423 \pm 0.032 \cdot 10^{-5}$	${ }_{-0.4 \%}^{+0.3 \%}$	
j.14*	$e^{+} e^{-} \rightarrow t \bar{t} \gamma \gamma$	$e^{+} e^{-}>\mathrm{t}$ t~ a a	$3.650 \pm 0.008 \cdot 10^{-4}$	$\begin{aligned} & { }_{-0.0 \%}^{+0.0 \%} \end{aligned}$	$3.833 \pm 0.013 \cdot 10^{-4}$	${ }_{-0.4 \%}^{+0.4 \%}$	
j.15*	$e^{+} e^{-} \rightarrow t \bar{t} Z Z$	$e^{+} e^{-}>\mathrm{t}$ t $\sim \mathrm{z} \mathrm{z}$	$3.788 \pm 0.004 \cdot 10^{-5}$	${ }_{-0.0 \%}^{+0.0 \%}$	$4.007 \pm 0.013 \cdot 10^{-5}$	${ }_{-0.5 \%}^{+0.5 \%}$	
j.16*	$e^{+} e^{-} \rightarrow t \bar{t} H H$	e+ $e^{-}>\mathrm{t}$ t $\sim \mathrm{hh}$	$1.358 \pm 0.001 \cdot 10^{-5}$	$\begin{aligned} & { }_{-0.0 \%}^{+0.0 \%} \\ & \hline \end{aligned}$	$1.206 \pm 0.003 \cdot 10^{-5}$	${ }_{-1.1 \%}^{+0.9 \%}$	
j.17*	$e^{+} e^{-} \rightarrow t \bar{t} W^{+} W^{-}$	$\mathrm{e}^{+} \mathrm{e}^{-}>\mathrm{t}$ t $\sim \mathrm{w}^{+} \mathrm{w}^{-}$	$1.372 \pm 0.003 \cdot 10^{-4}$	$\begin{aligned} & { }_{-0.0 \%}^{+0.0 \%} \\ & \hline \end{aligned}$	$1.540 \pm 0.006 \cdot 10^{-4}$	$\begin{aligned} & { }_{-0.9 \%}^{+1.0 \%} \end{aligned}$	

- All new at NLO except ttH

NNLO matching

NNLO matching

- Fully inclusive NNLO, one extra jet NLO
- So far, limited to DY, H
\% MiNLO-NNLOPS
Hamilton et al., I309.00I7, I 407.3773
\% UN²LOPS
Höche, Li, Prestel, I405.3607, I407.3773
\% Geneva
Alioli et al., I 3 | | . 0286

MiNLO-NNLOPS

- Modified DY/H+jet POWHEG with NNLL Sudakov (B2)
- Reweighted to NNLO

Karlberg, Re, Zanderighi, I 407.2940

- Z рт, rapidity
- $W_{0,1}\left(k_{t}\right.$ alg.)

15

Bryan Webber, PSR I5, Cracow

UN²LOPS

Höche, Li, Prestel, I405.3607

- Phase space slicing at q т $\sim \mathrm{IGeV}(\mathrm{DY}, \mathrm{H})$
- qт subtraction: NNLO in zero bin
- extra jet at NLO

