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Why NNLO? Why NNLO+PS?

[Anastasiou et al., ’04-’05]

0 1 2 3 4 5 6 70

10

20

30

310×

 stat±Obs 
 syst±Exp 

DY
Top
WW
Misid
VV
Higgs

jn

E
ve

nt
s 

/ b
in

jn

E
ve

nt
s 

/ b
in ATLAS

-1fb 20.3 TeV,  =8 s

[ATLAS jet-binned cross section]

I NNLO when very-high precision required [DY] or large NLO/LO K-factor [Higgs].

I PS do a good job for differential distributions (limited formal accuracy wrt
resummation, but “more flexible” and fully differential).

� aim: build an event generator that is NNLO accurate (NNLOPS)
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Summary of the talk

Higgs at NNLO:

# loops: 0 1 2 # loops: 0 1 # loops: 0

(c) 2 loops missing: from exact fixed-order NNLO

W (y) =
dσ(y)NNLO

dσ(y)MiNLO

(b) - integrate down to qT = 0 with MiNLO
- “Improved MiNLO” allows to build a H-HJ @ NLOPS generator

(a) 1 and 2 jets: POWHEG H+1j

I method presented here was used so far for
- Higgs production [Hamilton,Nason,ER,Zanderighi, 1309.0017]
- neutral & charged Drell-Yan [Karlberg,ER,Zanderighi, 1407.2940]

I as is, it can in principle be used for generic colour-singlet production
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NNLO+PS

I what do we need and what do we already have?

H (inclusive) H+j (inclusive) H+2j (inclusive)
H @ NLOPS NLO LO shower
HJ @ NLOPS / NLO LO

H-HJ @ NLOPS NLO NLO LO

H @ NNLOPS NNLO NLO LO

� a merged H-HJ generator is almost OK

I there are several multijet NLO+PS merging approaches; typically they combine
2 (or more) NLO+PS generators, often introducing a merging scale

I POWHEG + MiNLO: does not need a merging scale. It extends the validity of an
NLO computation with jets in the final state in regions where jets become
unresolved
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MiNLO
Multiscale Improved NLO [Hamilton,Nason,Zanderighi, 1206.3572]

I original goal: method to a-priori choose scales in multijet NLO computation
I non-trivial task: hierarchy among scales can spoil accuracy (large logs can appear,

without being resummed)
I how: correct weights of different NLO terms with CKKW-inspired approach (without

spoiling formal NLO accuracy)

- for each point sampled, build the “more-likely” shower history that would have
produced that kinematics (can be done by clustering kinematics with kT -algo, then,
by undoing the clustering, build “skeleton”)

- correct original NLO: αS evaluated at nodal scales and Sudakov FFs

- has been used in V/H + up to 2 jets and in V H + up to 1 jet

- “without spoiling formal NLO accuracy”:
1. Scale dependence shows up at NNLO [“scale compensation”]:

O(µ
′
)−O(µ) = O(α

n+2
S ) if O ∼ αn

S at LO

2. Away from soft-collinear regions, exact NLO recovered:

OMiNLO = ONLO +O(α
n+2
S ) [ i.e. α

n
S & α

n+1
S reproduce plain NLO ]

B̄NLO = α3
S(µR)

[
B + αSV (µR) + αS

∫
dΦrR

]
B̄MiNLO = α2

S(mh)αS(qT )∆2
g(qT ,mh)

[
B
(

1− 2∆
(1)
g (qT ,mh)

)
+ αS V (µ̄R) + αS

∫
dΦrR

]
. µ̄R = (m

2
hqT )

1/3

. log ∆f (qT ,mh) = −
∫ m2

h

q2
T

dq2

q2

αS(q2)

2π

[
Af log

m2
h

q2
+ Bf

]

. ∆
(1)
f

(qT ,mh) = −
αS

2π

[ 1

2
A1,f log

2 m
2
h

q2
T

+ B1,f log
m2

h

q2
T

]
. µF = qT

� Sudakov FF included on H+j
Born kinematics

I with MiNLO, finite results from HJ also when 1st jet is unresolved (qT → 0)
I B̄MiNLO ideal to extend validity of HJ-POWHEG [called “HJ-MiNLO” hereafter]
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“Improved” MiNLO & NLOPS merging
I formal accuracy of HJ-MiNLO for inclusive observables carefully investigated

[Hamilton et al., 1212.4504]

I HJ-MiNLO describes inclusive observables at order αS

I to reach genuine NLO when fully inclusive (NLO(0)), “spurious” terms must be of relative
order α2

S, i.e.

