High multiplicity QCD at NLO

Simon Badger
26th May 2015

Parton showers, Event generators and Resummation 2015 Kraków, Poland

Modelling hadron collisions

wide range of applications for new automated matrix element tools
better control of theoretical uncertainties at NLO
gain improved insight into parton shower/resummation effects over many differential observables

QCD at NLO

QCD at NLO

challenges at high multiplicity

real radiation phase-space extremely large - many channels

complicated matrix elements - slow/inaccuracte large colour space
\Rightarrow sample dominant channels more frequently
\Rightarrow re-use MC events as much as possible
\Rightarrow reliable determination of numerical accuracy

$$
\widehat{\sigma}_{i j \rightarrow n}^{\delta N L O}=\int_{n}\left(d \sigma^{V}+\int_{1} d \sigma^{S_{1}(R)}\right)+\int_{n+1}\left(d \sigma^{R}-d \sigma^{S_{1}(R)}\right)
$$

State-of-the-art

BLACKHAT+SHERPA :W + 5 jets (leading colour)
Weinzierl et al. : Z + 5 jets (leading colour - total cross-section
NJET+SHERPA: 5 jets and di-photon +3 jets (full colour)

Challenges are to a large extent solved

$$
2 \rightarrow 4
$$

Helac-Nlo
GoSAM
masses BSM
QCD/EW

OpenLoops
Recola

Loop amplitudes

Efficient tree level generators well established
e.g. MadGraph, Alpgen, Comix, Helac,...

Tree
Methods

Feynman diagrams
off-shell recursion
on-shell recursion (BCFW)

integral basis separates analytic and algebraic parts
known functions at one-loop process independent
complex momenta
calculate numerically

Dealing with colour

$$
d \sigma^{\mathrm{B}}(s)=d \Phi \sum_{i, j}\left[A_{n ; j}^{(0)}(s)\right]^{\dagger} \mathcal{C}_{i j}^{(0,0)} A_{n ; j}^{(0)}(s) \quad d \sigma^{\mathrm{V}}(s)=d \Phi \sum_{i, j}\left[A_{n ; j}^{(0)}(s)\right]^{\dagger} \mathcal{C}_{i j}^{(0,1)} A_{n ; j}^{(1)}(s)
$$

partial amplitudes are a linear combination of primitive amplitudes

$$
A_{n ; j}^{(L)}=\sum_{k} a_{k, j} A_{n}^{[m]}+b_{k, j} A_{n}^{[f]}
$$

Dealing with colour

Feynman diagram matching algorithm

Ellis, Kunszt, Melnikov, Zanderighi [I | 05.43 I 9]
Ita, Ozeren [||||.4|93]
SB, Biedermann, Uwer, Yundin [I 209.0|00]

$$
\begin{aligned}
& A_{n ; j}^{(L)}=\sum_{i=1}^{N} D_{i}=\sum_{i=1}^{\widehat{N}} C_{i} K_{i} \quad \begin{array}{r}
\text { match topology only } \\
\text { set of primitives } \\
\text { 4-gluon vertex not needed } \\
\text { matching matrix }\{0,+|,-|\}
\end{array} \sum_{i=1}^{\text {invert to find independent }} \begin{array}{r}
\text { diagrams symmetries reduce independent set of } \\
\text { primitives (e.g. Furry's theorem) }
\end{array} \\
& \hline
\end{aligned}
$$

combinatorical approaches: Melia [1304.7809, I 3 | 2.0599]; Schuster [|3||.6296]; Weinzierl, Reuschle [|3|0.04|3]

Dealing with colour

Process	$N_{\text {pri }}^{[0]}$	$N_{\text {pri }}^{[m]}$	$N_{\text {pri }}^{[f]}$
$8 g$	720	2520	2520
$\bar{u} u+6 g$	720	5040	1800
$\bar{u} u \bar{d} d+4 g$	360	3360	671
$\bar{u} u \bar{d} d \bar{s} s+2 g$	120	1344	194
$\bar{u} u \bar{d} d \bar{s} s \bar{c} c$	30	384	65

large numbers of primitive amplitudes for high multiplicity
use phase space symmetry to reduce computational cost

$$
\begin{aligned}
\sigma_{g g \rightarrow n(g)}^{V} & =\int \mathrm{d} P S_{n} A^{(0) \dagger} \cdot \mathcal{C}_{n!\times(n+1)!/ 2} \cdot A^{(1)} \\
& =(n-2)!\int \mathrm{d} P S_{n} A^{(0) \dagger} \cdot \mathcal{C}_{n!\times(n+1)}^{\mathrm{dsym}} \cdot A^{(1), \mathrm{dsym}}
\end{aligned}
$$