$$
\begin{aligned}
& \langle O\rangle^{\left(\mathrm{UN}^{2} \mathrm{LOPS}\right)}=\int \mathrm{d} \Phi_{0} \overline{\overline{\mathrm{~B}}}_{0}^{q_{T, \mathrm{cut}}}\left(\Phi_{0}\right) O\left(\Phi_{0}\right) \\
& \quad+\int_{q_{T, \mathrm{cut}}} \mathrm{~d} \Phi_{1}\left[1-\Pi_{0}\left(t_{1}, \mu_{Q}^{2}\right)\left(w_{1}\left(\Phi_{1}\right)+w_{1}^{(1)}\left(\Phi_{1}\right)+\Pi_{0}^{(1)}\left(t_{1}, \mu_{Q}^{2}\right)\right)\right] \mathrm{B}_{1}\left(\Phi_{1}\right) O\left(\Phi_{0}\right) \\
& \quad+\int_{q_{T, \mathrm{cut}}} \mathrm{~d} \Phi_{1} \Pi_{0}\left(t_{1}, \mu_{Q}^{2}\right)\left(w_{1}\left(\Phi_{1}\right)+w_{1}^{(1)}\left(\Phi_{1}\right)+\Pi_{0}^{(1)}\left(t_{1}, \mu_{Q}^{2}\right)\right) \mathrm{B}_{1}\left(\Phi_{1}\right) \overline{\mathcal{F}}_{1}\left(t_{1}, O\right) \\
& \quad+\int_{q_{T, \mathrm{cut}}} \mathrm{~d} \Phi_{1}\left[1-\Pi_{0}\left(t_{1}, \mu_{Q}^{2}\right)\right] \tilde{\mathrm{B}}_{1}^{\mathrm{R}}\left(\Phi_{1}\right) O\left(\Phi_{0}\right)+\int_{q_{T, \mathrm{cut}}} \mathrm{~d} \Phi_{1} \Pi_{0}\left(t_{1}, \mu_{Q}^{2}\right) \tilde{\mathrm{B}}_{1}^{\mathrm{R}}\left(\Phi_{1}\right) \overline{\mathcal{F}}_{1}\left(t_{1}, O\right) \\
& \quad+\int_{q_{T, \mathrm{cut}}} \mathrm{~d} \Phi_{2}\left[1-\Pi_{0}\left(t_{1}, \mu_{Q}^{2}\right)\right] \mathrm{H}_{1}^{\mathrm{R}}\left(\Phi_{2}\right) O\left(\Phi_{0}\right)+\int_{q_{T, \mathrm{cut}}} \mathrm{~d} \Phi_{2} \Pi_{0}\left(t_{1}, \mu_{Q}^{2}\right) \mathrm{H}_{1}^{\mathrm{R}}\left(\Phi_{2}\right) \mathcal{F}_{2}\left(t_{2}, O\right) \\
& \quad+\int_{q_{T, \mathrm{cut}}}^{\mathrm{d} \Phi_{2}} \mathrm{H}_{1}^{\mathrm{E}}\left(\Phi_{2}\right) \mathcal{F}_{2}\left(t_{2}, O\right)
\end{aligned}
$$

UN²LOPS results (DY)

Höche, Li, Prestel, I405.3607

FIG. 2. Transverse momentum and rapidity spectrum of the electron. The gray solid (blue hatched) band shows scale uncertainties obtained by varying $\mu_{R / F}\left(\mu_{Q}\right)$ in the range $m_{l l} / 2 \leq \mu \leq 2 m_{l l}$.

FIG. 3. UN ${ }^{2}$ LOPS prediction for the transverse momentum spectrum of the Drell-Yan lepton pair in comparison to ATLAS data from [39] (left) and CMS data from [38] (right). The gray solid (blue hatched) band shows scale uncertainties obtained by varying $\mu_{R / F}\left(\mu_{Q}\right)$ in the range $m_{l l} / 2 \leq \mu \leq 2 m_{l l}$.

UN²LOPS results (Higgs)

Höche, Li, Prestel, I407.3773

FIG. 2. Rapidity spectrum of the Higgs boson in individual matching (left) and factorized matching (right). See Sec. IV for details

FIG. 3. Transverse momentum spectrum of the Higgs boson in individual matching (left) and factorized matching (right). See
Sec. IV for details.

Matching to multiple fixed orders

Merging at NLO (?)

- Separate samples by jet resolution, e.g. $d_{c u t}$
- Make NLO for $\mathrm{d}_{\mathrm{i}+\mathrm{I}}<\mathrm{d}_{\mathrm{cut}}<\mathrm{d}_{\mathrm{i}}$
- Avoid double counting
- Reduce $d_{\text {cut }}$ dependence
- MEPS@NLO: Höche et al., I 207.5030
\because FxFx: Frederix, Frixione, I209.62 I 5
\% Geneva: Alioli et al., I 2 I I. 7049
※ UNLOPS: Lönnblad, Prestel, I2 I I.7278, Plätzer, I 2 | I. 5467

MEPS@NLO

- W+0, $\mathrm{I}, 2$ jets at NLO
- W+3,4 jets at LO

Höche et al., I207.5030

Figure 1: Cross section as a function of the inclusive jet multiplicity (left) and their ratios (right) in $W+$ jets events measured by ATLAS [50].

