NNLO + PS with MiNLO and POWHEG

Emanuele Re

Rudolf Peierls Centre for Theoretical Physics, University of Oxford

PSR15

Krakow, 27 May 2015

Why NNLO? Why NNLO+PS?

[Anastasiou et al., '04-'05]

[ATLAS jet-binned cross section]

- NNLO when very-high precision required [DY] or large NLO/LO K-factor [Higgs].
- PS do a good job for differential distributions (limited formal accuracy wrt resummation, but "more flexible" and fully differential).
aim: build an event generator that is NNLO accurate (NNLOPS)

Summary of the talk

Higgs at NNLO:

\# loops: 0 1 1 亿

\# loops: 01
\# loops: 0

Summary of the talk

Higgs at NNLO:

(a) 1 and 2 jets: POWHEG $\mathrm{H}+1 \mathrm{j}$

Summary of the talk

Higgs at NNLO:

(b) - integrate down to $q_{T}=0$ with MiNLO

- "Improved MiNLO" allows to build a H-HJ @ NLOPS generator
(a) 1 and 2 jets: POWHEG $\mathrm{H}+1 \mathrm{j}$

Summary of the talk

Higgs at NNLO:

(b) - integrate down to $q_{T}=0$ with MiNLO

- "Improved MiNLO" allows to build a H-HJ @ NLOPS generator
(a) 1 and 2 jets: POWHEG $\mathrm{H}+1 \mathrm{j}$

Summary of the talk

Higgs at NNLO:

- method presented here was used so far for
- Higgs production
- neutral \& charged Drell-Yan
[Hamilton,Nason,ER,Zanderighi, 1309.0017]
[Karlberg,ER,Zanderighi, 1407.2940]
- as is, it can in principle be used for generic colour-singlet production

NNLO+PS

- what do we need and what do we already have?

	H (inclusive)	$\mathrm{H}+\mathrm{j}$ (inclusive)	$\mathrm{H}+2 \mathrm{j}$ (inclusive)
H @ NLOPS	NLO	LO	shower
HJ @ NLOPS	$/$	NLO	LO
H @ NNLOPS	NNLO	NLO	LO

NNLO+PS

- what do we need and what do we already have?

	H (inclusive)	$\mathrm{H}+\mathrm{j}$ (inclusive)	$\mathrm{H}+2 \mathrm{j}$ (inclusive)
H@ NLOPS	NLO	LO	shower
HJ @ NLOPS	$/$	NLO	LO
H-HJ @ NLOPS	NLO	NLO	LO
H @ NNLOPS	NNLO	NLO	LO

喂 a merged $\mathrm{H}-\mathrm{HJ}$ generator is almost OK

- what do we need and what do we already have?

	H (inclusive)	$\mathrm{H}+\mathrm{j}$ (inclusive)	$\mathrm{H}+2 \mathrm{j}$ (inclusive)
$\mathrm{H} @$ NLOPS	NLO	LO	shower
HJ @ NLOPS	$/$	NLO	LO
H-HJ @ NLOPS	NLO	NLO	LO
H @ NNLOPS	NNLO	NLO	LO

傕 a merged $\mathrm{H}-\mathrm{HJ}$ generator is almost OK

- there are several multijet NLO+PS merging approaches; typically they combine 2 (or more) NLO+PS generators, often introducing a merging scale
- POWHEG + MiNLO: does not need a merging scale. It extends the validity of an NLO computation with jets in the final state in regions where jets become unresolved

Multiscale Improved NLO

- original goal: method to a-priori choose scales in multijet NLO computation
- non-trivial task: hierarchy among scales can spoil accuracy (large logs can appear, without being resummed)
- how: correct weights of different NLO terms with CKKW-inspired approach (without spoiling formal NLO accuracy)
- original goal: method to a-priori choose scales in multijet NLO computation
- non-trivial task: hierarchy among scales can spoil accuracy (large logs can appear, without being resummed)
- how: correct weights of different NLO terms with CKKW-inspired approach (without spoiling formal NLO accuracy)
- for each point sampled, build the "more-likely" shower history that would have produced that kinematics (can be done by clustering kinematics with k_{T}-algo, then, by undoing the clustering, build "skeleton")
- correct original NLO: α_{S} evaluated at nodal scales and Sudakov FFs
- has been used in $V / H+$ up to 2 jets and in $V H+$ up to 1 jet
- "without spoiling formal NLO accuracy":

1. Scale dependence shows up at NNLO ["scale compensation"]:

$$
O\left(\mu^{\prime}\right)-O(\mu)=\mathcal{O}\left(\alpha_{\mathrm{S}}^{n+2}\right) \quad \text { if } \quad O \sim \alpha_{\mathrm{S}}^{n} \quad \text { at } \mathrm{LO}
$$