NJET framework

Numerical implementation in C++

Trees	off-shell recursion (Berends-Giele)			
Loops	generalized unitarity / analytic formulae	$	$	full (via primitive matching),
:---:				
Colour				
de-symmetrized, leading/sub-leading				

Application: triple collinear limits

[SB, Buciuni, Gardi, Peraro (in prep.)]
[Berger, Dixon, Del Duca,
Sofianatios, Ellis, Campbell, Glover,
Williams, Mastrolia, Risager, SB]

double unresolved virtual splitting functions contribute at NBLO

Check universal factorization properties with NJET

Application: triple collinear limits

[qd Bailey, Hida, Li]

$$
\begin{aligned}
& \lim _{1\|\cdots\| m} A_{n}^{(L)}\left(\left\{p_{i}^{\lambda_{i}}\right\}\right)=\lim _{\delta \rightarrow 0} A_{n}^{(L)}\left(\left\{p_{i}^{\lambda_{i}}(\delta)\right\}\right) \\
& \quad=\frac{1}{\delta^{m-1}} \sum_{k=0}^{L} \sum_{\lambda_{P}} \operatorname{Sp}_{m}^{(L-k)}\left(-P^{-\lambda_{P}},\left\{p_{i}^{\lambda_{i}}\right\}_{i=1}^{m}\right) A_{n-m+1}^{(k)}\left(P^{\lambda_{P}},\left\{p_{i}^{\lambda_{i}}\right\}_{i=m+1}^{n}\right)+\mathcal{O}\left(\frac{1}{\delta^{m-2}}\right) .
\end{aligned}
$$

Switch precision on the fly: explicit vectorization of scaling test with Vc
[Vc Kretz, Lindenstruth (201 I)]
Numerically stable limit when switching to high precision
verified full colour limit of $6 / 7$ gluon one-loop amplitudes

NJET + Sherpa

leading/sub-leading colour de-symmetrized colour sums

$$
\begin{aligned}
& p p \rightarrow \leq 5 j \\
& p p \rightarrow W^{\left[\rightarrow l^{ \pm} \nu_{l}\right]}+\leq 5 j \\
& p p \rightarrow Z / \gamma^{*\left[l^{+} l^{-}\right]}+\leq 5 j \\
& p p \rightarrow \gamma+\leq 4 j \\
& p p \rightarrow \gamma \gamma+\leq 4 j
\end{aligned}
$$

Comix [Gleisberg, Hoeche (2008)]
CS subtraction [Gleisberg, Krauss (2007)]
ROOT Ntuple event generation

also:

FastJet [Caccari, Salam, Soyez (2008)]
LHAPDF [Whalley, Bourilkov, Group (2005)]

NJet + Sherpa

Multi-jet production at the LHC

ATLAS cuts [I I 07.2092]

$$
p_{T, j_{1}}>80 \mathrm{GeV}
$$

anti-kt $R=0.4$

full colour

$N_{f}=5$ flavour scheme
no top loops (<1\%)

$$
p_{T, j}>60 \mathrm{GeV} \quad\left|\eta_{j}\right|<2.8
$$

$$
\mu_{R}=\mu_{F}=\widehat{H}_{T} / 2
$$

$$
\begin{gathered}
p p \rightarrow \leq 3 j \\
p p \rightarrow \leq 4 j
\end{gathered}
$$

Nagy (NLOJet++) [hep-ph/0307268] Bern et al. (BlackHat) [I I | 2.3940] SB, Biedermann, Uwer, Yundin [1209.0098]

$$
p p \rightarrow \leq 5 j
$$ SB, Biedermann, Uwer, Yundin [I309.6585]

Virtual matrix elements

leading part: best case of de-sym. and leading colour

Virtual part	Time per event	QP	QP2	OP
leading	17 s	2%	0.5%	0.01%
subleading	112 s	2.5%	1%	0.05%

average evaluation time on cluster
possibility to switch to octuple precision - not necessary in practice
fermion loops included in sub-leading part

