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The basis for resummation is soft-collinear factorization, 
both in SCET and for QCD based resummation techniques.
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SCET vs. dQCD: Formalism
Effective field theory framework 

• Collinear fields, to describe energetic radiation along 
directions of jets.  

• Soft fields for radiation outside jets. 

• Hard-scattering corrections are integrated out: Wilson 
coefficients of effective theory operators. 

Advantages 

• Operator definitions for all ingredients  

• Clear scale separation. Resummation by RG evolution 

• Simpler to exploit gauge invariance at the Lagrangian level 

• Can include power corrections → Chris White’s talk
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SCET vs. dQCD: Scheme choices

The two communities use different scheme choices  

• dQCD resums integrated cross section, SCET typically the 
differential one 

• dQCD prefers Laplace/moment/position space; SCET 
momentum space 

• different power corrections due to variable choices 

• dQCD modifies logarithms to switch off resummation away 
from end-point; SCET typically changes RG scales 
(``profile functions’’) to switch it off. 

These are not fundamental differences! Interesting to compare 
results from different schemes.

Sterman, Zeng ‘13 ; Almeida, Ellis, Lee, Sterman, Sung, Walsh ’14; Bonvini, Forte, 
Ghezzi and Ridolfi ’12; Bonvini, Forte, Ridolfi and Rottoli ‘14



Hot topics at SCET 2015 conference at end of March 

• Automation → talks by Simone Alioli, Zoltan Nagy, Rudi Rahn  

• Event-shapes, jet-shapes, jet substructure, multi-differential 
cross sections 

• Glauber gluons and Regge behavior 

• Non-global logarithms → talk by Simon Caron-Huot 

• Resummation for power corrections → talk by Chris White 

• Resummation for heavy particles: dark matter annihilation, 
exclusive W and Z decays 

• Since then: NNLO subtraction scheme using N-jettiness event 
shape (extension of qT subtraction) → talk by J. Gaunt



Outline
Will discuss three topics in greater detail 

1. Automated NNLL resummation for jet-veto 
cross sections 

2. NNLL resummation for hadron collider dijet 
event shapes 

3. Jet Effective Theory: Towards resummation for 
cone-jet cross sections



Automated NNLL+NLO resummation  
for cross sections with a jet veto

TB, Frederix, Neubert, Rothen 1412.8408 (JHEP)



Higher-log resummations (in SCET or in QCD) are usually 
carried out analytically, on a case-to-case basis. (Notable 
exception: CAESAR, ARES → Pier Monni’s talk) 

• Inefficient and error prone 

In contrast, LO and NLO computations have been 
completely automated over the past years. These codes 
can be used as a basis to perform resummation: 

• Large logarithms arise near Born-level kinematics. 
Can reweight LO events to achieve resummation. 

• Can use NLO codes to compute ingredients for the 
resummation: hard function, jet and soft functions



A veto on jets                                                  is used to 
suppress top background, in particular in processes 
involving W-bosons, e.g. in 

pp → W+ W− , pp → H  →  W+ W− , etc.  

→Large Sudakov logarithms

A lot of work on their resummation, both in QCD and SCET:  

• Higgs: Banfi, Salam, Zanderighi ’12; + Monni ’12; TB Neubert ’12 + 
Rothen ’13; Tackmann, Walsh, Zuberi ’12 + Stewart ’13; Liu Petriello ’13; 
+ Boughezal, Tackmann and Walsh ‘14 

• W+ W− : Jaiswal, Okui ’14; Monni, Zanerighi ’14; TB, Frederix, Neubert, 
Rothen ‘14
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Cross section with a jet veto
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Figure 1: Structure and kinematics of the factorization theorem for the W+W� production
cross section in the presence of a jet veto.

Before writing out the factorization theorem in more detail, let us specify the kinematics
of the process at low pvetoT . The momenta of the incoming protons are p1 and p2. The partons
emerging from the parton distribution functions (PDFs) carry momenta z1p1 and z2p2. After
possible emissions (described by the beam functions B̄i), the momenta ⇠1p1 and ⇠2p2 are left
to produce the boson pair through a hard interaction Hij. In the limit of small transverse
momenta we can neglect recoil e↵ects, so that the partons are still collinear to the proton
momentum after the emissions. We define

ŝ = (q1 + q2)
2 = (⇠1p1 + ⇠2p2)

2 = Q2 , t̂ = (⇠1p1 � q1)
2 , û = (⇠1p1 � q2)

2 , (1)

with ŝ + t̂ + û = 2M2
W . Note that our definition of the variable ŝ di↵ers from the standard

choice (z1p1 + z2p2)2. The quantity ŝ we define is the one relevant for the boson production
process, i.e. the one that enters the hard function. In the small transverse-momentum limit
of the emissions, we obtain
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2
,
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where nµ = (1, 0, 0, 1) and n̄µ = (1, 0, 0,�1) are two light-cone vectors in the beam directions,
y denotes the rapidity of q = q1 + q2 in the laboratory frame, and s = (p1 + p2)2. The crucial
feature of (2) is that it shows that one can obtain the arguments of the hard function directly
from the vector-boson (and proton) kinematics. The same is true for an arbitrary electroweak
final state.

At low pvetoT , the di↵erential cross section in the presence of a jet veto has the factorized
form [8, 9]
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3

Factorization theorem for σ(pT
veto)

Beam functions B(pTveto) 
• real emission with veto. 

perturbative part ⊗ PDF 
• process independent

Hard functions H(Q) 
• virtual corrections, 

standard QCD loops 
• process independent

Born-level kinematics for small pTveto

TB, Neubert ’12 + Rothen ‘13



Resummed cross section

“Born-level cross section” x “prefactor P(pTveto)” 

• Can obtain resummed cross section by 
reweighting Born-level events with P(pTveto)
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Automated Resummation using Madgraph5_aMC@NLO 

Scheme A: NNLL from reweighting Born events 

• Rescale each LO event weight with the ratio to the 
resummed cross section.  

• Beam functions included via modified PDFs  

• Tabulate grid of values, use standard PDF interpolation 

• One-loop hard function (only process dependent piece) 
computed using the MadGraph5_aMC@NLO code 

• Additive matching to NLO fixed-order 
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Figure 3: Left: NLO predictions for the W+W� production cross section obtained with
a conservative estimate of scale uncertainties (grey), and with scale variations about high
(green) and low (magenta) default values; see text for further information. Right: Kinematic
distribution in the variable Q of the leading-order cross section.

Figure 2 it appears that such a choice indeed leads to smaller higher-order corrections. A
similar behavior is found for all cases studied in this paper. The invariant-mass distribution
of the W -boson pair is shown in the right panel of Figure 3. Defining the average hard scale Q̃
by the median value of this distribution, one obtains Q̃ = 222GeV. This value will be useful
in our phenomenological discussion below.

As discussed earlier and shown in (16), in Scheme A this matching is purely additive, i.e.

�NNLL+NLO = �NNLL(µ, µh) +
⇣
�NLO(µm)� �NNLL(µm)

��
expanded to NLO

⌘
. (21)

The expansion of the resummed result is obtained by performing the reweighting with the
reweighting factor expanded to NLO. If the resummation is performed with NNLL accuracy
(or higher), the matching correction inside the parentheses is power suppressed in pvetoT /Q. Note
that we are free to use a di↵erent scale µm for the matching correction than for the resummed
result, since the power corrections in pvetoT /Q must be separately scale invariant. To obtain our
uncertainty bands, the scales µ, µh and the matching scale µm are all varied independently.
We then add the resulting uncertainties quadratically. We choose the number of flavors for
the resummed results as nf = 5, but since MadGraph5_aMC@NLO cannot produce five-flavor
NLO results for W+W� due to the presence of top-quark resonant contributions in the NLO
corrections, we calculate the matching corrections with nf = 4 light flavors.