2. Away from soft-collinear regions, exact NLO recovered:

$$
O_{\mathrm{MiNLO}}=O_{\mathrm{NLO}}+\mathcal{O}\left(\alpha_{\mathrm{S}}^{n+2}\right) \quad\left[\text { i.e. } \alpha_{\mathrm{S}}^{n} \& \alpha_{\mathrm{S}}^{n+1} \text { reproduce plain NLO }\right]
$$

Multiscale Improved NLO

- original goal: method to a-priori choose scales in multijet NLO computation
- non-trivial task: hierarchy among scales can spoil accuracy (large logs can appear, without being resummed)
- how: correct weights of different NLO terms with CKKW-inspired approach (without spoiling formal NLO accuracy)

$$
\bar{B}_{\mathrm{NLO}}=\alpha_{\mathrm{S}}^{3}\left(\mu_{R}\right)\left[B+\alpha_{\mathrm{S}} V\left(\mu_{R}\right)+\alpha_{\mathrm{S}} \int d \Phi_{\mathrm{r}} R\right]
$$

MiNLO

Multiscale Improved NLO

- original goal: method to a-priori choose scales in multijet NLO computation
- non-trivial task: hierarchy among scales can spoil accuracy (large logs can appear, without being resummed)
- how: correct weights of different NLO terms with CKKW-inspired approach (without spoiling formal NLO accuracy)

$$
\begin{aligned}
& \bar{B}_{\mathrm{NLO}}=\alpha_{\mathrm{S}}^{3}\left(\mu_{R}\right)\left[B+\alpha_{\mathrm{S}} V\left(\mu_{R}\right)+\alpha_{\mathrm{S}} \int d \Phi_{\mathrm{r}} R\right] \\
& \bar{B}_{\mathrm{MiNLO}}=\alpha_{\mathrm{S}}^{2}\left(m_{h}\right) \alpha_{\mathrm{S}}\left(q_{T}\right) \Delta_{g}^{2}\left(q_{T}, m_{h}\right)\left[B\left(1-2 \Delta_{g}^{(1)}\left(q_{T}, m_{h}\right)\right)+\alpha_{\mathrm{S}} V\left(\bar{\mu}_{R}\right)+\alpha_{\mathrm{S}} \int d \Phi_{\mathrm{r}} R\right]
\end{aligned}
$$

$$
\begin{aligned}
& \Delta_{\mathrm{f}}^{(1)}\left(q_{T}, m_{h}\right)=-\frac{\alpha_{\mathrm{S}}}{2 \pi}\left[\frac{1}{2} A_{1, \mathrm{f}} \log ^{2} \frac{m_{h}^{2}}{q_{T}^{2}}+B_{1, \mathrm{f}} \log \frac{m_{h}^{2}}{q_{T}^{2}}\right] \\
& \mu_{F}=q_{T}
\end{aligned}
$$

MiNLO

Multiscale Improved NLO

- original goal: method to a-priori choose scales in multijet NLO computation
- non-trivial task: hierarchy among scales can spoil accuracy (large logs can appear, without being resummed)
- how: correct weights of different NLO terms with CKKW-inspired approach (without spoiling formal NLO accuracy)

$$
\begin{aligned}
& \bar{B}_{\mathrm{NLO}}=\alpha_{\mathrm{S}}^{3}\left(\mu_{R}\right)\left[B+\alpha_{\mathrm{S}} V\left(\mu_{R}\right)+\alpha_{\mathrm{S}} \int d \Phi_{\mathrm{r}} R\right] \\
& \bar{B}_{\mathrm{MiNLO}}=\alpha_{\mathrm{S}}^{2}\left(m_{h}\right) \alpha_{\mathrm{S}}\left(q_{T}\right) \Delta_{g}^{2}\left(q_{T}, m_{h}\right)\left[B\left(1-2 \Delta_{g}^{(1)}\left(q_{T}, m_{h}\right)\right)+\alpha_{\mathrm{S}} V\left(\bar{\mu}_{R}\right)+\alpha_{\mathrm{S}} \int d \Phi_{\mathrm{r}} R\right]
\end{aligned}
$$

- with MinLo, finite results from HJ also when 1 st jet is unresolved $\left(q_{T} \rightarrow 0\right)$
- $\bar{B}_{\text {MiNLO }}$ ideal to extend validity of HJ-POWHEG [called "HJ-MiNLo" hereafter]

"Improved" MiNLO \& NLOPS merging

- formal accuracy of HJ-MiNLO for inclusive observables carefully investigated
[Hamilton et al., 1212.4504]
- HJ-MiNLO describes inclusive observables at order α_{S}
- to reach genuine NLO when fully inclusive $\left(\mathrm{NLO}^{(0)}\right)$, "spurious" terms must be of relative order α_{S}^{2}, i.e.

$$
O_{\mathrm{HJ}-\mathrm{MiNLO}}=O_{\mathrm{H} @ \mathrm{NLO}}+\mathcal{O}\left(\alpha_{\mathrm{S}}^{2+2}\right) \quad \text { if } O \text { is inclusive }
$$