Total cross-sections

$$
\begin{aligned}
\sigma_{5}^{7 \mathrm{TeV}-\mathrm{LO}}\left(\mu=\widehat{H}_{T} / 2\right) & =0.699(0.004)_{-0.280}^{+0.530} \mathrm{nb} \\
\sigma_{5}^{7 \mathrm{TeV}-\mathrm{NLO}}\left(\mu=\widehat{H}_{T} / 2\right) & =0.544(0.016)_{-0.177}^{+0.0} \mathrm{nb}
\end{aligned}
$$

NNPDF2.I LO

$$
\alpha_{s}\left(M_{Z}\right)=0.119
$$

NNPDF2.3 NLO

$$
\alpha_{s}\left(M_{Z}\right)=0.118
$$

Scale dependence

re-weighting ROOT Ntuples

LO PDF: MSTW2008lo

$$
\alpha_{s}\left(M_{Z}\right)=0.139
$$

NLO PDF:MSTW2008nlo

$$
\alpha_{s}\left(M_{Z}\right)=0.120
$$

Dynamical scale attempting include large logarithms

Jet Ratios

Reliable quantities for both theory and experiment

fixed order NLO not good for di-jets with asymmetric cuts
c.f. large NLO K-factors Rubin, Salam, Sapeta [1006.2 I 44]

$$
\alpha_{S}\left(M_{Z}\right)=0.1148 \pm 0.0014(\text { exp. }) \pm 0.0018(\mathrm{PDF}) \pm 0.0050 \text { (theory) }
$$

Jet Ratios

$R_{3 / 2}$ in leading jet pt has large NLO corrections
$R_{4 / 3}$ and $R_{5 / 4}$ are more stable
average PT of two leading jets quite stable to perturbative corrections
e.g. α_{s} determination [I304.7498; CMS-QCD-I I-003]

$$
\alpha_{S}\left(M_{Z}\right)=0.1148 \pm 0.0014(\text { exp. }) \pm 0.0018(\mathrm{PDF}) \pm 0.0050 \text { (theory) }
$$

Di-photon plus jets

Backgrounds to Higgs measurements $p p \rightarrow H \rightarrow \gamma \gamma$

$$
\begin{aligned}
& p p \rightarrow \gamma \gamma \quad \text { NNLO Catani, Cieri, de Florian, Ferrera, Grazzini [II I 0.2375] } \\
& p p \rightarrow \gamma \gamma+1 j \quad \text { NLO } \\
& \text { Gehrmann, Greiner, Heinrich [I 303.0824] } \\
& \text { Del Duca, Maltoni, Nagy,Trocsanyi [hep-ph/03030I2] } \\
& \text { Gehrmann, Greiner, Heinrich [I 308.3660] } \\
& \text { Bern, Dixon, Febres Cordero, Hoeche, Ita, } \\
& \text { Kosower, Lo Presti, Maitre [|3|2.0592, | } 402.4 \text { | } 27 \text {] } \\
& p p \rightarrow \gamma \gamma+3 j \quad \text { NLO } \\
& \text { SB, Guffanti, Yundin [|3|2.5927] }
\end{aligned}
$$

$$
p p \rightarrow \gamma \gamma+\text { jets }
$$

dominant channels - split into leading and sub-leading colour

vector loops ~ 0.5\% for 2 jets

cut dependent!

Isolating hard photons

[Frixione (1998)]

Infra-red safe definition of a hard photon must include QCD partons

Smooth cone isolation

- keep soft gluons
- discard partons collinear to photon

$$
E_{\text {hadronic }}\left(r_{\gamma}\right) \leq \epsilon p_{T, \gamma}\left(\frac{1-\cos r_{\gamma}}{1-\cos R}\right)^{n}
$$

no need for
fragmentation functions

Fragmentation vs. Smooth Cone

[Gehrmann, Greiner, Heinrich (20|3)]

Pragmatic approach:
Tight isolation accord

$$
\begin{gathered}
E_{T}^{\max } \leq 5 \mathrm{GeV}(\text { or } \epsilon<0.1) \\
R \sim 0.4 \quad R_{\gamma \gamma} \sim 0.4
\end{gathered}
$$

[Cieri, de Florian (Les Houches 2013)]

[Bern at al. (20|4)]