While the appropriate scale choice is clear for the case of the beam functions which describe
emissions near the scale pvetoT , the correct choice of µm is not immediately obvious, because the
matching corrections receive contributions associated with both the low and the high scale.
The result for the cross section obtained with a high and a low matching scale is shown in
Figure 4, along with the corresponding relative size of the NNLL matching corrections. The
matching corrections are well-behaved in both cases. They are very small at the low pvetoT values
shown in Figure 4 and are therefore di�cult to extract numerically. At larger values of pvetoT

13



Automated Resummation using Madgraph5_aMC@NLO 

Scheme B: NNLL+NLO with automated computation of the beam 
functions and matching corrections 

• Define reduced cross section  by dividing out hard function 
and evolution factors 

  

• Reduced cross section is free of large log’s. Compute it at 
NLO for μ≈pT

veto by running aMC@NLO in fixed-order mode 

• multiply back evolution factor and hard function   

• MadGraph5_aMC@NLO computes both hard and beam 
functions! 

• Automatically includes multiplicative matching to NLO

as pvetoT ! 0. The simplest way to achieve the matching is to subtract from the resummed
result its expansion to NLO and to then add back the full NLO result

d�NNLL+NLO

dpvetoT

=
d�NNLL

dpvetoT

� d�NNLL

dpvetoT

����
expanded to NLO

+
d�NLO

dpvetoT

. (16)

Our final NNLL+NLO result resums higher-order terms that are logarithmically enhanced,
but also includes the full NLO result. To obtain the expansion of the resummed result, we
simply do the reweighting with the fixed-order expansion of the reweighting factor in (11).
The NLO result can be obtained from running MadGraph5_aMC@NLO in fixed-order mode.
The di↵erence between the full NLO result and the expansion of the resummed result is called
the matching correction. By definition, this correction vanishes as pvetoT ! 0 and is expected
to scale as pvetoT /Q. As we will discuss in Section 4.2, it is numerically very small for the values
of pvetoT which are experimentally relevant.

3.2 Scheme B: NNLL+NLO with Automated Computation of the
Beam Functions and Matching Corrections

In the reweighting scheme discussed above, we use MadGraph5_aMC@NLO to compute the
hard functions but supply the beam functions from an explicit calculation. One can go even
further and also compute the beam functions and the matching corrections automatically and
in a single step. This is done by first factoring out the hard corrections and then performing
a NLO run in the presence of the jet veto. An advantage of this second approach is that the
beam functions are computed on the fly and it is therefore easy to use di↵erent PDF sets
without any need to recompute the beam functions. A slight disadvantage is that one has to
run MadGraph5_aMC@NLO in NLO mode. One can thus no longer work with events and
will have to perform a new run when changing the cuts. However, if the matching is included
in Scheme A described above, then a NLO run is needed also in this case. Note also that
Scheme B only works at NNLL accuracy, while Scheme A allows for arbitrary precision if the
necessary reweighting factor is supplied.

In order not to contaminate the matching corrections with the large logarithms contained
in the hard function, we factor out the prefactor Pij in (6) and define a reduced cross section
�̃ij by
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where ��̃ = O(pvetoT /Q) contains the power corrections and is given by the matching correction
(16) divided by the prefactor. The function Pij receives one-loop corrections from the hard
function and the evolution factor Ei so that we can write
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Comparison
Scheme A 

• Is easily extended to higher accuracy 
• Can be applied to other processes 
• Flexible, since it works with events (up to the NLO 

matching!)
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Figure 5: Left: Comparison of the resummed and matched NNLL+NLO predictions for the
W+W� cross section obtained in Scheme A (additive matching) with Scheme B (multiplicative
matching). Right: Comparison of the NNLL+NLO predictions with the NLO result matched
to Pythia using aMC@NLO.

0  pT  20GeV, is lower than the fixed-order result. The use of a matched parton shower
therefore underestimates the jet-veto cross section. In contrast, we find that our NNLL+NLO
resummed prediction lies closer to the fixed-order result indicated by the grey band. Genuine
resummation e↵ects are small as long as the fixed-order result for the cross section is computed
with a high value µ ⇠ Q of the renormalization scale.

4.3 Multiple Bosons and Cross Section Ratios

We are now ready to present our final results for a couple of interesting production cross
sections involving multiple electroweak gauge bosons. In Figure 6, we show predictions for the
Z,W+W� andW+W�W± production cross sections at the LHC with

p
s = 7TeV; it would be

straightforward to rerun our code at di↵erent values of the center-of-mass energy. In each case,
we present our resummed and matched predictions at NLL+NLO and NNLL+NLO accuracy
and compare them with the fixed-order NLO prediction. Notice that the value of the cross
section drops by about a factor 103 with each additional boson. The triple-boson production
cross section is tiny, but it constitutes a background to Higgs production in association with
a W± and subsequent decay H ! W+W�. The fact that we can obtain predictions for
three-boson final states without any additional e↵ort nicely demonstrates the power of our
automated resummation scheme.

We find that the scale uncertainties of our NNLL+NLO predictions for W+W� and
W+W�W± production are estimated to be of similar size, while we obtain a much smaller
uncertainty for the case of Z-boson production. This small scale variation should perhaps
be taken with a grain of salt. At larger pvetoT values, our resummed cross section becomes
similar to the fixed-order result, and its scale variation is similar to the scale variation of the
fixed-order cross section obtained by performing a correlated scale variation with µr = µf . An
independent variation of µr and µf , which is standard practice in fixed-order computations,

15

Scheme B 
• Resummation and NLO 

matching in one run 
• Beam functions on the fly

Both will be included in version 2.3 of Madgraph5_aMC@NLO 



• For NLO result we vary pTveto/2 < μ < 2Q. 

• NNLL+NLO is close to NLO at μ = Q 

• Matching corrections are small, grow linearly to 3% at 
pTveto=80 GeV. Can neglect matching at low  pTveto.
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Figure 6: Resummed and matched predictions for the cross sections for Z, W+W�, and
W+W�W± production, compared with NLO fixed-order predictions. The lower panels show
the ratio of the cross section to the default NLO value with scale choice µ = Q.

would give an uncertainty that is twice as large. On the other hand, we have checked that
the known NNLO corrections for Z-boson production are indeed compatible with our small
uncertainty band. It is also interesting to note that for W+W� production the scale uncer-
tainties of the fixed-order prediction obtained from correlated and independent variations of
µr and µf are found to be of similar size.

We also observe that the scale uncertainties of the fixed-order NLO predictions at small
pvetoT values strongly increase with the number of produced bosons. This is not surprising if
we consider the relevant scale ratio Q̃/pvetoT , which governs the size of Sudakov logarithms.
Using the median value Q̃ of the invariant-mass distribution to estimate the hard scale, we
find Q̃ = MZ for Z production, Q̃ ⇡ 2.8MW for W+W� production, and Q̃ = 5.7MW for
W+W�W± production. In all cases, the three-momenta at which the bosons are produced
scale with the boson mass, but the average scale increases with the number of the produced
bosons. Note that after the resummation of Sudakov logarithms has been performed, the
width of the uncertainty bands is only weakly dependent on the veto scale.

The relative perturbative uncertainty of our NNLL+NLO prediction for the W+W� pro-
duction cross section at pvetoT = 25GeV is +3.9%

�3.0%. It was advocated in [46] that taking the ratio
of the W+W� and Z-boson production cross sections might be a good way to reduce the
uncertainty in the prediction of the jet-veto cross sections. This proposal was adopted in the
experimental analysis reported in [14]. We have thus studied this cross-section ratio in some
detail. We find that the relative uncertainty in the cross-section ratio is +5.2%

�2.8%, which is even
slightly larger than the uncertainty in the W+W� production cross section itself. This makes
it clear that taking the cross-section ratio does not help reducing the perturbative uncertain-
ties, the reason being that the scale uncertainties are much smaller for Z-boson production
than for W+W� production. Even though the beam functions are the same in both cases, the
cross sections involve di↵erent hard functions and RG evolution factors, which spoils the can-
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Important advantage:

Straightforward to include the 
decay of the vector bosons and 
cuts on the final state leptons. 