- "Original MiNLO" contains ambiguous " $\mathcal{O}\left(\alpha_{\mathrm{S}}^{2+1.5}\right)$ " terms

"Improved" MiNLO \& NLOPS merging

- formal accuracy of HJ-MiNLO for inclusive observables carefully investigated
- HJ-MiNLO describes inclusive observables at order α_{S}
- to reach genuine NLO when fully inclusive $\left(\mathrm{NLO}^{(0)}\right)$, "spurious" terms must be of relative order α_{S}^{2}, i.e.

$$
O_{\mathrm{HJ}-\mathrm{MiNLO}}=O_{\mathrm{H} @ \mathrm{NLO}}+\mathcal{O}\left(\alpha_{\mathrm{S}}^{2+2}\right) \quad \text { if } O \text { is inclusive }
$$

- "Original MinLO" contains ambiguous " $\mathcal{O}\left(\alpha_{\mathrm{S}}^{2+1.5}\right)$ " terms
- Possible to improve HJ-MinLO such that inclusive NLO is recovered ($\mathrm{NLO}^{(0)}$), without spoiling NLO accuracy of $H+j\left(\mathrm{NLO}^{(1)}\right)$.
- accurate control of subleading small- p_{T} logarithms is needed (scaling in low- p_{T} region is $\alpha_{\mathrm{S}} L^{2} \sim 1$, i.e. $L \sim 1 / \sqrt{\alpha_{\mathrm{S}}}$!)

Effectively as if we merged $\mathrm{NLO}^{(0)}$ and $\mathrm{NLO}^{(1)}$ samples, without merging different samples (no merging scale used: there is just one sample).

"Improved" MiNLO \& NLOPS merging: details

- Resummation formula can be written as

$$
\begin{gathered}
\frac{d \sigma}{d q_{T}^{2} d y}=\sigma_{0} \frac{d}{d q_{T}^{2}}\left\{\left[C_{g a} \otimes f_{a}\right]\left(x_{A}, q_{T}\right) \times\left[C_{g b} \otimes f_{b}\right]\left(x_{B}, q_{T}\right) \times \exp S\left(q_{T}, Q\right)\right\}+R_{f} \\
S\left(q_{T}, Q\right)=-2 \int_{q_{T}^{2}}^{Q^{2}} \frac{d q^{2}}{q^{2}} \frac{\alpha_{S}\left(q^{2}\right)}{2 \pi}\left[A_{f} \log \frac{Q^{2}}{q^{2}}+B_{f}\right]
\end{gathered}
$$

- If $C_{i j}^{(1)}$ included and R_{f} is $\mathrm{LO}^{(1)}$, then upon integration we get $\mathrm{NLO}^{(0)}$
- Take derivative, then compare with MinLo:

$$
\sim \sigma_{0} \frac{1}{q_{T}^{2}}\left[\alpha_{\mathrm{S}}, \alpha_{\mathrm{S}}^{2}, \alpha_{\mathrm{S}}^{3}, \alpha_{\mathrm{S}}^{4}, \alpha_{\mathrm{S}} L, \alpha_{\mathrm{S}}^{2} L, \alpha_{\mathrm{S}}^{3} L, \alpha_{\mathrm{S}}^{4} L\right] \exp S\left(q_{T}, Q\right)+R_{f} \quad L=\log \left(Q^{2} / q_{T}^{2}\right)
$$

- highlighted terms are needed to reach $\mathrm{NLO}^{(0)}$:

$$
\int^{Q^{2}} \frac{d q_{T}^{2}}{q_{T}^{2}} L^{m} \alpha_{\mathrm{S}}^{n}\left(q_{T}\right) \exp S \sim\left(\alpha_{\mathrm{S}}\left(Q^{2}\right)\right)^{n-(m+1) / 2}
$$

(scaling in low $-p_{T}$ region is $\alpha_{\mathrm{S}} L^{2} \sim 1$!)

- if I don't include B_{2} in MinLo Δ_{g}, I miss a term $\left(1 / q_{T}^{2}\right) \alpha_{\mathrm{S}}^{2} B_{2} \exp S$
- upon integration, violate $\mathrm{NLO}^{(0)}$ by a term of relative $\mathcal{O}\left(\alpha_{\mathrm{S}}^{3 / 2}\right)$

MiNLO merging: results

- "H+Pythia": standalone POWHEG $(g g \rightarrow H)+$ PYTHIA (PS level) [7pts band, $\mu=m_{H}$]
- "HJ+Pythia": HJ-MinLO* + PYTHIA (PS level) [7pts band, μ from MinLO]
- very good agreement (both value and band)