OHJ−MiNLO = OH@NLO +O(α2+2
S ) if O is inclusive

I “Original MiNLO” contains ambiguous “O(α2+1.5
S )” terms

I Possible to improve HJ-MiNLO such that inclusive NLO is recovered (NLO(0)), without
spoiling NLO accuracy of H+j (NLO(1)).

I accurate control of subleading small-pT logarithms is needed
(scaling in low-pT region is αSL

2 ∼ 1, i.e. L ∼ 1/
√
αS !)

Effectively as if we merged NLO(0) and NLO(1) samples, without merging different
samples (no merging scale used: there is just one sample).
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“Improved” MiNLO & NLOPS merging: details

I Resummation formula can be written as
dσ

dq2
T dy

= σ0
d

dq2
T

{
[Cga ⊗ fa](xA, qT )× [Cgb ⊗ fb](xB , qT )× expS(qT , Q)

}
+Rf

S(qT , Q) = −2

∫ Q2

q2
T

dq2

q2

αS(q2)

2π

[
Af log

Q2

q2
+Bf

]
I If C(1)

ij included and Rf is LO(1), then upon integration we get NLO(0)

I Take derivative, then compare with MiNLO :

∼ σ0
1

q2
T

[αS, α
2
S , α3

S, α
4
S, αSL,α

2
SL,α

3
SL,α

4
SL] expS(qT , Q) +Rf L = log(Q2/q2

T )

I highlighted terms are needed to reach NLO(0):∫ Q2
dq2
T

q2
T

LmαS
n(qT ) expS ∼

(
αS(Q2)

)n−(m+1)/2

(scaling in low-pT region is αSL
2 ∼ 1!)

I if I don’t include B2 in MiNLO ∆g , I miss a term (1/q2
T ) α2

S B2 expS

I upon integration, violate NLO(0) by a term of relative O(α
3/2
S )
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MiNLO merging: results

[Hamilton et al., 1212.4504]
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I “H+Pythia”: standalone POWHEG (gg → H) + PYTHIA (PS level) [7pts band, µ = mH ]
I “HJ+Pythia”: HJ-MiNLO* + PYTHIA (PS level) [7pts band, µ from MiNLO]

I very good agreement (both value and band) [!]

� Notice: band is ∼ 20− 30%
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Higgs at NNLO+PS: details

I HJ-MiNLO+POWHEG generator gives H-HJ @ NLOPS

H (inclusive) H+j (inclusive) H+2j (inclusive)
! H-HJ @ NLOPS NLO NLO LO

!

H @ NNLOPS NNLO NLO LO

I reweighting (differential on ΦB) of “MiNLO-generated” events:

W (ΦB) =

(
dσ
dΦB

)
NNLO(

dσ
dΦB

)
HJ−MiNLO∗

=
α2

Sc0 + c1α
3
S + c2α

4
S

α2
Sc0 + c1α3

S + d2α4
S

' 1 +
c2 − d2

c0
α2

S +O(α3
S)

I by construction NNLO accuracy on fully inclusive observables (σtot, yH ;m``, ...) [!]

I to reach NNLOPS accuracy, need to be sure that the reweighting doesn’t spoil the
NLO accuracy of HJ-MiNLO in 1-jet region [

!

]

I notice: formally works because no spurious O(α2+1.5
S ) terms in H-HJ @ NLOPS

I the more complicated ΦB , the more computationally demanding the method will be
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I to reach NNLOPS accuracy, need to be sure that the reweighting doesn’t spoil the
NLO accuracy of HJ-MiNLO in 1-jet region [!]

I notice: formally works because no spurious O(α2+1.5
S ) terms in H-HJ @ NLOPS

I the more complicated ΦB , the more computationally demanding the method will be
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Higgs at NNLO+PS: details II
I Variants for reweighting (W (yH), W (ΦB) ) are also possible:

W (y, pT ) = h(pT )

∫
dσNNLO
A δ(y − y(Φ))∫

dσMiNLO
A δ(y − y(Φ))

+ (1− h(pT ))

dσA = dσ h(pT ), dσB = dσ (1− h(pT )), h =
(βmH)2

(βmH)2 + p2
T

I freedom to distribute “NNLO/NLO K-factor” only over medium-small pT region

- h(pT ) controls where the NNLO/NLO K-factor is distributed
(in the high-pT region, there is no improvement in including it)