E.g. cuts by ATLAS in e+e− 
channel 

Decays and Cuts
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Figure 8: Resummed and matched predictions for the pp ! W+W�+X ! e+e�⌫⌫̄+X cross
section with the cuts on the leptonic final state described in the text.

thus needs to be treated as a photon jet, or more precisely a photon surrounded by some
hadronic radiation. In fact, many photon-isolation requirements necessitate fragmentation
functions. This can be avoided using the photon isolation proposed by Frixione [47], but also
in this case the photon has a partonic content and a proper description needs to take into
account partons emitted collinear to the photon. This implies that our factorization theorem
does not apply, since it assumes that all energetic radiation is collinear to the beam. The
photon isolation introduces new small scales to the problem (e.g. the hadronic energy around
the photon), which give rise to additional large logarithms not associated with the jet veto.

It is nevertheless interesting to see what happens when we apply our resummation scheme
to a process involving photons. To this end, we consider W±� production using the same setup
as before (

p
s = 7TeV, R = 0.4, nf = 4) and imposing the isolation requirement proposed

in [47], with associated parameters R�
0 = 0.4, xn = 1.0 and ✏� = 1.0. The corresponding results

are shown in Figure 9. The pp ! W� process su↵ers from very large NLO corrections (the
LO results are similar to the NLL result). The resummed results, on the other hand, are not
very di↵erent from the LO predictions, so that the matching corrections are huge, indicating
that there are indeed other sources of large corrections in this process. Likely these arise due
to Sudakov e↵ects associated with photon isolation. However, even the logarithms associated
with the jet veto have a more complicated structure once a process involves partons collinear
to the photon directions, which becomes possible at NLO. It would be interesting to analyze
such photon processes in the context of SCET. In its present implementation our method does
not resum all large corrections in these cases.
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Comparison to matched PS

Matched parton shower underestimates the jet-veto 
cross section 

• In line with conclusions of Monni, Zanderighi ‘14
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Figure 5: Left: Comparison of the resummed and matched NNLL+NLO predictions for the
W+W� cross section obtained in Scheme A (additive matching) with Scheme B (multiplicative
matching). Right: Comparison of the NNLL+NLO predictions with the NLO result matched
to Pythia using aMC@NLO.

0  pT  20GeV, is lower than the fixed-order result. The use of a matched parton shower
therefore underestimates the jet-veto cross section. In contrast, we find that our NNLL+NLO
resummed prediction lies closer to the fixed-order result indicated by the grey band. Genuine
resummation e↵ects are small as long as the fixed-order result for the cross section is computed
with a high value µ ⇠ Q of the renormalization scale.

4.3 Multiple Bosons and Cross Section Ratios

We are now ready to present our final results for a couple of interesting production cross
sections involving multiple electroweak gauge bosons. In Figure 6, we show predictions for the
Z,W+W� andW+W�W± production cross sections at the LHC with

p
s = 7TeV; it would be

straightforward to rerun our code at di↵erent values of the center-of-mass energy. In each case,
we present our resummed and matched predictions at NLL+NLO and NNLL+NLO accuracy
and compare them with the fixed-order NLO prediction. Notice that the value of the cross
section drops by about a factor 103 with each additional boson. The triple-boson production
cross section is tiny, but it constitutes a background to Higgs production in association with
a W± and subsequent decay H ! W+W�. The fact that we can obtain predictions for
three-boson final states without any additional e↵ort nicely demonstrates the power of our
automated resummation scheme.

We find that the scale uncertainties of our NNLL+NLO predictions for W+W� and
W+W�W± production are estimated to be of similar size, while we obtain a much smaller
uncertainty for the case of Z-boson production. This small scale variation should perhaps
be taken with a grain of salt. At larger pvetoT values, our resummed cross section becomes
similar to the fixed-order result, and its scale variation is similar to the scale variation of the
fixed-order cross section obtained by performing a correlated scale variation with µr = µf . An
independent variation of µr and µf , which is standard practice in fixed-order computations,
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Observation: At higher 
values of pT

veto the matched 
parton shower leads to lower 
results. 

Unitarity of the shower, leads 
to compensation of changes 
at low transverse momentum. 



Extension to other observables
Since Sudakov logarithms always arise near Born-level 
kinematics, the same technique for automated resummation 
can also be used for more general observables. 

Complications: 

• Nontrivial color structure of the hard function. Need color 
information and imaginary part of amplitudes. Modified 
GoSam (Broggio + GoSam) can provide this information. 

• NNLL needs automated computations of one-loop beam, 
jet, and soft functions, two-loop anomalous dimensions. 
→Rudi Rahn’s talk 

• Restriction to global observables



NNLL resummation for dijet event shapes  
at hadron colliders 

TB, Xavier Garcia Tormo 1502.04136 (JHEP) 
and ongoing  + Jan Piclum



Resummation for LHC processes
Many higher-log results for e+e− but, only for a handful 
of NNLL predictions for differential cross sections for 
hadron colliders 

• Z/W/H transverse momentum spectra 

• Z/W/H/WW/… cross sections with jet-veto 

• Beam thrust 

• 1-jettiness in H and W production 

Not a single dijet observable! (Some threshold results.)
Chien, Kelley, Schwartz, Zhu ’10-‘12 



Canonical e+e− event shape: thrust 

Precise measurement at LEP,  theoretical predictions 
at N3LL+NNLO TB, Schwartz ‘08.
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Figure 9.1. Left: The thrust distribution as measured by the ALEPH experiment at LEP I [226].
The inset shows the region relevant for the αs determination. Right: Sample collider events. The
two-jet configuration on the left has a large thrust T ≈ 0.98, while the multi-jet event on the right
has T ≈ 0.65 (note that a completely spherical event has T = 1/2). The red dashed line indicated the
thrust vector.

large-angle radiation are suppressed by the coupling constant αs. Most events therefore

consist of two narrow jets formed by the qq̄ pair and its accompanying soft and collinear

radiation. The typical mass of the jets at large thrust is M2
J ∼ Q2(1 − T ) and perturbative

corrections to the thrust distribution are enhanced by logarithms of M2
J/Q

2 ∼ (1− T ) which

need to be resummed. One can analyze the two-jet region using SCET and can derive a

factorization theorem for the cross section; this quantity can be written in terms of a hard

function, two jet functions and a soft function [227–229]. Using the RG methods we discussed

in Section 6 the thrust distribution was resummed up to N3LL accuracy in [230], two orders

in logarithmic accuracy higher than what had been achieved with traditional methods, and

matched to NNLO fixed order results [231, 232]. Based on this result, Ref. [233] performed a

precision determination of the strong coupling constant αs from this variable. In this analysis,

both the value of the coupling constant and non-perturbative effects are extracted from a fit

to the available experimental data. The resulting value αs(MZ) = 0.1135 ± (0.0002)expt ±
(0.0005)hadr±(0.0009)pert has very small uncertainties and is significantly lower than the world

average for αs = 0.1185 ± 0.0006 [234], whose small error is due to the small uncertainty of

the lattice QCD results. Let us note that hadronization effects play a significant role in

the extraction of αs from event shapes. Accounting for them lowers the extracted value of

αs(MZ) by 8% [233]. To obtain the above level of accuracy, hadronization as well as other

small effects (such as hadron mass effects [235, 236] and finite b-quark mass effects [237, 238])

need to be under good control.