FxFx merging

Frederix, Frixione, I 209.62 I 5

- \mathbb{S} and \mathbb{H} event samples for each multiplicity $\left(D\left(d_{i}\right) \approx \Theta\left(\mu_{2}-d_{i}\right)\right)$

$$
\begin{aligned}
d \bar{\sigma}_{\mathbb{S}, 0}= & T_{0}+V_{0}-T_{0} \mathcal{K}+T_{0} \mathcal{K}_{\mathrm{MC}} D\left(d_{1}\left(\Xi_{\mathbb{H}, 0}\right)\right), \\
d \bar{\sigma}_{\mathbb{H}, 0}= & {\left[T_{1}-T_{0} \mathcal{K}_{\mathrm{MC}}\right] D\left(d_{1}\left(\Xi_{\mathbb{H}, 0}\right)\right), } \\
d \bar{\sigma}_{\mathbb{S}, i}= & {\left[T_{i}+V_{i}-T_{i} \mathcal{K}+T_{i} \mathcal{K}_{\mathrm{MC}} D\left(d_{i+1}\left(\Xi_{\mathbb{H}, i}\right)\right)\right] } \\
& \times\left(1-D\left(d_{i}\left(\Xi_{\mathbb{S}, i}\right)\right)\right) \Theta\left(d_{i-1}\left(\Xi_{\mathbb{S}, i}\right)-\mu_{2}\right), \\
d \bar{\sigma}_{\mathbb{H}, i}= & {\left[T_{i+1}\left(1-D\left(d_{i}\left(\Xi_{\mathbb{H}, i}\right)\right)\right) \Theta\left(d_{i-1}\left(\Xi_{\mathbb{H}, i}\right)-\mu_{2}\right)\right.} \\
& \left.-T_{i} \mathcal{K}_{\mathrm{MC}}\left(1-D\left(d_{i}\left(\Xi_{\mathbb{S}, i}\right)\right)\right) \Theta\left(d_{i-1}\left(\Xi_{\mathbb{S}, i}\right)-\mu_{2}\right)\right] D\left(d_{i+1}\left(\Xi_{\mathbb{H}, i}\right)\right), \\
d \bar{\sigma}_{\mathbb{S}, N}= & {\left[T_{N}+V_{N}-T_{N} \mathcal{K}+T_{N} \mathcal{K}_{\mathrm{MC}}\right] } \\
& \times\left(1-D\left(d_{N}\left(\Xi_{\mathbb{S}, N}\right)\right)\right) \Theta\left(d_{N-1}\left(\Xi_{\mathbb{S}, N}\right)-\mu_{2}\right), \\
d \bar{\sigma}_{\mathbb{H}, N}= & T_{N+1}\left(1-D\left(d_{N}\left(\Xi_{\mathbb{H}, N}\right)\right)\right) \Theta\left(d_{N-1}\left(\Xi_{\mathbb{H}, N}\right)-\mu_{2}\right) \\
- & T_{N} \mathcal{K}_{\mathrm{MC}}\left(1-D\left(d_{N}\left(\Xi_{\mathbb{S}, N}\right)\right)\right) \Theta\left(d_{N-1}\left(\Xi_{\mathbb{S}, N}\right)-\mu_{2}\right) .
\end{aligned}
$$

FxFx Z results (I)

Frederix, Frixione, Papaefstathiou, Prestel, Torrielli, in prep.

FxFx Z results (2)

CMS, $\Delta \phi(\mathrm{Z}, \mathrm{J} 3), \geq 3$ jets, $\sqrt{s}=7 \sim \mathrm{TeV}$

FxFxW results (I)

FxFxW results (2)

FxFxW results (3)

Rapidity Distance of Leading Jets

Azimuthal Distance of Leading Jets

Geneva merging $\left(\mathrm{e}^{+} \mathrm{e}^{-}\right)$

Alioli et al., I 2 I I. 7049

UNLOPS merging

Lönnblad, Prestel, I2 | I. 7278

- Merging scale dependence
- Ren/fac scale dependence

Parton Showers

Antenna (Lund) shower

In the rest frame of dipole $(j k)$, emission i has transverse momentum p_{t} and rapidity y where

$$
\begin{align*}
p_{t}^{2} & =2 \frac{p_{i} \cdot p_{j} p_{i} \cdot p_{k}}{p_{j} \cdot p_{k}} \tag{1}\\
y & =\frac{1}{2} \ln \frac{p_{i} \cdot p_{k}}{p_{i} \cdot p_{j}} \tag{2}
\end{align*}
$$

and the leading contribution of this emission is

$$
\begin{equation*}
d \sigma_{n+1}^{(j k)}=d \sigma_{n} \frac{\alpha_{\mathrm{s}}}{2 \pi}\left(-2 \mathbf{T}_{j} \cdot \mathbf{T}_{k}\right) \frac{d p_{t}^{2}}{p_{t}^{2}} d y \tag{3}
\end{equation*}
$$

The phase space for emission is $p_{i} \cdot p_{j}, p_{i} \cdot p_{k}<p_{j} \cdot p_{k}=Q^{2} / 2$ where Q is the dipole mass. Hence

$$
\begin{equation*}
-\ln \frac{Q}{p_{t}}<y<\ln \frac{Q}{p_{t}} . \tag{4}
\end{equation*}
$$