- β cannot be too small, otherwise resummation spoiled:
for Higgs, chosen β = 1/2; for DY, β = 1

I in practice, we used

W (y, pT ) = h(pT )

∫
dσNNLOδ(y − y(Φ))−

∫
dσMiNLO
B δ(y − y(Φ))∫

dσMiNLO
A δ(y − y(Φ))

+ (1− h(pT ))

- one gets exactly (dσ/dy)NNLOPS = (dσ/dy)NNLO (no α5
S terms)

- chosen h(pj1T )
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Settings

inputs for H@NNLOPS plots:

- results are for 8 TeV LHC

- scale choices: NNLO input with µ = mH/2, HJ-MiNLO “core scale” mH

(other powers are at qT )

- PDF: everywhere MSTW2008 NNLO

- NNLO always from HNNLO [Catani,Grazzini]

- 6M events reweighted at the LH level

- plots after kT-ordered Pythia6 at the PS level (hadronization and MPI
switched off)

for V@NNLOPS plots:

- similar choices as above

- NNLO always from DYNNLO [Catani,Cieri,Ferrera,de Florian,Grazzini]

- used also Pythia8 at the PS level (and with full hadronization and MPI
switched on in data comparison)
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H@NNLOPS (fully incl.)

To reweight, use yH

I NNLO with µ = mH/2, HJ-MiNLO “core scale” mH [NNLO from HNNLO, Catani,Grazzini]

I (7Mi × 3NN) pts scale var. in NNLOPS, 7pts in NNLO
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� Notice: band is 10% (at NLO would be ∼ 20-30%) [!]

[Until and includingO(α
4
S), PS effects don’t affect yH (first 2 emissions controlled properly atO(α

4
S) by MiNLO+POWHEG)]

11 / 17



H@NNLOPS (pHT )

β = 1/2
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I HqT: NNLL+NNLO, µR = µF = mH/2 [7pts], Qres ≡ mH/2 [HqT, Bozzi et al.]

! uncertainty bands of HqT contain NNLOPS at low-/moderate pT

I very good agreement with HqT resummation
[“∼ expected”, since Qres ≡ mH/2, and β = 1/2]

I HqT tail harder than NNLOPS tail (µHqT < ”µMiNLO”)
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data

... with Run II we will know more ...
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NNLO+PS (pj1T )
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I JetVHeto: NNLL resum, µR = µF = mH/2 [7pts], Qres ≡ mH/2, (a)-scheme only
[JetVHeto, Banfi et al.]

I nice agreement, differences never more than 5-6 %

� Separation of H →WW from tt̄ bkg: x-sec binned in Njet

0-jet bin⇔ jet-veto accurate predictions needed !
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W@NNLOPS, PS level
To reweight, use (y``,m``, cos θ`)
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I not the observables we are using to do the NNLO reweighting
- observe exactly what we expect:
pT,` has NNLO uncertainty if pT < MW /2, NLO if pT > MW /2

- η` is NNLO everywhere

- smooth behaviour when close to Jacobian peak (also with small bins)
(due to resummation of logs at small pT,V )

I just above peak, DYNNLO uses µ = MW , WJ-MiNLO uses µ = pT,W
- here 0 . pT,W .MW (so resummation region does contribute)
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NNLOPS vs. NLOPS

20

40

60

80

100

120

140

d
σ
/d

p T
,Z

0.6
0.8
1

1.2
1.4

500 10 20 30 40

ra
ti
o

pT,Z

NNLOPS [PY6-PSonly]
NLOPS [PY6-PSonly]

0.001

0.01

0.1

1

10

100

d
σ
/d

p T
,Z

0.6
0.8
1

1.2
1.4

500 100 150 200 250 300

ra
ti
o

pT,Z

NNLOPS [PY6-PSonly]
NLOPS [PY6-PSonly]

I different terms in Sudakov, although both contain NLL terms in momentum
space

- in NLOPS: αS in radiation scheme; in NNLOPS: MiNLO Sudakov

I formally they have the same logarithmic accuracy (as supported by above plot)
I at large pT , difference as expected
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conclusions
I MiNLO-improved POWHEG generator allows to reach NNLOPS accuracy for

simple processes

I shown results for Higgs and Drell-Yan at NNLOPS

I predictions and theoretical uncertainties match NNLO where they have to

I typically, quite good agreement with analytic resummation
- good news, but more work need to be done here

What next?