It will be important to validate the above result for αs by using other event-shape vari-

ables for which accurate predictions are available. One such example is the heavy jet mass,

which was evaluated in [239] to N3LL accuracy. Another example are the total and wide jet

broadenings for which a factorization theorem was obtained in [12, 25] and for which NNLL

resummation was performed in [240]. The definition of the total jet broadening is identical
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Thrust at N3LL with Power Corrections and a Precision Global Fit for αs(mZ)
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We give a factorization formula for the e+e− thrust distribution dσ/dτ with τ = 1 − T based
on soft-collinear effective theory. The result is applicable for all τ , i.e. in the peak, tail, and far-
tail regions. The formula includes O(α3

s) fixed-order QCD results, resummation of singular partonic
αj
s ln

k(τ )/τ terms with N3LL accuracy, hadronization effects from fitting a universal nonperturbative
soft function defined in field theory, bottom quark mass effects, QED corrections, and the dominant
top mass dependent terms from the axial anomaly. We do not rely on Monte Carlo generators
to determine nonperturbative effects since they are not compatible with higher order perturbative
analyses. Instead our treatment is based on fitting nonperturbative matrix elements in field theory,
which are moments Ωi of a nonperturbative soft function. We present a global analysis of all available
thrust data measured at center-of-mass energies Q = 35 to 207 GeV in the tail region, where a two
parameter fit to αs(mZ) and the first moment Ω1 suffices. We use a short distance scheme to
define Ω1, called the R-gap scheme, thus ensuring that the perturbative dσ/dτ does not suffer
from an O(ΛQCD) renormalon ambiguity. We find αs(mZ) = 0.1135± (0.0002)expt ± (0.0005)hadr ±
(0.0009)pert, with χ2/dof = 0.91, where the displayed 1-sigma errors are the total experimental
error, the hadronization uncertainty, and the perturbative theory uncertainty, respectively. The
hadronization uncertainty in αs is significantly decreased compared to earlier analyses by our two
parameter fit, which determines Ω1 = 0.323GeV with 16% uncertainty.

I. INTRODUCTION

A traditional method for testing the theory of strong
interactions (QCD) at high-precision is the analysis of
jet cross sections at e+ e− colliders. Event shape distri-
butions play a special role as they have been extensively
measured with small experimental uncertainties at LEP
and earlier e+ e− colliders, and are theoretically clean
and accessible to high-order perturbative computations.
They have been frequently used to make precise determi-
nations of the strong coupling αs, see e.g. Ref. [1] for a
review. One of the most frequently studied event shape
variables is thrust [2],

T = max
t̂

∑
i |t̂ · p⃗i|∑
i |p⃗i|

, (1)

where the sum i is over all final-state hadrons with mo-
menta p⃗i. The unit vector t̂ that maximizes the right-
hand side (RHS) of Eq. (1) defines the thrust axis. We
will use the more convenient variable τ = 1 − T . For
the production of a pair of massless quarks at tree level
dσ/dτ ∝ δ(τ), so the measured distribution for τ > 0
involves gluon radiation and is sensitive to the value of
αs. The thrust value of an event measures how much it
resembles two jets. For τ values close to zero the event
has two narrow, pencil-like, back-to-back jets, carrying
about half the center-of-mass (c.m.) energy into each of
the two hemispheres defined by the plane orthogonal to
t̂. For τ close to the multijet endpoint 1/2, the event has
an isotropic multi-particle final state containing a large
number of low-energy jets.

On the theoretical side, for τ < 1/3 the dynamics
is governed by three different scales. The hard scale
µH ≃ Q is set by the e+e− c.m. energy Q. The jet
scale, µJ ≃ Q

√
τ is the typical momentum transverse to

t̂ of the particles within each of the two hemispheres, or
the jet invariant mass scale if all energetic particles in a
hemisphere are grouped into a jet. There is also uniform
soft radiation with energy µS ≃ Qτ , called the soft scale.
The physical description of the thrust distribution can
be divided into three regions,

peak region: τ ∼ 2ΛQCD/Q ,

tail region: 2ΛQCD/Q ≪ τ ! 1/3 , (2)

far-tail region: 1/3 ! τ ≤ 1/2 .

In the peak region the hard, jet, and soft scales are
Q,
√
QΛQCD, and ΛQCD, and the distribution shows a

strongly peaked maximum. Theoretically, since τ ≪ 1
one needs to sum large (double) logarithms, (αj

s ln
kτ)/τ ,

and account for the fact that µS ≃ ΛQCD, so dσ/dτ is
affected at leading order by a nonperturbative distribu-
tion. We call this distribution the nonperturbative soft
function. The tail region is populated predominantly by
broader dijets and 3-jet events. Here the three scales
are still well separated and one still needs to sum loga-
rithms, but now µS ≫ ΛQCD, so soft radiation can be
described by perturbation theory and a series of power
correction parameters Ωi. Finally, the far-tail region is
populated by multijet events. Here the distinction of
the three scales becomes meaningless, and accurate pre-
dictions can be made with fixed-order perturbation the-
ory supplemented with power corrections. The transition
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We give a factorization formula for the e+e− thrust distribution dσ/dτ with τ = 1 − T based
on soft-collinear effective theory. The result is applicable for all τ , i.e. in the peak, tail, and far-
tail regions. The formula includes O(α3

s) fixed-order QCD results, resummation of singular partonic
αj
s ln

k(τ )/τ terms with N3LL accuracy, hadronization effects from fitting a universal nonperturbative
soft function defined in field theory, bottom quark mass effects, QED corrections, and the dominant
top mass dependent terms from the axial anomaly. We do not rely on Monte Carlo generators
to determine nonperturbative effects since they are not compatible with higher order perturbative
analyses. Instead our treatment is based on fitting nonperturbative matrix elements in field theory,
which are moments Ωi of a nonperturbative soft function. We present a global analysis of all available
thrust data measured at center-of-mass energies Q = 35 to 207 GeV in the tail region, where a two
parameter fit to αs(mZ) and the first moment Ω1 suffices. We use a short distance scheme to
define Ω1, called the R-gap scheme, thus ensuring that the perturbative dσ/dτ does not suffer
from an O(ΛQCD) renormalon ambiguity. We find αs(mZ) = 0.1135± (0.0002)expt ± (0.0005)hadr ±
(0.0009)pert, with χ2/dof = 0.91, where the displayed 1-sigma errors are the total experimental
error, the hadronization uncertainty, and the perturbative theory uncertainty, respectively. The
hadronization uncertainty in αs is significantly decreased compared to earlier analyses by our two
parameter fit, which determines Ω1 = 0.323GeV with 16% uncertainty.

I. INTRODUCTION

A traditional method for testing the theory of strong
interactions (QCD) at high-precision is the analysis of
jet cross sections at e+ e− colliders. Event shape distri-
butions play a special role as they have been extensively
measured with small experimental uncertainties at LEP
and earlier e+ e− colliders, and are theoretically clean
and accessible to high-order perturbative computations.
They have been frequently used to make precise determi-
nations of the strong coupling αs, see e.g. Ref. [1] for a
review. One of the most frequently studied event shape
variables is thrust [2],

T = max
t̂

∑
i |t̂ · p⃗i|∑
i |p⃗i|

, (1)

where the sum i is over all final-state hadrons with mo-
menta p⃗i. The unit vector t̂ that maximizes the right-
hand side (RHS) of Eq. (1) defines the thrust axis. We
will use the more convenient variable τ = 1 − T . For
the production of a pair of massless quarks at tree level
dσ/dτ ∝ δ(τ), so the measured distribution for τ > 0
involves gluon radiation and is sensitive to the value of
αs. The thrust value of an event measures how much it
resembles two jets. For τ values close to zero the event
has two narrow, pencil-like, back-to-back jets, carrying
about half the center-of-mass (c.m.) energy into each of
the two hemispheres defined by the plane orthogonal to
t̂. For τ close to the multijet endpoint 1/2, the event has
an isotropic multi-particle final state containing a large
number of low-energy jets.