- Three jets in $e^{+} e^{-}$annihilation

The p_{t} resolution is Q_{0} where $Q_{0}^{2} / Q^{2}=y_{\text {cut }}$. Hence the 3 -jet rate is

$$
\begin{equation*}
R_{3}^{d}=\frac{\alpha_{\mathrm{s}}}{2 \pi} 2 C_{F} \int_{Q_{0}}^{Q} 2 \frac{d p_{t}}{p_{t}} \int_{-\ln Q / p_{t}}^{\ln Q / p_{t}} d y=\frac{1}{2} C_{F} a L^{2} \tag{5}
\end{equation*}
$$

where $a=\alpha_{\mathrm{S}} / \pi$ and $L=\ln y_{\text {cut }}$.

Antenna shower

- Four jets in $e^{+} e^{-}$annihilation

$$
\begin{aligned}
R_{4}^{d} & =\left(\frac{\alpha_{\mathrm{s}}}{2 \pi}\right)^{2} 2 C_{F} \int_{Q_{0}}^{Q} 2 \frac{d p_{t 1}}{p_{t 1}} 2 \ln \frac{Q}{p_{t 1}}\left[2 C_{F} \int_{Q_{0}}^{p_{t 1}} 2 \frac{d p_{t 2}}{p_{t 2}} 2 \ln \frac{Q}{p_{t 2}}+C_{A} \int_{Q_{0}}^{p_{t 1}} 2 \frac{d p_{t 2}}{p_{t 2}} 2 \ln \frac{p_{t 1}}{p_{t 2}}\right] \\
& =\left(\frac{\alpha_{\mathrm{s}}}{2 \pi}\right)^{2} 16 C_{F} \int_{Q_{0}}^{Q} \frac{d p_{t 1}}{p_{t 1}} \ln \frac{Q}{p_{t 1}}\left[2 C_{F}\left(\ln ^{2} \frac{Q}{Q_{0}}-\ln ^{2} \frac{Q}{p_{t 1}}\right)+C_{A} \ln ^{2} \frac{p_{t 1}}{Q_{0}}\right] \\
& =\left(\frac{1}{8} C_{F}^{2}+\frac{1}{48} C_{F} C_{A}\right) a^{2} L^{4}
\end{aligned}
$$

Dipole partition

$$
D_{j k}=\frac{p_{j} \cdot p_{k}}{p_{j} \cdot q p_{k} \cdot q}=D_{j k}^{(j)}+D_{j k}^{(k)}
$$

- Catani-Seymour $\quad D_{j k}^{(j)}=D_{j k} \frac{p_{k} \cdot q}{\left(p_{j}+p_{k}\right) \cdot q}$
- Nagy-Soper

$$
D_{j k}^{(j)}=D_{j k} \frac{p_{k} \cdot q p_{j} \cdot Q}{p_{j} \cdot q p_{k} \cdot Q+p_{k} \cdot q p_{j} \cdot Q}
$$

- Angular-ordered

$$
D_{j k}^{(j)}=\frac{1}{2} D_{j k}+\frac{1}{2 q \cdot Q}\left(\frac{p_{j} \cdot Q}{p_{j} \cdot q}-\frac{p_{k} \cdot Q}{p_{k} \cdot q}\right)
$$

AO parton shower

- Coherent emission from (jk)

$$
\begin{aligned}
d \sigma_{n+1}^{(j k)} & =g_{\mathrm{s}}^{2} d \sigma_{n} \frac{d^{3} \mathbf{q}_{i}}{(2 \pi)^{3} 2 \omega_{i}}\left(-\mathbf{T}_{j} \cdot \mathbf{T}_{k}\right) \frac{p_{j} \cdot p_{k}}{p_{j} \cdot p_{i}, p_{k} \cdot p_{i}} \\
& =\frac{\alpha_{\mathrm{s}}}{2 \pi} d \sigma_{n} \frac{d \omega_{i}}{\omega_{i}} \frac{d \Omega_{i}}{2 \pi}\left(-\mathbf{T}_{j} \cdot \mathbf{T}_{k}\right) \frac{\xi_{j k}}{\xi_{i j} \xi_{i k}}
\end{aligned}
$$

where $\xi_{j k}=1-\cos \theta_{j k}$. Now

$$
\frac{d \Omega_{i}}{2 \pi} \frac{\xi_{j k}}{\xi_{i j} \xi_{i k}}=\frac{d \xi_{i j}}{\xi_{i j}} \frac{d \phi_{i j}}{2 \pi} \frac{1}{2}\left(\frac{\xi_{j k}-\xi_{i j}}{\xi_{i k}}+1\right)+(j \leftrightarrow k)
$$