I other approaches appeared (UNNLOPS, Geneva): will be interesting to
compare

I NLOPS merging for higher multiplicity

I NNLOPS for more complicated processes (color-singlet in principle doable, in
practice a more analytic-based approach might be needed)

I Real phenomenology in experimental analyses

Thank you for your attention!
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NNLO+PS (pHT )

β =∞ (W indep. of pT ) β = 1/2
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I HqT: NNLL+NNLO, µR = µF = mH/2 [7pts], Qres ≡ mH/2 [HqT, Bozzi et al.]

! β = 1/2 &∞: uncertainty bands of HqT contain NNLOPS at low-/moderate pT
I β = 1/2: HqT tail harder than NNLOPS tail (µHqT < ”µMiNLO”)

HJ @ NNLO will allow to say more for large pT,H
I β = 1/2: very good agreement with HqT resummation

[“∼ expected”, since Qres ≡ mH/2]
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NNLO+PS (pHT )

β =∞ (W indep. of pT ) β = 1/2
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I HqT: NNLL+NNLO, µR = µF = mH/2 [7pts], Qres ≡ mH/2
I β = 1/2: NNLOPS tail→ NLOPS tail [ W (y, pT � mH)→ 1 ]

larger band (affected just marginally by NNLO, so it’s ∼ genuine NLO band)
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From CKKW to MiNLO
I Find “most-likely” shower history (via kT -algo): Q > q3 > q2 > q1 ≡ Q0

I Evaluate αS at nodal scales

αnS (µR)B(Φn)⇒ αS(q1)αS(q2)...αS(qn)B(Φn)

* scale compensation requires µ̄2
R = (q1q2...qn)2/n in V

I Sudakov FFs in internal and external lines of Born “skeleton”

B(Φn)⇒ B(Φn)× {∆(Q0, Q)∆(Q0, qi)...}

* Upon expansion, O(αn+1
S ) (log) terms are introduced, and need to be removed

B(Φn)⇒ B(Φn)
(

1−∆(1)(Q0, Q)−∆(1)(Q0, qi) + ...
)

! X+ jets cross-section finite without generation cuts
⇒ B̄ with MiNLO prescription: ideal starting point for NLOPS (POWHEG) for X+ jets
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MiNLO details

MiNLO: All αS in Born term are chosen with CKKW (local) scales q1, ..., qn

αnS (µR)B ⇒ αS(q1)αS(q2)...αS(qn)B

I Normal NLO structure (µ = µR):

σ(µ) = αnS (µ)B︸ ︷︷ ︸
Born

+αn+1
S (µ)

(
C + nb0 log(µ2/Q2)B

)
︸ ︷︷ ︸

Virtual

+αn+1
S (µ)R︸ ︷︷ ︸

Real

I Explicit µ dependence of virtual term as required by RG invariance:

αnS (µ′)B =
[
αS(µ) −nb0αn+1

S (µ) log(µ′2/µ2)
]
B +O(αn+2

S )

Virtual(µ′) = Virtual(µ) +αn+1
S (µ)nb0 log(µ′2/µ2) B +O(αn+2

S )

⇒ σ(µ′)− σ(µ) = O(αn+2
S )

I In MiNLO “scale compensation” kept if

(
C + nb0 log(µ2

R/Q
2)B

)
⇒
(
C + nb0 log(µ̄2

R/Q
2)B

)
with µ̄2

R = (q1q2...qn)2/n
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MiNLO details

Few technicalities for original MiNLO:
I µF = Q0 (as in CKKW)
I Cluster with CKKW also V and R kinematics

- Actual implementation uses FKS mapping for first cluster of Φn+1

- Ignore CKKW Sudakov for 1st clustering of Φn+1 (inclusive on extra radiation)

I Some freedom in choice of α(NLO)

S (entering V , R and ∆(1)):
* suggested average of LO αS

* not free for “improved” MiNLO
I Used full NLL-improved Sudakovs (A1, B1, A2)

Improved MiNLO: where are terms coming from when differentiating resum. formula?
1/q2

T , always from integration in Sudakov
αS from C(0) ×B1, ...
α2

S from C(0) ×B2, ...
...
αSL from A1 term in exponent
αSL

2 from A2 term in exponent
...
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NNLO+PS (pHT )

pHT spectrum:
I “µHJ−MiNLO = mH ,mH , pT ”
I At high pT , µHJ−MiNLO = pT

I If β = 1/2, NNLOPS→ HJ-MiNLO at high pT
I NNLO/NLO ∼ 1.5, because HNNLO with µ = mH/2, µHJ−MiNLO,core = mH
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