On the theoretical side, for τ < 1/3 the dynamics
is governed by three different scales. The hard scale
µH ≃ Q is set by the e+e− c.m. energy Q. The jet
scale, µJ ≃ Q

√
τ is the typical momentum transverse to

t̂ of the particles within each of the two hemispheres, or
the jet invariant mass scale if all energetic particles in a
hemisphere are grouped into a jet. There is also uniform
soft radiation with energy µS ≃ Qτ , called the soft scale.
The physical description of the thrust distribution can
be divided into three regions,

peak region: τ ∼ 2ΛQCD/Q ,

tail region: 2ΛQCD/Q ≪ τ ! 1/3 , (2)

far-tail region: 1/3 ! τ ≤ 1/2 .

In the peak region the hard, jet, and soft scales are
Q,
√
QΛQCD, and ΛQCD, and the distribution shows a

strongly peaked maximum. Theoretically, since τ ≪ 1
one needs to sum large (double) logarithms, (αj

s ln
kτ)/τ ,

and account for the fact that µS ≃ ΛQCD, so dσ/dτ is
affected at leading order by a nonperturbative distribu-
tion. We call this distribution the nonperturbative soft
function. The tail region is populated predominantly by
broader dijets and 3-jet events. Here the three scales
are still well separated and one still needs to sum loga-
rithms, but now µS ≫ ΛQCD, so soft radiation can be
described by perturbation theory and a series of power
correction parameters Ωi. Finally, the far-tail region is
populated by multijet events. Here the distinction of
the three scales becomes meaningless, and accurate pre-
dictions can be made with fixed-order perturbation the-
ory supplemented with power corrections. The transition
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Hadron collider event shapes
• Each event has two jets down the beam pipe, no 

detector close to the beam. 
• Natural to define event shapes in the transverse plane. 

(Alternative: N-jettiness Stewart, Tackmann, Waalewijn ‘10. Groups 
particles using multiple reference vectors.)

side view transverse plane

z y

xx



Hadron collider event shapes
• Going into the transverse plane, basically any e+e− event 

shape can be turned into a hadron collider event shape. 

• Large class of such observables was computed at NLL
+NLO using automated CAESAR framework. Banfi, Salam,  
Zanderighi ’04, ’10 

• Ongoing work to extend this to NNLL (“ARES”), first 
results for  e+e−  Banfi, McAslan, Monni and Zanderighi ‘14 

• Transverse thrust has been measured both at the Tevatron 
and the LHC 

• Have analyzed transverse thrust in SCET, as a first step 
towards a more general understanding of this class of 
event shapes.



Factorization involves several interesting aspects 
• Collinear fields with different virtuality: SCETI+II

• Nontrivial color structure of hard and soft function 
• Collinear anomaly (with color structure!)

c1 c2

ca cb s

hard1

τ

Figure 3. Virtualities of the di↵erent modes present in the hadron-collider case.

in the beam directions as
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pµXcb
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n̄µ
b

2
. (2.28)

The first term is the proton remnant, the remainder arises because the leading parton

radiates into the final state. The momenta of the partons that enter the hard interaction

are

pµa = xaECM
nµ
a

2
� bµa? � ba�

n̄µ
a

2
, (2.29)

pµb = xbECM
nµ
b

2
� bµb? � bb�

n̄µ
b

2
. (2.30)

The total final-state momentum pX is given by

pX = pXs + pXc1
+ pXc2

+ pXca
+ pXcb

, (2.31)

and momentum conservation Pa + Pb = pX then implies the partonic relation

pa + pb = pXs + pXc1
+ pXc2

. (2.32)

As in the lepton-collider case, we can simplify the denominator in the expression for

transverse thrust by dropping power-suppressed contributions

X

i

|~pi?| =
X

i

Ei| sin ✓i| ' | sin ✓1|
X

i=c1

Ei + | sin ✓2|
X

i=c2

Ei +
X

i=s,ca,cb

Ei sin ✓i ,

' | sin ✓1|EJ1 + | sin ✓2|EJ2 = Q?. (2.33)

We see that the denominator reduces to Q? in the dijet limit. To obtain this result,

we have used that in the c1,2 sectors the angles between each particle and the beam are

approximately equal to the jet direction. The contribution from the soft sector is negligible,
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Figure 1. Schematic representation of a dijet event in the T? ! 1 limit for leptonic (left panel)
and hadronic (right panel) collisions. The soft radiation s and the collinear emissions c1, c2, ca, cb
are represented by di↵erent fields in the e↵ective theory. The typical virtuality of the fields ca, cb
and s is the same, and is lower than the virtuality of c1 and c2.

the virtuality of the collinear fields of the final-state jets. As is typical for problems which

involve soft and collinear fields of the same virtuality, transverse thrust su↵ers from a

collinear anomaly: the soft and beam functions are not well defined individually and their

product involves large logarithms associated with the large rapidity di↵erence between the

emissions from the two incoming particles [13].To compute the beam and soft functions

individually, one needs to introduce an additional regulator, which can be removed after

combining the functions. Traditionally, this regularization was achieved by taking the Wil-

son lines describing soft and collinear emissions in these functions o↵ the light-cone, see

e.g. [14]. However, in an e↵ective theory context, it is more convenient to use an analytic

regulator which does not introduce additional scales into the problem. The cancellation of

the divergences in the additional regulator imposes constraints on the form of the large log-

arithms generated by the collinear anomaly. These constraints are particularly interesting

in our case due to the nontrivial color structure and angular dependence of the soft func-

tion for transverse thrust. The fact that the problem involves nontrivial color structure,

collinear fields at di↵erent virtualities and a collinear anomaly illustrates that factorization

for transverse thrust is quite nontrivial.

The resummation of large logarithms is achieved by solving the renormalization group

(RG) equations of the ingredients in Laplace space. Transforming back to momentum

space, we provide an analytic form of the resummed partonic cross section. Towards

the goal of achieving next-to-next-to-leading logarithmic (N2LL) accuracy we evaluate all

the constituents of the theorem at one-loop accuracy. The other ingredients for N2LL

resummation are the two-loop anomalous dimensions and the two-loop anomaly coe�cient.

Using factorization constraints, we show that the only unknown quantities are three two-

loop coe�cients. We determine one of these coe�cients numerically by comparing to the

next-to-next-to-leading order (N2LO) fixed-order result for transverse thrust in leptonic

– 3 –



Factorization theorem

• Beam functions Ba, Bb describe initial state radiation. 

• Different partonic channels 

• nontrivial color structure in hard function HIJ and soft 
functions SIJ.