- After azimuthal integration, this is exactly

$$
\frac{d \xi_{i j}}{\xi_{i j}} \Theta\left(\xi_{j k}-\xi_{i j}\right)+\frac{d \xi_{i k}}{\xi_{i k}} \Theta\left(\xi_{j k}-\xi_{i k}\right)
$$

- Each parton j, k radiates into cone $\theta_{\mathrm{ij}}, \theta_{\mathrm{ik}}<\theta_{\mathrm{jk}}$

AO parton shower

- Coherent emission from (jk)

$$
\begin{aligned}
d \sigma_{n+1}^{(j k)} & =g_{\mathrm{s}}^{2} d \sigma_{n} \frac{d^{3} \mathbf{q}_{i}}{(2 \pi)^{3} 2 \omega_{i}}\left(-\mathbf{T}_{j} \cdot \mathbf{T}_{k}\right) \frac{p_{j} \cdot p_{k}}{p_{j} \cdot p_{i}, p_{k} \cdot p_{i}} \\
& =\frac{\alpha_{\mathrm{s}}}{2 \pi} d \sigma_{n} \frac{d \omega_{i}}{\omega_{i}} \frac{d \Omega_{i}}{2 \pi}\left(-\mathbf{T}_{j} \cdot \mathbf{T}_{k}\right) \frac{\xi_{j k}}{\xi_{i j} \xi_{i k}}
\end{aligned}
$$

where $\xi_{j k}=1-\cos \theta_{j k}$. Now

$$
\frac{d \Omega_{i}}{2 \pi} \frac{\xi_{j k}}{\xi_{i j} \xi_{i k}}=\frac{d \xi_{i j}}{\xi_{i j}} \frac{d \phi_{i j}}{2 \pi} \frac{1}{2}\left(\frac{\xi_{j k}-\xi_{i j}}{\xi_{i k}}+1\right)+(j \leftrightarrow k)
$$

- After azimuthal integration, this is exactly

$$
\frac{d \xi_{i j}}{\xi_{i j}} \Theta\left(\xi_{j k}-\xi_{i j}\right)+\frac{d \xi_{i k}}{\xi_{i k}} \Theta\left(\xi_{j k}-\xi_{i k}\right)
$$

- Each parton j, k radiates into cone $\theta_{\mathrm{ij}}, \theta_{\mathrm{ik}}<\theta_{\mathrm{jk}}$

AO parton shower

- Coherent emission from (jk)

$$
\begin{aligned}
d \sigma_{n+1}^{(j k)} & =g_{\mathrm{s}}^{2} d \sigma_{n} \frac{d^{3} \mathbf{q}_{i}}{(2 \pi)^{3} 2 \omega_{i}}\left(-\mathbf{T}_{j} \cdot \mathbf{T}_{k}\right) \frac{p_{j} \cdot p_{k}}{p_{j} \cdot p_{i}, p_{k} \cdot p_{i}} \\
& =\frac{\alpha_{\mathrm{s}}}{2 \pi} d \sigma_{n} \frac{d \omega_{i}}{\omega_{i}} \frac{d \Omega_{i}}{2 \pi}\left(-\mathbf{T}_{j} \cdot \mathbf{T}_{k}\right) \frac{\xi_{j k}}{\xi_{i j} \xi_{i k}}
\end{aligned}
$$

where $\xi_{j k}=1-\cos \theta_{j k}$. Now

$$
\frac{d \Omega_{i}}{2 \pi} \frac{\xi_{j k}}{\xi_{i j} \xi_{i k}}=\frac{d \xi_{i j}}{\xi_{i j}} \frac{d \phi_{i j}}{2 \pi} \frac{1}{2}\left(\frac{\xi_{j k}-\xi_{i j}}{\xi_{i k}}+1\right)+(j \leftrightarrow k)
$$

- After azimuthal integration, this is exactly

$$
\frac{d \xi_{i j}}{\xi_{i j}} \Theta\left(\xi_{j k}-\xi_{i j}\right)+\frac{d \xi_{i k}}{\xi_{i k}} \Theta\left(\xi_{j k}-\xi_{i k}\right)
$$