Notice: band is $\sim 20-30 \%$

Higgs at NNLO+PS: details

- HJ-MiNLO+POWHEG generator gives H-HJ @ NLOPS

	H (inclusive)	$\mathrm{H}+\mathrm{j}$ (inclusive)	$\mathrm{H}+2 \mathrm{j}$ (inclusive)
$\checkmark \mathrm{H}-\mathrm{HJ} @ \mathrm{NLOPS}$	NLO	NLO	LO
$\mathrm{H} @ \mathrm{NNLOPS}$	NNLO	NLO	LO

Higgs at NNLO+PS: details

- HJ-MiNLO+POWHEG generator gives H-HJ @ NLOPS

	H (inclusive)	$\mathrm{H}+\mathrm{j}$ (inclusive)	$\mathrm{H}+2 \mathrm{j}$ (inclusive)
$\checkmark \mathrm{H}-\mathrm{HJ}$ @ NLOPS	NLO	NLO	LO
$\mathrm{H} @$ NNLOPS	NNLO	NLO	LO

- reweighting (differential on Φ_{B}) of "MiNLO-generated" events:

$$
W\left(\Phi_{B}\right)=\frac{\left(\frac{d \sigma}{d \Phi_{B}}\right)_{\mathrm{NNLO}}}{\left(\frac{d \sigma}{d \Phi_{B}}\right)_{\mathrm{HJ}-\mathrm{MiNLO}^{*}}}
$$

- by construction NNLO accuracy on fully inclusive observables ($\sigma_{\text {tot }}, y_{H} ; m_{\ell \ell}, \ldots$) $[\sqrt{ }]$
- to reach NNLOPS accuracy, need to be sure that the reweighting doesn't spoil the NLO accuracy of HJ-MiNLO in 1-jet region

Higgs at NNLO+PS: details

- HJ-MiNLO+POWHEG generator gives H-HJ @ NLOPS

	H (inclusive)	$\mathrm{H}+\mathrm{j}$ (inclusive)	$\mathrm{H}+2 \mathrm{j}$ (inclusive)
$\checkmark \mathrm{H}-\mathrm{HJ} @$ NLOPS	NLO	NLO	LO
$\sqrt{\mathrm{H}}$ @ NNLOPS	NNLO	NLO	LO

- reweighting (differential on Φ_{B}) of "MiNLO-generated" events:

$$
W\left(\Phi_{B}\right)=\frac{\left(\frac{d \sigma}{d \Phi_{B}}\right)_{\mathrm{NNLO}}}{\left(\frac{d \sigma}{d \Phi_{B}}\right)_{\mathrm{HJ}-\mathrm{MiNLO}^{*}}}=\frac{\alpha_{\mathrm{S}}^{2} c_{0}+c_{1} \alpha_{\mathrm{S}}^{3}+c_{2} \alpha_{\mathrm{S}}^{4}}{\alpha_{\mathrm{S}}^{2} c_{0}+c_{1} \alpha_{\mathrm{S}}^{3}+d_{2} \alpha_{\mathrm{S}}^{4}} \simeq 1+\frac{c_{2}-d_{2}}{c_{0}} \alpha_{\mathrm{S}}^{2}+\mathcal{O}\left(\alpha_{\mathrm{S}}^{3}\right)
$$

- by construction NNLO accuracy on fully inclusive observables $\left(\sigma_{\mathrm{tot}}, y_{H} ; m_{\ell \ell}, \ldots\right)[\sqrt{ }]$
- to reach NNLOPS accuracy, need to be sure that the reweighting doesn't spoil the NLO accuracy of HJ-MiNLO in 1-jet region

Higgs at NNLO+PS: details

- HJ-MiNLO+POWHEG generator gives H-HJ @ NLOPS

	H (inclusive)	$\mathrm{H}+\mathrm{j}$ (inclusive)	$\mathrm{H}+2 \mathrm{j}$ (inclusive)
$\checkmark \mathrm{H}-\mathrm{HJ} @$ NLOPS	NLO	NLO	LO
$\sqrt{\mathrm{H}}$ @ NNLOPS	NNLO	NLO	LO

- reweighting (differential on Φ_{B}) of "MiNLO-generated" events:

$$
W\left(\Phi_{B}\right)=\frac{\left(\frac{d \sigma}{d \Phi_{B}}\right)_{\mathrm{NNLO}}}{\left(\frac{d \sigma}{d \Phi_{B}}\right)_{\mathrm{HJ}-\mathrm{MiNLO}^{*}}}=\frac{\alpha_{\mathrm{S}}^{2} c_{0}+c_{1} \alpha_{\mathrm{S}}^{3}+c_{2} \alpha_{\mathrm{S}}^{4}}{\alpha_{\mathrm{S}}^{2} c_{0}+c_{1} \alpha_{\mathrm{S}}^{3}+d_{2} \alpha_{\mathrm{S}}^{4}} \simeq 1+\frac{c_{2}-d_{2}}{c_{0}} \alpha_{\mathrm{S}}^{2}+\mathcal{O}\left(\alpha_{\mathrm{S}}^{3}\right)
$$