Xavier Garcia i Tormo University of Vienna - May 12 2015 – 14 / 33

One can first write a factorized formula of the type

dσ ∼ HIJSJI ⊗ J1 ⊗ J2 ⊗ Ba ⊗ Bb

Xavier Garcia i Tormo University of Vienna - May 12 2015 – 13 / 33

dσ

dτ⊥
=

1

2E2
CM

∑

X

|M (pp → X)|2 (2π)4δ(4) (Pa + Pb − pX) δ(τ⊥ − τ⊥(X))

×θ (Q⊥ −Q0)

To derive factorization theorem, perform a boost to frame where the jets are
back-to-back, θ1 = θ2 +O(τ⊥). Boost in the z (beam) direction is sufficient

Several partonic channels contribute to the cross section qq̄ → q′q̄′, qg → qg,
gg → gg

Use again standard SCET machinery to put forward a factorization theorem



Need 

• One-loop hard, jet, soft, beam functions 

• Two-loop anomalous dimensions for all these 
objects 

• The two-loop anomaly exponent 

Computed all one-loop ingredients in 1502.04136

NNLL Resummation
N2LL resummation accuracy

Xavier Garcia i Tormo University of Vienna - May 12 2015 – 17 / 33

We need

- two-loop soft, jet, and beam function anomalous dimensions
- one-loop soft, jet, and beam function finite parts
- two-loop anomaly exponent

We computed explicitly the one-loop jet, beam, and soft
functions. Obtain one-loop anomalous dimensions, anomaly
exponent, and finite parts.
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b
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× ×
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We need

- two-loop soft, jet, and beam function anomalous dimensions
- one-loop soft, jet, and beam function finite parts
- two-loop anomaly exponent

We computed explicitly the one-loop jet, beam, and soft
functions. Obtain one-loop anomalous dimensions, anomaly
exponent, and finite parts.

a

b

a

b

1

2

1

2

× ×

× ×

N2LL resummation accuracy

Xavier Garcia i Tormo University of Vienna - May 12 2015 – 17 / 33

We need

- two-loop soft, jet, and beam function anomalous dimensions
- one-loop soft, jet, and beam function finite parts
- two-loop anomaly exponent

We computed explicitly the one-loop jet, beam, and soft
functions. Obtain one-loop anomalous dimensions, anomaly
exponent, and finite parts.

a

b

a

b

1

2

1

2

× ×

× ×



At first sight, many two-loop computations seem necessary 
to achieve NNLL, but using 

• RG invariance and universality 

• same jet functions in  p p and e+e− collisions 

• same beam func. in pp → 2 jets and pp → e+e− 

• known results for two-loop hard anomalous dimensions 
Becher, Neubert ‘09, Casimir scaling of soft function 

it turns out, everything is known except anomaly exponent 
F⊥ and jet anomalous dimension γJq ! 

• Have determined both of these ingredients 
numerically. TB, Garcia-Tormo, Piclum, to appear.



NNLL
We now have all ingredients for full NNLL resummation. 
Implementation is work in progress 

• Have coded up two-loop hard function matrices for 
the different channels Broggio, Ferroglia, Pecjak and Zhang 
1409.5294, including RG evolution.  

• Have beam function interpolations in PDF format, 
one-loop soft functions 

• Find large perturbative corrections to jet, beam and 
soft functions and to their anomalous dimensions! 
This will translate into large corrections at NNLL.



NLL+NLO from CAESAR

NNLL correction will be relatively large, but the basic shape 
stays the same. 
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Figure 5: The normalised NLO+NLL matched distribution, 1
σ
dσ
dv , for a range of event-shape

observables at the
√
s = 14 TeV LHC with pt1 > 200 GeV. For further details, see text.
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Underlying event
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Figure 12: Comparison of parton-level, hadron-level without UE and hadron level with
UE, for selected event-shape distributions, as obtained with Pythia 6.4 (DW tune).Shown
for the Tevatron with a 50 GeV cut on pt1.
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Figure 13: As in fig. 12, but for the Tevatron with a 200 GeV cut on pt1.
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Figure 14: As in fig. 12, but for the
√
s = 14 TeV LHC with a 200 GeV cut on pt1.
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Figure 15: As in fig. 12, but for the
√
s = 14 TeV LHC with a 1 TeV cut on pt1.
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Glauber Gluons?
• From a theoretical perspective, UE modeling is quite 

unsatisfactory 

• True MPI is power suppressed! 

• Shouldn’t we be able to model-independently describe 
O(1) effects in infrared safe observables? 

• Glauber gluons [pμ ~( λn , λm , λ ), m+n >2] could be the 
source of remnant interactions 

• Shown to be absent in DY Collins, Soper, Sterman, but 
could contribute to transverse thrust Gaunt ‘15 

• Implementation in SCET is under way. Donoghue, Kamal 
El-Menoufi, Ovanesyan; Fleming; Rothstein and Stewart



From SCET to 

Jet Effective Theory
TB, Rothen, Shao, work in progress



Cross sections for narrow cone jets (e.g. Sterman-Weinberg) 

contains large logarithms ln(δ) and ln(β).  

Can compute such cross sections using standard SCET, but 
this does not translate into a resummation of all large 
logarithms: 

• Non-global logarithms: soft function contains multiple 
scales and therefore large logarithms, independent of μ.

Jet cross section in SCET

� =
E

in

E
out

δ



Non-global logarithms in SCET
A number fixed-order computations for hemisphere soft functions 

• Two-loop result for S(ωL,ωR). Kelley, Schwartz, Schabinger and Zhu 
’11; Hornig, Lee, Stewart, Walsh and Zuberi ’11; Kelley; with jet-
cone  Kelley, Schwartz, Schabinger and Zhu ‘11; von Manteuffel, 
Schabinger and Zhu ‘13 

• Leading non-global log terms in S(ωL,ωR) up to 5 loops by solving 
BMS. Schwartz, Zhu ‘14 

Recently, interesting framework for approximate resummation of such 
logs, based on resummation for observables with n soft subjets was 
proposed. Larkoski, Moult and Neill ‘15 

• Seems to work numerically well in the considered example, but 
systematics of expansion in subjets unclear. Expansion parameter? 

A systematic factorization of non-global observables is missing.



Cheung, Luke and Zuberi ’09 have computed one-
loop jet cross sections using SCET. 

Result for the soft function for Sterman-Weinberg 

they use SCET with the following scaling:

8

B. Sterman-Weinberg and k? Jet Definitions

It is straightforward to repeat the calculations of the
previous section for the SW and k? jet definitions. How-
ever, each of these algorithms introduces additional fea-
tures not present in the JADE calculation: the relevant
scales are di↵erent and in both cases the zero-bin con-
tribution is distinct from the soft contribution. Further-
more, in the k? definition the soft and collinear rates
are not individually infrared safe using dimensional reg-
ularization to regulate the ultraviolet, indicating that the
rate does not factorize into well-defined soft and collinear
contributions in this scheme in SCET.

1. SW

Jets in the SW definition were studied in SCET in
[8, 9, 15]. In these papers it was argued that because the
kinematic cuts on the soft phase space were much larger
than the typical soft scale, the soft phase space integral
should be unrestricted. In [8, 9] this is because the scaling
� ⇠ � is chosen, while in [15] � is taken to be of order �2,
but the soft scale is taken to be ⇤QCD. Our results di↵er,
as we have not assumed any relative scaling between �Q,
�Q and ⇤QCD, and we argue that SCET power counting
uniquely requires the restricted soft phase space in Fig.
5(b). (We expect, however, that if � ⇠ �, SCET should
be matched at a lower scale onto a new e↵ective theory
with unrestricted soft phase space.)

Integrating the di↵erential cross section in Eq. (9) over
the phase space generated by the corresponding con-
straints, we find

1
�0

�s
SW

=
↵sCF

2⇡

✓
4
✏

ln � � 4 ln2 � + 8 ln � ln
µ

2�Q
� ⇡2

3

◆
.

(28)

By introducing quark and anti-quark o↵-shellnesses as
we did for the JADE algorithm, it can be shown that
the total soft contribution, (�s

SW + �s
V ) /�0, is infrared

finite, and the 1/✏ terms are ultraviolet divergences. The
logarithms in Eq. (28) cannot be minimized for any choice
of µ since there is a large ln � in the 1/✏ term. (See,
however, [27] in which factorization and resummation in
the SW two-jet rate were studied in perturbative QCD.)

Integrating Eq. (10) over the phase space given by the
collinear SW constraints, we find the näıve n-collinear
contribution to be

1
�0

�̃n
SW =

↵sCF

2⇡

✓
1
✏

✓
3
2

+ 2 ln 2�

◆
+ 3 ln

µ

�Q

+2 ln 2� ln
µ2

2��2Q2
+

13
2
� 2⇡2

3

◆
.