- Each parton j radiates into cone $\theta_{\mathrm{ij}}<\theta_{\mathrm{jk}}$

AO parton shower

- Two gluon emission

$$
\begin{aligned}
& \begin{aligned}
d \sigma_{n+2}^{(i j)} & =\frac{\alpha_{\mathrm{s}}}{\pi} d \sigma_{n+1}^{(j)} \frac{d \omega_{\ell}}{\omega_{\ell}}\left\{\left(-\mathbf{T}_{i} \cdot \mathbf{T}_{j}^{\prime}\right) \int^{\xi_{i j}}\left(\frac{d \xi_{\ell i}}{\xi_{\ell i}}+\frac{d \xi_{\ell j}}{\xi_{\ell j}}\right)\right. \\
& \left.+\sum_{k \neq i, j}\left[\left(-\mathbf{T}_{i} \cdot \mathbf{T}_{k}\right) \int^{\xi_{i k}} \frac{d \xi_{\ell i}}{\xi_{\ell i}}+\left(-\mathbf{T}_{j}^{\prime} \cdot \mathbf{T}_{k}\right) \int^{\xi_{j k}} \frac{d \xi_{\ell j}}{\xi_{\ell j}}\right]\right\}
\end{aligned} \\
& \text { where } \mathbf{T}_{j}^{\prime}=\mathbf{T}_{j}-\mathbf{T}_{i} \text { and } \mathbf{T}_{i}+\mathbf{T}_{j}^{\prime}+\sum_{k \neq i, j} \mathbf{T}_{k}=0
\end{aligned}
$$

- Collecting terms in $\xi_{\ell i}$ and $\xi_{\ell j}$, we find

$$
\begin{aligned}
d \sigma_{n+2}^{(i j)} & =\frac{\alpha_{\mathrm{s}}}{\pi} d \sigma_{n+1}^{(j)} \frac{d \omega_{\ell}}{\omega_{\ell}}\left\{\mathbf{T}_{i} \cdot \mathbf{T}_{i} \int^{\xi_{i j}} \frac{d \xi_{\ell i}}{\xi_{\ell i}}+\mathbf{T}_{j}^{\prime} \cdot \mathbf{T}_{j}^{\prime} \int^{\xi_{i j}} \frac{d \xi_{\ell j}}{\xi_{\ell j}} \longleftarrow \begin{array}{c}
\text { each parton emits } \\
\text { into its cone }
\end{array}\right. \\
& -\mathbf{T}_{j} \cdot \sum_{k \neq i, j} \mathbf{T}_{k} \int_{\xi i j}^{\xi j k} \frac{d \xi_{\ell j}}{\xi_{\ell j}} \longleftarrow \begin{array}{c}
\text { coherent emission outside cones, } \\
\text { done in previous step }
\end{array} \\
& \left.-\mathbf{T}_{i} \cdot \sum_{k \neq i, j} \mathbf{T}_{k}\left(\int_{\xi i j}^{\xi i k} \frac{d \xi_{\ell i}}{\xi_{\ell i}}-\int_{\xi i j}^{\xi j k} \frac{d \xi_{\ell j}}{\xi_{\ell j}}\right)\right\} \cdot \longleftarrow \begin{array}{c}
\text { non-singular, 2 logs } \\
\text { down, neglected }
\end{array}
\end{aligned}
$$

$\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{q} \bar{q} g g$

- AO parton shower:

$$
d \sigma_{n+2}^{(i j)}=\frac{\alpha_{\mathrm{S}}}{\pi} d \sigma_{n+1}^{(j)} \frac{d \omega_{\ell}}{\omega_{\ell}}\left\{\mathbf{T}_{i} \cdot \mathbf{T}_{i} \int^{\xi_{i j}} \frac{d \xi_{\ell i}}{\xi_{\ell i}}+\mathbf{T}_{j}^{\prime} \cdot \mathbf{T}_{j}^{\prime} \int^{\xi_{i j}} \frac{d \xi_{\ell j}}{\xi_{\ell j}}-\mathbf{T}_{j} \cdot \sum_{k \neq i, j} \mathbf{T}_{k} \int_{\xi i j}^{\xi j k} \frac{d \xi_{\ell j}}{\xi_{\ell j}}\right\}
$$

$\longrightarrow d \sigma_{4}^{(i q)}=\frac{\alpha_{\mathrm{S}}}{\pi} d \sigma_{3}^{(q)} \frac{d \omega_{\ell}}{\omega_{\ell}}\left\{C_{A} \int^{\xi_{i q}} \frac{d \xi_{\ell i}}{\xi_{\ell i}}+C_{F} \int^{\xi q \bar{q}} \frac{d \xi_{\ell q}}{\xi_{\ell q}}\right\}$ where $d \sigma_{3}^{(q)}=\frac{\alpha_{\mathrm{S}}}{\pi} \sigma_{2} C_{F} \frac{d \omega_{i}}{\omega_{i}} \int^{\xi q \bar{q}} \frac{d \xi_{i q}}{\xi_{i q}}$