- by construction NNLO accuracy on fully inclusive observables $\left(\sigma_{\mathrm{tot}}, y_{H} ; m_{\ell \ell}, \ldots\right)[\sqrt{ }]$
- to reach NNLOPS accuracy, need to be sure that the reweighting doesn't spoil the NLO accuracy of HJ-MiNLO in 1-jet region
- notice: formally works because no spurious $\mathcal{O}\left(\alpha_{\mathrm{S}}^{2+1.5}\right)$ terms in H-HJ @ NLOPS

Higgs at NNLO+PS: details

- HJ-MiNLO+POWHEG generator gives H-HJ @ NLOPS

	H (inclusive)	$\mathrm{H}+\mathrm{j}$ (inclusive)	$\mathrm{H}+2 \mathrm{j}$ (inclusive)
$\checkmark \mathrm{H}-\mathrm{HJ} @$ NLOPS	NLO	NLO	LO
$\sqrt{\mathrm{H}}$ @ NNLOPS	NNLO	NLO	LO

- reweighting (differential on Φ_{B}) of "MiNLO-generated" events:

$$
W\left(\Phi_{B}\right)=\frac{\left(\frac{d \sigma}{d \Phi_{B}}\right)_{\mathrm{NNLO}}}{\left(\frac{d \sigma}{d \Phi_{B}}\right)_{\mathrm{HJ}-\mathrm{MiNLO}^{*}}}=\frac{\alpha_{\mathrm{S}}^{2} c_{0}+c_{1} \alpha_{\mathrm{S}}^{3}+c_{2} \alpha_{\mathrm{S}}^{4}}{\alpha_{\mathrm{S}}^{2} c_{0}+c_{1} \alpha_{\mathrm{S}}^{3}+d_{2} \alpha_{\mathrm{S}}^{4}} \simeq 1+\frac{c_{2}-d_{2}}{c_{0}} \alpha_{\mathrm{S}}^{2}+\mathcal{O}\left(\alpha_{\mathrm{S}}^{3}\right)
$$

- by construction NNLO accuracy on fully inclusive observables $\left(\sigma_{\text {tot }}, y_{H} ; m_{\ell \ell}, \ldots\right)[\sqrt{ }]$
- to reach NNLOPS accuracy, need to be sure that the reweighting doesn't spoil the NLO accuracy of HJ-MiNLO in 1-jet region
- notice: formally works because no spurious $\mathcal{O}\left(\alpha_{\mathrm{S}}^{2+1.5}\right)$ terms in H-HJ @ NLOPS
- the more complicated Φ_{B}, the more computationally demanding the method will be

Higgs at NNLO+PS: details II

- Variants for reweighting $\left(W\left(y_{H}\right), W\left(\Phi_{B}\right)\right)$ are also possible:

$$
\begin{gathered}
W\left(y, p_{T}\right)=h\left(p_{T}\right) \frac{\int d \sigma_{A}^{\mathrm{NNLO}} \delta(y-y(\mathbf{\Phi}))}{\int d \sigma_{A}^{\mathrm{MiNLO}} \delta(y-y(\mathbf{\Phi}))}+\left(1-h\left(p_{T}\right)\right) \\
d \sigma_{A}=d \sigma h\left(p_{T}\right), \quad \quad d \sigma_{B}=d \sigma\left(1-h\left(p_{T}\right)\right), \quad h=\frac{\left(\beta m_{H}\right)^{2}}{\left(\beta m_{H}\right)^{2}+p_{T}^{2}}
\end{gathered}
$$

- freedom to distribute "NNLO/NLO K-factor" only over medium-small p_{T} region
- $h\left(p_{T}\right)$ controls where the NNLO/NLO K-factor is distributed (in the high- p_{T} region, there is no improvement in including it)
- β cannot be too small, otherwise resummation spoiled: for Higgs, chosen $\beta=1 / 2$; for DY, $\beta=1$
- in practice, we used

$$
W\left(y, p_{T}\right)=h\left(p_{T}\right) \frac{\int d \sigma^{\mathrm{NNLO}} \delta(y-y(\boldsymbol{\Phi}))-\int d \sigma_{B}^{\mathrm{MiNLO}} \delta(y-y(\boldsymbol{\Phi}))}{\int d \sigma_{A}^{\mathrm{MiNLO}} \delta(y-y(\boldsymbol{\Phi}))}+\left(1-h\left(p_{T}\right)\right)
$$

- one gets exactly $(d \sigma / d y)_{\mathrm{NNLOPS}}=(d \sigma / d y)_{\mathrm{NNLO}}$ (no α_{S}^{5} terms)
- chosen $h\left(p_{T}^{j_{1}}\right)$

Settings

inputs for H@NNLOPS plots:

- results are for 8 TeV LHC
- scale choices: NNLO input with $\mu=m_{H} / 2$, HJ-MiNLO "core scale" m_{H} (other powers are at q_{T})
- PDF: everywhere MSTW2008 NNLO
- NNLO always from HNNLO
- 6M events reweighted at the LH level
- plots after k_{T}-ordered Pythia6 at the PS level (hadronization and MPI switched off)
for V@NNLOPS plots:
- similar choices as above
- NNLO always from DYNNLO
[Catani,Cieri,Ferrera,de Florian,Grazzini]
- used also Pythia8 at the PS level (and with full hadronization and MPI switched on in data comparison)

H@NNLOPS (fully incl.)