$p p \rightarrow \gamma \gamma+$ jets at NLO

SB, Guffanti,Yundin [|3|2.5927]

$$
\begin{array}{lll}
p_{T, j}>30 \mathrm{GeV} & \left|\eta_{j}\right| \leq 4.7 & \\
p_{T, \gamma_{1}}>40 \mathrm{GeV} & p_{T, \gamma_{2}}>25 \mathrm{GeV} & \left|\eta_{\gamma}\right| \leq 2.5 \\
R_{\gamma, j}=0.5 & R_{\gamma, \gamma}=0.45 &
\end{array}
$$

$$
\text { anti-kT } R=0.5 \text { (FastJet) }
$$

Frixione smooth cone photon isolation $\epsilon=0.05, R=0.4$ and $n=1$

$$
\sigma_{\gamma \gamma+3 j}^{L O}\left(\widehat{H}_{T}^{\prime} / 2\right)=0.643(0.003)_{-0.180}^{+0.278} \mathrm{pb} \quad \sigma_{\gamma \gamma+3 j}^{N L O}\left(\widehat{H}_{T}^{\prime} / 2\right)=0.785(0.010)_{-0.085}^{+0.027} \mathrm{pb}
$$

Scale dependence

NLO predictions reduce uncertainty from 50% to ~ 15%

Fairly wide range of predictions with different dynamical scales

PDF dependence

APPLgrids produced from ROOT Ntuples
(APPLgrid framework Carli et al. [09 I I .2985])
comparison using all sets with

$$
\alpha_{s}\left(M_{Z}\right)=0.118
$$

Beyond fixed order

- LOOPSIM offers a fixed order alternative to NLO merging but without shower matching [Rubin, Sapeta, Salam (2010)]
- predictions at nNLO include some NNLO ingredients - double real and real-virtual
- fixed order Root Ntuples can be merged using a modified analysis

$p p \rightarrow \gamma \gamma+$ jets beyond NLO

very preliminary!
[SB, Sapeta]
full NNLO
[Catani et al. (20 I I)]

Large k-factors for di-photons due to new partonic channels

$p p \rightarrow \gamma \gamma+$ jets beyond NLO

very preliminary!

$p p \rightarrow \gamma \gamma+$ jets beyond NLO
 very preliminary!

Conclusions

- On-shell methods do a good job at keeping theoretical complexity of high-multiplicity amplitudes under control
- NJET available with $p p \rightarrow \leq 5 j, W / Z / \gamma+\leq 5 j, \gamma \gamma+\leq 4 j$
- First computations of NLO QCD corrections to $p p \rightarrow 5 j$ and $p p \rightarrow \gamma \gamma+3 j$
- Merging fixed order Ntuples for $p p \rightarrow \gamma \gamma+1 j$ with LOOPSIM

Backup Slides

Momentum twistors

momentum conservation automatically

$$
Z_{i, a}=\left(\lambda_{i, a}, \mu_{i, a}\right)
$$ satisfied for any $4 \times n$ matrix, Z

$$
W_{i, \dot{a}}=\left(\tilde{\mu}_{\dot{a}}, \tilde{\lambda}_{\dot{a}}\right)=\frac{\epsilon_{\dot{a}, b, c, d} Z_{i-1, b} Z_{i, c} Z_{i+1, d}}{\langle i-1 i\rangle\langle i i+1\rangle}
$$

$3 n-10$ independent variables
complex phase should be evaluated separately

$$
Z=\left(\begin{array}{ccccc}
1 & 0 & \frac{1}{x_{1}} & \frac{1}{x_{1}}+\frac{1}{x_{2}} & \frac{1}{x_{1}}+\frac{1}{x_{2}}+\frac{1}{x_{2}} \\
0 & 1 & 1 & 1 & 1 \\
0 & 0 & 1 & x_{4} & 1 \\
0 & 0 & 1 & 1 & \frac{x_{5}}{x_{4}}
\end{array}\right) \quad x_{1}=s_{12}, \quad x_{2}=\frac{\langle 23\rangle\langle 41\rangle[12]}{\langle 34\rangle}, \ldots
$$