4-jet rate (k_{t}-algorithm):

$$
\begin{gathered}
y_{\ell q}=2 \omega_{\ell}^{2} \xi_{\ell q} / Q^{2}>y_{\mathrm{c}}, \quad y_{\ell i}=2 \omega_{m}^{2} \xi_{\ell i} / Q^{2}>y_{\mathrm{c}} \text { where } \omega_{m}=\min \left\{\omega_{\ell}, \omega_{i}\right\} \\
\sigma_{4}^{(i q)}=\left(\frac{\alpha_{\mathrm{S}}}{\pi}\right)^{2} \sigma_{2} C_{F} \int_{Q \sqrt{y_{\mathrm{c}}} / 2}^{Q / 2} \frac{d \omega_{i}}{\omega_{i}} \int_{Q \sqrt{y_{\mathrm{c}} / 2}}^{Q / 2} \frac{d \omega_{\ell}}{\omega_{\ell}} \int_{Q^{2} y_{\mathrm{c}} / 2 \omega_{i}^{2}}^{2} \frac{d \xi_{i q}}{\xi_{i q}}\left\{C_{A} \ln \left(\frac{2 \omega_{m}^{2} \xi_{i q}}{Q^{2} y_{\mathrm{c}}}\right)+C_{F} \ln \left(\frac{4 \omega_{\ell}^{2}}{Q^{2} y_{\mathrm{c}}}\right)\right\} \\
\longrightarrow R_{4}=\left(\sigma_{4}^{(i q)}+\sigma_{4}^{(i \bar{q})}\right) / \sigma_{2}=\left(\frac{\alpha_{\mathrm{s}}}{\pi}\right)^{2} C_{F}\left(\frac{1}{8} C_{F}+\frac{1}{48} C_{A}\right) L^{4} \quad \text { where } L=\log \left(1 / y_{\mathrm{c}}\right)
\end{gathered}
$$

$\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{q} \bar{q} g g$

- 4-jet rate $\left(\mathrm{k}_{\mathrm{t}}\right.$-algorithm $)$ vs $L=\log \left(1 / y_{\text {cut }}\right)$

$$
\begin{aligned}
& \frac{1}{\sigma_{\mathrm{B}}} \frac{d \sigma_{4}}{d L}=\left[\frac{\alpha_{\mathrm{S}}(s)}{\pi}\right]^{2}\left(4 A L^{3}+3 B L^{2}+2 C L+\ldots\right) \\
& A=C_{F}^{2} / 8+C_{F} C_{A} / 48 \\
& B=-3 C_{F}^{2} / 4-5 C_{F} C_{A} / 18 \\
& C=? ? \quad \text { (fitted) }
\end{aligned}
$$

- Compare with MadGraph5 at I TeV
$\because M_{i j}>100 \mathrm{MeV} \rightarrow \mathrm{L}<18.4$

$\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{q} \bar{q} g g$

- Dashed is LCA (refitting C)

$\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{q} \bar{q} g g g$

- 5-jet rate $\left(\mathrm{k}_{\mathrm{t}}\right.$-algorithm $)$ vs $L=\log \left(1 / y_{\text {cut }}\right)$

$$
\begin{aligned}
& \frac{1}{\sigma_{\mathrm{B}}} \frac{d \sigma_{5}}{d L}=\left[\frac{\alpha_{\mathrm{S}}(s)}{\pi}\right]^{3}\left(6 A L^{5}+5 B L^{4}+4 C L^{3}+\ldots\right) \\
& A=C_{F}^{3} / 48+C_{F}^{2} C_{A} / 96+C_{F} C_{A}^{2} / 720 \\
& B=-3 C_{F}^{3} / 16-49 C_{F}^{2} C_{A} / 288-91 C_{F} C_{A}^{2} / 2880 \\
& C=? ? \quad \text { (fitted) }
\end{aligned}
$$

- Compare with MadGraph5 at I TeV again

$\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{q} \bar{q} g g g$

- Dashed is LCA (refitting C)

Subleading colour

- Deductor pp at 14 TeV
- Number of partons
($\mathrm{PT}_{\text {jet }}>200 \mathrm{GeV}, \mathrm{k}_{\text {tmin }}=\mathrm{IGeV}$)

Nagy, Soper, I 202.4496, I 50 I. 00778

- Gap fraction ($|y|<2$)

Subleading colour

- $\mathrm{q} \mathrm{q} \rightarrow \mathrm{q} \mathrm{q}$ evolution matrix elements

Plätzer, I3 I2.2448

Fig. 3. Real and imaginary parts of a diagonal evolution matrix element for quark-quark scattering at $s=100 \mathrm{GeV}^{2}$, $\mu^{2}=25 \mathrm{GeV}^{2}$ as a function of the momentum transfer $|t|$, comparing the exact results to various approximations. This matrix elements describes the amplitude to keep a t-channel colour flow σ.