To reweight, use y_{H}

- NNLO with $\mu=m_{H} / 2$, HJ-MiNLO "core scale" m_{H}
[NNLO from HNNLO, Catani,Grazzini]
- $\left(7_{\mathrm{Mi}} \times 3_{\mathrm{NN}}\right)$ pts scale var. in NNLOPS, 7 pts in NNLO

(1) Notice: band is 10% (at NLO would be $\sim 20-30 \%$)
[Until and including $\mathcal{O}\left(\alpha_{\mathrm{S}}^{4}\right)$, PS effects don't affect y_{H} (first 2 emissions controlled properly at $\mathcal{O}\left(\alpha_{\mathrm{S}}^{4}\right)$ by MiNLO + POWHEG $)$]

H@NNLOPS $\left(p_{T}^{H}\right)$

$\beta=1 / 2$

- HqT: NNLL+NNLO, $\mu_{R}=\mu_{F}=m_{H} / 2[7 \mathrm{pts}], \quad Q_{\mathrm{res}} \equiv m_{H} / 2$
[HqT, Bozzi et al.]
\checkmark uncertainty bands of HqT contain NNLOPS at low-/moderate p_{T}
- very good agreement with HqT resummation
["~ expected", since $Q_{\text {res }} \equiv m_{H} / 2$, and $\beta=1 / 2$]
- HqT tail harder than NnLOPS tail ($\mu_{\mathrm{HqT}}<" \mu_{\text {MinLO }} "$)

data

... with Run II we will know more ...

$$
\varepsilon\left(p_{\mathrm{T}, \text { veto }}\right)=\frac{\Sigma\left(p_{\mathrm{T}, \text { veto }}\right)}{\sigma^{\text {tot }}}=\frac{1}{\sigma^{\text {tot }}} \int d \sigma \theta\left(p_{\mathrm{T}, \text { veto }}-p_{\mathrm{T}}^{\mathrm{j}_{1}}\right)
$$

- JetVHeto: NNLL resum, $\mu_{R}=\mu_{F}=m_{H} / 2$ [7pts], $\quad Q_{\text {res }} \equiv m_{H} / 2$, (a)-scheme only
[JetVHeto, Banfi et al.]
- nice agreement, differences never more than 5-6 \%

4883 Separation of $H \rightarrow W W$ from $t \bar{t}$ bkg: x-sec binned in $N_{\text {jet }}$
0 -jet bin \Leftrightarrow jet-veto accurate predictions needed !

W@NNLOPS, PS level

To reweight, use $\left(y_{\ell \ell}, m_{\ell \ell}, \cos \theta_{\ell}\right)$

- not the observables we are using to do the NNLO reweighting
- observe exactly what we expect: $p_{T, \ell}$ has NNLO uncertainty if $p_{T}<M_{W} / 2$, NLO if $p_{T}>M_{W} / 2$
- η_{ℓ} is NNLO everywhere

W@NNLOPS, PS level

To reweight, use $\left(y_{\ell \ell}, m_{\ell \ell}, \cos \theta_{\ell}\right)$

- not the observables we are using to do the NNLO reweighting
- observe exactly what we expect: $p_{T, \ell}$ has NNLO uncertainty if $p_{T}<M_{W} / 2$, NLO if $p_{T}>M_{W} / 2$
- smooth behaviour when close to Jacobian peak (also with small bins) (due to resummation of logs at small $p_{T, V}$)

W@NNLOPS, PS level

To reweight, use $\left(y_{\ell \ell}, m_{\ell \ell}, \cos \theta_{\ell}\right)$

- not the observables we are using to do the NNLO reweighting
- observe exactly what we expect: $p_{T, \ell}$ has NNLO uncertainty if $p_{T}<M_{W} / 2$, NLO if $p_{T}>M_{W} / 2$
- smooth behaviour when close to Jacobian peak (also with small bins) (due to resummation of logs at small $p_{T, V}$)
- just above peak, DYnNLO uses $\mu=M_{W}$, WJ-MinLO uses $\mu=p_{T, W}$
- here $0 \lesssim p_{T, W} \lesssim M_{W}$ (so resummation region does contribute)