Accuracy

$\operatorname{accuracy}=\log _{10}\left(\frac{A_{\mathrm{NJET}}\left(s_{1}\right)+A_{\mathrm{NJET}}\left(s_{2}\right)}{2\left(A_{\mathrm{NJET}}\left(s_{1}\right)-A_{\mathrm{NJET}}\left(s_{2}\right)\right)}\right)-\log _{10}\left(\frac{A_{\mathrm{NJET}}(1)+A_{\text {analytic }}}{2\left(A_{\mathrm{NJET}}(1)+A_{\text {analytic }}\right)}\right)$
dimension scaling test
$A\left(p_{i}, m_{i}, \mu_{R}\right)=x^{4-n} A\left(x p_{i}, x m_{i}, x \mu_{R}\right):=A_{\mathrm{NJET}}(x)$
$\#$ digits $=\log _{10}\left(\frac{A_{\mathrm{NJET}}\left(s_{1}\right)+A_{\mathrm{NJET}}\left(s_{2}\right)}{2\left(A_{\mathrm{NJET}}\left(s_{1}\right)-A_{\mathrm{NJET}}\left(s_{2}\right)\right)}\right)$

2 calls for the price of I using explicit vectorization with Vc
reliable but statistical: add ~ 2 digits on min. accuracy

Performance

primitives scale $\sim n^{6}$ for $n \lesssim 20$

process	$T_{s d}[\mathrm{~s}]$	$T_{4 \text { digits }}[\mathrm{s}]$	(\% fixed)	process	$T_{s d}[\mathrm{~s}]$	$T_{4 \text { digits }}[\mathrm{s}]$	(\% fixed)	
4 g	0.030	0.030	(0.00)	5 g	0.22	0.22	(0.22)	
2 u 2 g	0.032	0.032	(0.00)		2 u 3 g	0.34	0.35	(0.06)
2 u 2 d	0.011	0.011	(0.00)	2 u 2 d 1 g	0.11	0.11	(0.00)	
4 u	0.022	0.022	(0.00)	4 u 1 g	0.22	0.22	(0.03)	
process	$T_{s d}[\mathrm{~s}]$	$T_{4 \text { digits }}[\mathrm{s}]$	$(\%$ fixed $)$	process	$T_{s d}[\mathrm{~s}]$	$T_{4 \text { digits }}[\mathrm{s}]$	$(\%$ fixed)	
6 g	6.19	6.81	(1.37)	7 g	171.3	276.7	(8.63)	
2 u 4 g	7.19	7.40	(0.38)	2 u 5 g	195.1	241.2	(3.25)	
2 u 2 d 2 g	2.05	2.06	(0.08)	2 u 2 d 3 g	45.7	48.8	(0.88)	
4 u 2 g	4.08	4.15	(0.21)	4 u 3 g	92.5	101.5	(1.29)	
2 u 2 d 2 s	0.38	0.38	(0.00)	2 u 2 d 2 s 1 g	7.9	8.1	(0.23)	
2 u 4 d	0.74	0.74	(0.00)	2 u 4 d 1 g	15.8	16.2	(0.29)	
6 u	2.16	2.17	(0.02)	6 u 1 g	47.1	48.6	(0.41)	

full colour sums a few seconds for $2 \rightarrow 4$

	$g g \rightarrow 2 g$	$g g \rightarrow 3 g$	$g g \rightarrow 4 g$	$g g \rightarrow 5 g$
standard sum	0.03	0.22	6.19	171.31
de-symmetrized	0.03	0.07	0.57	3.07

Pt distributions

more distributions at https://bitbucket.org/njet/njet/wiki/Results/Physics

PDF dependence

Generally weak dependence on the choice of PDF fit (excluding choice for $\alpha_{s}\left(M_{Z}\right)$)

comparison using all sets with

$$
\alpha_{s}\left(M_{Z}\right)=0.118
$$

some dependence on PT
significant deviation in normalization of ABMII

Efficient Event Generation

- Leading/sub-leading expansion - sample dominant contributions more often
- Separate contributions by number of fermion lines
- ROOT Ntuples - make the most out of the integration run
- Re-weighting PDFs and renormalization/factorization scales (also jet algorithms with suitable event generation)
- APPLgrid - extremely fast and flexible analysis (very useful for PDF error analyses)

Heavy quark loops preliminary

 top quark loop effects are small (<1\%)di-jets seem to have additional kinematic suppression
matrix elements checked against MadLoop

corrections grow at very large PT - still negligible