Shower ordering

- Virtuality-ordered shower

$$
\begin{aligned}
& q_{a}^{2}=\frac{q_{b}^{2}}{z_{b}}+\frac{q_{c}^{2}}{z_{c}}+\frac{q_{T}^{2}}{z_{b} z_{c}} \\
& q_{T} \simeq z_{b} z_{c} E_{a} \theta_{a} \quad q_{a}^{2} \simeq z_{b} z_{c}\left(E_{a} \theta_{a}\right)^{2} \\
& q_{c}^{2} \simeq z_{c}^{2} z_{d} z_{e}\left(E_{a} \theta_{c}\right)^{2}<z_{c} q_{a}^{2} \simeq z_{c}^{2} z_{b}\left(E_{a} \theta_{a}\right)^{2}
\end{aligned}
$$

$$
z_{d} z_{e} \theta_{c}^{2}<z_{b} \theta_{a}^{2}
$$

(a)

(b)

(c)
(b) $z_{2} \theta_{2}^{2}<z_{1} \theta_{1}^{2} \quad \rightarrow$ same as AO
(c) $z_{2} \theta_{2}^{2}<\theta_{1}^{2} \rightarrow$ larger than AO
$\rightarrow R_{4}^{q^{2}}=\left(\frac{\alpha_{\mathrm{S}}}{\pi}\right)^{2} \frac{C_{F}}{8}\left(C_{F}+\frac{1}{4} C_{A}\right) L^{4}$

Coherence tests

- $Z^{0} \rightarrow 4$ jets (LEP OPAL data) Fischer et al., I505.0I636

- Herwig 6, Pythia 6 comparisons

Coherence tests

- $Z^{0} \rightarrow 4$ jets (LEP OPAL data) Fischer et al., I505.0I636

- Herwig++, Pythia 8 comparisons

Coherence tests

- $Z^{0} \rightarrow 4$ jets (LEP OPAL data) Fischer et al., I505.0I636

- Herwig++ virtuality ordering does worst

Spin in showers

$$
\begin{gathered}
<s\left|\hat{P}_{q q}\left(z, k_{\perp} ; \epsilon\right)\right| s^{\prime}>=\delta_{s s^{\prime}} C_{F}\left[\frac{1+z^{2}}{1-z}-\epsilon(1-z)\right], \\
<s\left|\hat{P}_{q g}\left(z, k_{\perp} ; \epsilon\right)\right| s^{\prime}>=\delta_{s s^{\prime}} C_{F}\left[\frac{1+(1-z)^{2}}{z}-\epsilon z\right], \\
<\mu\left|\hat{P}_{g q}\left(z, k_{\perp} ; \epsilon\right)\right| \nu>=T_{R}\left[-g^{\mu \nu}+4 z(1-z) \frac{k_{\perp}^{\mu} k_{\perp}^{\nu}}{k_{\perp}^{2}}\right], \\
<\mu\left|\hat{P}_{g g}\left(z, k_{\perp} ; \epsilon\right)\right| \nu>=2 C_{A}\left[-g^{\mu \nu}\left(\frac{z}{1-z}+\frac{1-z}{z}\right)-2(1-\epsilon) z(1-z) \frac{k_{\perp}^{\mu} k_{\perp}^{\nu}}{k_{\perp}^{2}}\right]
\end{gathered}
$$

- No effect in $\mathrm{q} \rightarrow \mathrm{qg}$ (helicity conservation)
- Opposite in $g \rightarrow g g$ and $g \rightarrow q \bar{q}$
\because Cancel when $\mathrm{N}_{\mathrm{f}}=\mathrm{N}_{\mathrm{c}}$

Spin in showers

- Bengtsson-Zerwas angle in $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow 4$ jets

- Abelian theory has only $\mathrm{g} \rightarrow \mathrm{q} \bar{q}$

Conclusions

- Matching at NLO
\% SM processes automated, EW and BSM soon
- Matching at NNLO
\% So far only DY \& H, others much harder
- Merging at NLO
* Still in a state of flux; FxFx automated
- Parton showers
\% Coherence effects visible
$\%$ Spin and subleading colour effects small
\% Hadronization important, but little effort/progress

Thanks for listening!