NNLOPS vs. NLOPS

- different terms in Sudakov, although both contain NLL terms in momentum space
- in NLOPS: α_{S} in radiation scheme; in NNLOPS: MinLO Sudakov
- formally they have the same logarithmic accuracy (as supported by above plot)
- at large p_{T}, difference as expected

conclusions

- MiNLO-improved POWHEG generator allows to reach NNLOPS accuracy for simple processes
- shown results for Higgs and Drell-Yan at NNLOPS
- predictions and theoretical uncertainties match NNLO where they have to
- typically, quite good agreement with analytic resummation
- good news, but more work need to be done here

What next?

conclusions

- MiNLO-improved POWHEG generator allows to reach NNLOPS accuracy for simple processes
- shown results for Higgs and Drell-Yan at NNLOPS
- predictions and theoretical uncertainties match NNLO where they have to
- typically, quite good agreement with analytic resummation
- good news, but more work need to be done here

What next?

- other approaches appeared (UNNLOPS, Geneva): will be interesting to compare
- NLOPS merging for higher multiplicity
- NNLOPS for more complicated processes (color-singlet in principle doable, in practice a more analytic-based approach might be needed)
- Real phenomenology in experimental analyses

conclusions

- MiNLO-improved POWHEG generator allows to reach NNLOPS accuracy for simple processes
- shown results for Higgs and Drell-Yan at NNLOPS
- predictions and theoretical uncertainties match NNLO where they have to
- typically, quite good agreement with analytic resummation
- good news, but more work need to be done here

What next?

- other approaches appeared (UNNLOPS, Geneva): will be interesting to compare
- NLOPS merging for higher multiplicity
- NNLOPS for more complicated processes (color-singlet in principle doable, in practice a more analytic-based approach might be needed)
- Real phenomenology in experimental analyses
$\beta=\infty\left(\right.$ W indep. of $\left.p_{T}\right)$
$\beta=1 / 2$

[HqT, Bozzi et al.]
$\checkmark \beta=1 / 2 \& \infty$: uncertainty bands of HqT contain nnLOPS at low-/moderate p_{T}
- $\beta=1 / 2$: HqT tail harder than nNLOPS tail ($\mu_{\mathrm{HqT}}<" \mu_{\mathrm{MiNLO}}$ ") HJ @ NNLO will allow to say more for large $p_{T, H}$
- $\beta=1 / 2$: very good agreement with HqT resummation
["~ expected", since $Q_{\mathrm{res}} \equiv m_{H} / 2$]
$\beta=\infty\left(\mathrm{W}\right.$ indep. of $\left.p_{T}\right)$

$\beta=1 / 2$

- HqT: NNLL+NNLO, $\mu_{R}=\mu_{F}=m_{H} / 2[7 \mathrm{pts}], \quad Q_{\mathrm{res}} \equiv m_{H} / 2$
- $\beta=1 / 2$: nNLOPS tail \rightarrow NLOPS tail [$W\left(y, p_{T} \gg m_{H}\right) \rightarrow 1$] larger band (affected just marginally by NNLO, so it's \sim genuine NLO band)

From CKKW to MiNLO

- Find "most-likely" shower history (via k_{T}-algo): $Q>q_{3}>q_{2}>q_{1} \equiv Q_{0}$

From CKKW to MiNLO

- Find "most-likely" shower history (via k_{T}-algo): $Q>q_{3}>q_{2}>q_{1} \equiv Q_{0}$

From CKKW to MiNLO

- Find "most-likely" shower history (via k_{T}-algo): $Q>q_{3}>q_{2}>q_{1} \equiv Q_{0}$

- Evaluate α_{S} at nodal scales

$$
\alpha_{\mathrm{S}}^{n}\left(\mu_{R}\right) B\left(\boldsymbol{\Phi}_{n}\right) \Rightarrow \alpha_{\mathrm{S}}\left(q_{1}\right) \alpha_{\mathrm{S}}\left(q_{2}\right) \ldots \alpha_{\mathrm{S}}\left(q_{n}\right) B\left(\boldsymbol{\Phi}_{n}\right)
$$

* scale compensation requires $\bar{\mu}_{R}^{2}=\left(q_{1} q_{2} \ldots q_{n}\right)^{2 / n}$ in V

From CKKW to MiNLO

- Find "most-likely" shower history (via k_{T}-algo): $Q>q_{3}>q_{2}>q_{1} \equiv Q_{0}$

- Evaluate α_{S} at nodal scales

$$
\alpha_{\mathrm{S}}^{n}\left(\mu_{R}\right) B\left(\boldsymbol{\Phi}_{n}\right) \Rightarrow \alpha_{\mathrm{S}}\left(q_{1}\right) \alpha_{\mathrm{S}}\left(q_{2}\right) \ldots \alpha_{\mathrm{S}}\left(q_{n}\right) B\left(\boldsymbol{\Phi}_{n}\right)
$$