(29)

Note that there is no reasonable scale µ at which all the
logarithms are minimized. We now need to subtract the
p�3 ! 0 zero-bin of the SW n-collinear contribution. In-
tegrating over the relevant phase space gives us

1
�0

�n0
SW =

↵sCF

2⇡

✓
� 1

✏2
� 2

✏
ln

µ

2��Q

�2 ln2 µ

2��Q
+

⇡2

12

◆
. (30)

The zero-bin gives a nontrivial contribution that is not
equal to the soft contribution, because the region of in-
tegration generated by taking the collinear and then soft
limit is not the same as taking the soft limit of the QCD
SW phase space. It is interesting to note that the scale
in the n-collinear zero-bin, ��Q, corresponds to the p? of
a parton at the edge of the cone with the maximum en-
ergy allowed outside the cone, �Q. This corresponds to
the intersection point of Fig. 5(c), generated by a consis-
tent expansion of phase space constraints in the e↵ective
theory.

The zero-bin subtracted result for the n-collinear sec-
tor is

1
�0

(�̃n
SW � �n0

SW) =
↵sCF

2⇡

✓
1
✏2

+
3
2✏

+
2
✏

ln
µ

�Q

+ 3 ln
µ

�Q
+ 2 ln2 µ

�Q
� 3⇡2

4
+

13
2

◆

(31)

where the logarithms are now minimized at µ = �Q, un-
like in Eq. (29). The collinear scale, �Q, corresponds to
the p? of a parton at the edge of the cone with typical
collinear energy O(Q). The emission of a collinear gluon
in the n̄ direction, i.e. from the anti-quark, gives the
same result.

The n-collinear rate is independent of the jet param-
eter �, because the phase space region in Fig. 5(b) with
a collinear gluon outside the cone with energy less than
�Q, where � ⌧ 1, corresponds to the zero-bin. This
contribution is entirely removed by the zero-bin subtrac-
tion and Eq. (31) is given only by the region where the
n-collinear quark and gluon lie in the cone. This under-
scores the consistency of the phase space expansion in
Section II and the zero-bin prescription. The soft sector
resolves the cone in addition to the scale �Q and gives
rise to the double logarithm cross term in the SW result
below.

Combining these results gives

fSW
2 =

|C2|2

|Z2|2

✓
1 +

2
�0

(�̃n
SW � �n0

SW) +
1
�0

�s
SW

◆

= 1 +
↵sCF

⇡

✓
�4 ln 2� ln � � 3 ln � � ⇡2

3
+

5
2

◆

(32)

in agreement with the full QCD calculation [14].
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B. Sterman-Weinberg and k? Jet Definitions

It is straightforward to repeat the calculations of the
previous section for the SW and k? jet definitions. How-
ever, each of these algorithms introduces additional fea-
tures not present in the JADE calculation: the relevant
scales are di↵erent and in both cases the zero-bin con-
tribution is distinct from the soft contribution. Further-
more, in the k? definition the soft and collinear rates
are not individually infrared safe using dimensional reg-
ularization to regulate the ultraviolet, indicating that the
rate does not factorize into well-defined soft and collinear
contributions in this scheme in SCET.

1. SW

Jets in the SW definition were studied in SCET in
[8, 9, 15]. In these papers it was argued that because the
kinematic cuts on the soft phase space were much larger
than the typical soft scale, the soft phase space integral
should be unrestricted. In [8, 9] this is because the scaling
� ⇠ � is chosen, while in [15] � is taken to be of order �2,
but the soft scale is taken to be ⇤QCD. Our results di↵er,
as we have not assumed any relative scaling between �Q,
�Q and ⇤QCD, and we argue that SCET power counting
uniquely requires the restricted soft phase space in Fig.
5(b). (We expect, however, that if � ⇠ �, SCET should
be matched at a lower scale onto a new e↵ective theory
with unrestricted soft phase space.)

Integrating the di↵erential cross section in Eq. (9) over
the phase space generated by the corresponding con-
straints, we find

1
�0

�s
SW

=
↵sCF

2⇡

✓
4
✏

ln � � 4 ln2 � + 8 ln � ln
µ

2�Q
� ⇡2

3

◆
.

(28)

By introducing quark and anti-quark o↵-shellnesses as
we did for the JADE algorithm, it can be shown that
the total soft contribution, (�s

SW + �s
V ) /�0, is infrared

finite, and the 1/✏ terms are ultraviolet divergences. The
logarithms in Eq. (28) cannot be minimized for any choice
of µ since there is a large ln � in the 1/✏ term. (See,
however, [27] in which factorization and resummation in
the SW two-jet rate were studied in perturbative QCD.)

Integrating Eq. (10) over the phase space given by the
collinear SW constraints, we find the näıve n-collinear
contribution to be

1
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�̃n
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↵sCF
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✓
3
2

+ 2 ln 2�

◆
+ 3 ln

µ

�Q

+2 ln 2� ln
µ2

2��2Q2
+

13
2
� 2⇡2

3

◆
.

(29)

Note that there is no reasonable scale µ at which all the
logarithms are minimized. We now need to subtract the
p�3 ! 0 zero-bin of the SW n-collinear contribution. In-
tegrating over the relevant phase space gives us

1
�0

�n0
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↵sCF

2⇡

✓
� 1

✏2
� 2

✏
ln

µ

2��Q

�2 ln2 µ

2��Q
+
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12

◆
. (30)

The zero-bin gives a nontrivial contribution that is not
equal to the soft contribution, because the region of in-
tegration generated by taking the collinear and then soft
limit is not the same as taking the soft limit of the QCD
SW phase space. It is interesting to note that the scale
in the n-collinear zero-bin, ��Q, corresponds to the p? of
a parton at the edge of the cone with the maximum en-
ergy allowed outside the cone, �Q. This corresponds to
the intersection point of Fig. 5(c), generated by a consis-
tent expansion of phase space constraints in the e↵ective
theory.

The zero-bin subtracted result for the n-collinear sec-
tor is

1
�0

(�̃n
SW � �n0

SW) =
↵sCF

2⇡
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3
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ln
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�Q

+ 3 ln
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�Q
+ 2 ln2 µ

�Q
� 3⇡2

4
+

13
2

◆

(31)

where the logarithms are now minimized at µ = �Q, un-
like in Eq. (29). The collinear scale, �Q, corresponds to
the p? of a parton at the edge of the cone with typical
collinear energy O(Q). The emission of a collinear gluon
in the n̄ direction, i.e. from the anti-quark, gives the
same result.

The n-collinear rate is independent of the jet param-
eter �, because the phase space region in Fig. 5(b) with
a collinear gluon outside the cone with energy less than
�Q, where � ⌧ 1, corresponds to the zero-bin. This
contribution is entirely removed by the zero-bin subtrac-
tion and Eq. (31) is given only by the region where the
n-collinear quark and gluon lie in the cone. This under-
scores the consistency of the phase space expansion in
Section II and the zero-bin prescription. The soft sector
resolves the cone in addition to the scale �Q and gives
rise to the double logarithm cross term in the SW result
below.

Combining these results gives

fSW
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|C2|2

|Z2|2

✓
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(�̃n
SW � �n0
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1
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◆

= 1 +
↵sCF

⇡
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3
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2
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(32)

in agreement with the full QCD calculation [14].
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1. lepton pT > 20GeV

2. leading lepton pT > 25GeV

3. lepton pseudorapidity ⌘e < 1.37

or 1.52 < ⌘e < 2.47

4. me+e� > 15GeV and

|me+e� �mZ | > 15GeV

( p+ , p� , p? )

collinear: pc ⇠ Q ( 1 , �2 , � )

soft: ps ⇠ Q ( � , � , � )
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multiple scales!
�Q



The proper effective theory should completely separate the 
physics at different scales.  

To achieve homogeneous scaling one must systematically 
expand away power suppressed contributions, also in the 
phase-space constraints: strategy of regions 

As a result of the expansion 

• Collinear fields are always inside the jet (they have 
generically large energies). 

• Soft fields are always outside jet (they have generically 
large angle).

✓(�Q� 2Ec) �! ✓(�2Ec) = 0

3



Coft mode
To reproduce QCD when performing the expansion, we 
need additional region 

This momentum mode is simultaneously collinear and soft  

• Describes soft small angle radiation. 

• Characteristic scale βδQ, much lower than soft scale! 

• Can be be emitted both inside and outside of the jet.
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The soft function for cone jets factorizes as 

• Verified this explicitly at the 2-loop level. Two-loop 
Sfull can be derived from results for the thrust cone-
jet soft function. Manteuffel, Schabinger and Zhu ‘13 

• Can resum large logs in Sfull using RG.

Factorization of the soft function

soft contribution 
(same as in DY)

coft  
contribution

✓(�Q� 2Ec) �! ✓(�2Ec) = 0

Sfull(Q�, �, µ) =

Z �

0
d�0SDY (Q� �Q�0, µ)U(Q��0, µ)

3



Soft-collinear factorization

Large angle soft radiation sees 
total charge of collinear 
radiation inside jet.  

• Soft emissions described 
by single Wilson line.

Coft-collinear factorization

Small angle coft radiation 
resolves individual collinear 
particles.  

• Coft Wilson line for each 
final state collinear particle! 

• Multi-Wilson-line structure of 
operators

Verified by expanding γ* → qqgg amplitude in all regions. 



Coft operator structure
+ +

Figure 2. Emission of two gluons from a collinear field in light-cone gauge n̄ ·A = 0.

Figure 1. If the collinear quark momentum p1 in the final state would have generic scaling,

we would write the propagator denominator in the first diagram as (p1+k)2 = p21 at leading

power. However, if the virtuality of the collinear quark is zero, the leading contribution is

(p1 + k)2 = 2 p1 · k. Computing the amplitude squared, one finds

M(p1; k) = 2CF g
2
s

p1 · n̄
(p1 · k)(ū · k) (4.2)

this is the matrix element squared for emissions from the operator

O(n1) = U †(n̄; 0)U(n1; 0) (4.3)

where the light-like reference vector nµ
1 = 2pµ1/n̄ · p1 is along the direction of pµ1 . More

explicitly the matrix element (4.2) is obtained from

1

Nc
h0|O†

ab(n1)|g(k)ihg(k)|Oba(n1)|0i , (4.4)

where we have written out the color indices of the Wilson line operators and it is understood

that one sums over the color and spins of the gluons in the intermediate state. In the case

where the quark is the only collinear final state particle, we have pµ? since the thrust axis

points in the direction of the total collinear momentum. In this case nµ
1 = nµ and the

matrix element is the same as the one for the emission of two soft gluons.

Repeating the computation with two gluons, we find that the corresponding matrix

element is indeed the two-gluon matrix element of the same operator. The most e�cient

way of computing the two-gluon matrix element is to work in light cone gauge n̄ ·A = 0. In

this gauge the Wilson line U †(n̄; 0) is absent and the two-emission result is obtained from

squaring the three diagrams shown in Figure 2. It is interesting to consider the case of two

gluons, a collinear one with momentum p1 and the coft gluon with momentum k. Doing

so, we get the result

A(p1, p2; k) = Ac(p1, p2)At(k) , (4.5)

where the collinear matrix element is

Ac(p1, p2) = CF g
2
s
4 (u · p1)2 + (d� 2) (u · p2)2 + 4u · p2u · p1

2p1 · p2u · p1u · p2 = 2g2sPqg(z)
z

p2T
. (4.6)

[Factors of 2?] In the second step, we have parameterized u · p1 = (1� z)Q, u · p2 = z Q,

have used that pµ1? = �pµ2?, and have defined p2T = �p21?. The q ! q+g splitting function

is given by

P (0)
gq = CF


1 + (1� z)2

z
� ✏z

�
(4.7)
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Figure 3. Structure of the emissions in a cone-jet process. The dashed lines indicate the cone.
Collinear particles are indicated in blue, soft emissions are shown in green and the small angle
soft radiation described by the coft mode in red. The soft emissions are described by a Wilson
lines along the jet direction, while the coft emissions arise from individual Wilson lines along the
trajectories of the two collinear particles in the final state. Collinear emissions are always inside
the jet, soft ones always outside. The coft partons are emitted at small angles but can be in inside
as well as outside the jet.

The coft matrix element is given by

At(k) = g2s

✓
CF � CA

2

◆
n̄ · n1

k · n1k · n̄ +
CA

2

✓
n̄ · n2

k · n2k · n̄ +
n1 · n2

k · n1k · n2

◆�
(4.8)

where the second reference vector nµ
2 = 2pµ2/n̄ · p2. The coft matrix element is obtained

from the one-gluon matrix element of the operator

OB(n1, n2) = U †(n̄; 0)tA U(n1; 0)U
AB(n2; 0) , (4.9)

where UAB(n2; 0) is an adjoint Wilson line in the gluon direction.

It is clear how this pattern continues: every final state collinear particle gets dressed

by a coft Wilson line. The fact that soft emissions build a Wilson lines is of course very

familiar. What is special in the present case, it that the soft particles are emitted in a

narrow cone and can therefore see the individual collinear partons. As a consequence, we

end up with individual Wilson lines for each of the collinear final state partons, instead of

just one overall Wilson line describing all soft emissions.

Starting from two collinear emissions, the dependence of the coft Wilson lines on the

direction becomes nontrivial. Let’s integrate out the collinear partons by integrating over

the collinear phase space. To do so, we note that the phase-space measure factorizes.

Since all their components are smaller than the collinear momentum components, the coft

momenta drop out of the momentum conservation constraints and the angular constraints

act on each particle individually.

A second important point is that the Wilson lines are invariant under a rescaling of

the reference momenta. The coft matrix element is therefore invariant under rescalings of

n1, n2 and due to the phase-space constraint, which for the particles outside the jet has

the form

Mcoft({k}) = ✓
�
�Q�

X

i2Out

n̄ · ki
� Y

i2Out

✓
�
n · ki/n̄ · ki � �2

� Y

j2In
✓
�
�2 � n · kj/n̄ · kj

�
(4.10)

– 6 –

Wilson line along quark adjoint Wilson line  
along gluonWilson line along other jet

collinear splitting 
amplitude

ni  are light-like reference vectors along collinear partons



Coft matrix element for collinear qg final state 

gets convolved with collinear matrix element:

Operator matrix elements✓(�Q� 2Ec) �! ✓(�2Ec) = 0
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phase-space 
constraints
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interesting similiarities to 
 color density matrix 

by Simon Caron-Huot

collinear matrix element 
integral over splitting function



Jet Effective Theory

Important first step, but does not immediately translate into 
resummation. Next steps 

• Finish two-loop cross checks by computing coft-collinear 
matrix element. 

• Study renormalization and RG evolution in the effective 
theory!

Understand  

• the relevant scales and 
degrees of freedom 

• the (complicated!) 
structure of the 
operators



Summary
• Automated NNLL resummation for jet-veto cross sections 

• First example of an automated SCET resummation 

• Other observables can be resummed using the same technique 

• NNLL resummation for transverse thrust  

• Interesting factorization theorem: SCETI+SCETII, rapidity 
divergences with nontrivial color structure, …  

• Role of Glauber gluons? UE? 

• Jet Effective Theory 

• New ‘coft' mode to describe soft small angle radiation 

• Coft radiation resolves individual collinear final-state particles: 
leads to multi-Wilson-line structure of coft operators