* scale compensation requires $\bar{\mu}_{R}^{2}=\left(q_{1} q_{2} \ldots q_{n}\right)^{2 / n}$ in V
- Sudakov FFs in internal and external lines of Born "skeleton"

$$
B\left(\boldsymbol{\Phi}_{n}\right) \Rightarrow B\left(\boldsymbol{\Phi}_{n}\right) \times\left\{\Delta\left(Q_{0}, Q\right) \Delta\left(Q_{0}, q_{i}\right) \ldots\right\}
$$

* Upon expansion, $\mathcal{O}\left(\alpha_{\mathrm{S}}^{n+1}\right)(\mathrm{log})$ terms are introduced, and need to be removed

$$
B\left(\boldsymbol{\Phi}_{n}\right) \Rightarrow B\left(\boldsymbol{\Phi}_{n}\right)\left(1-\Delta^{(1)}\left(Q_{0}, Q\right)-\Delta^{(1)}\left(Q_{0}, q_{i}\right)+\ldots\right)
$$

From CKKW to MiNLO

- Find "most-likely" shower history (via k_{T}-algo): $Q>q_{3}>q_{2}>q_{1} \equiv Q_{0}$

- Evaluate α_{S} at nodal scales

$$
\alpha_{\mathrm{S}}^{n}\left(\mu_{R}\right) B\left(\boldsymbol{\Phi}_{n}\right) \Rightarrow \alpha_{\mathrm{S}}\left(q_{1}\right) \alpha_{\mathrm{S}}\left(q_{2}\right) \ldots \alpha_{\mathrm{S}}\left(q_{n}\right) B\left(\boldsymbol{\Phi}_{n}\right)
$$

* scale compensation requires $\bar{\mu}_{R}^{2}=\left(q_{1} q_{2} \ldots q_{n}\right)^{2 / n}$ in V
- Sudakov FFs in internal and external lines of Born "skeleton"

$$
B\left(\boldsymbol{\Phi}_{n}\right) \Rightarrow B\left(\boldsymbol{\Phi}_{n}\right) \times\left\{\Delta\left(Q_{0}, Q\right) \Delta\left(Q_{0}, q_{i}\right) \ldots\right\}
$$

* Upon expansion, $\mathcal{O}\left(\alpha_{\mathrm{S}}^{n+1}\right)(\mathrm{log})$ terms are introduced, and need to be removed

$$
B\left(\boldsymbol{\Phi}_{n}\right) \Rightarrow B\left(\boldsymbol{\Phi}_{n}\right)\left(1-\Delta^{(1)}\left(Q_{0}, Q\right)-\Delta^{(1)}\left(Q_{0}, q_{i}\right)+\ldots\right)
$$

$\checkmark X+$ jets cross-section finite without generation cuts
$\Rightarrow \bar{B}$ with MinLo prescription: ideal starting point for NLOPS (POWHEG) for $X+$ jets

MiNLO details

MiNLO: All α_{S} in Born term are chosen with CKKW (local) scales q_{1}, \ldots, q_{n}

$$
\alpha_{\mathrm{S}}^{n}\left(\mu_{R}\right) B \Rightarrow \alpha_{\mathrm{S}}\left(q_{1}\right) \alpha_{\mathrm{S}}\left(q_{2}\right) \ldots \alpha_{\mathrm{S}}\left(q_{n}\right) B
$$

- Normal NLO structure $\left(\mu=\mu_{R}\right)$:

$$
\sigma(\mu)=\underbrace{\alpha_{\mathrm{S}}^{n}(\mu) B}_{\text {Born }}+\underbrace{\alpha_{\mathrm{S}}^{n+1}(\mu)\left(C+n b_{0} \log \left(\mu^{2} / Q^{2}\right) B\right)}_{\text {Virtual }}+\underbrace{\alpha_{\mathrm{S}}^{n+1}(\mu) R}_{\text {Real }}
$$

- Explicit μ dependence of virtual term as required by RG invariance:

$$
\alpha_{\mathrm{S}}^{n}\left(\mu^{\prime}\right) B=\left[\alpha_{\mathrm{S}}(\mu)-n b_{0} \alpha_{\mathrm{S}}^{n+1}(\mu) \log \left(\mu^{\prime 2} / \mu^{2}\right)\right] B+\mathcal{O}\left(\alpha_{\mathrm{S}}^{n+2}\right)
$$

$$
\operatorname{Virtual}\left(\mu^{\prime}\right)=\operatorname{Virtual}(\mu)+\alpha_{\mathrm{S}}^{n+1}(\mu) n b_{0} \log \left(\mu^{\prime 2} / \mu^{2}\right) B+\mathcal{O}\left(\alpha_{\mathrm{S}}^{n+2}\right)
$$

$$
\Rightarrow \sigma\left(\mu^{\prime}\right)-\sigma(\mu)=\mathcal{O}\left(\alpha_{\mathrm{S}}^{n+2}\right)
$$

- In MiNLO "scale compensation" kept if

$$
\left(C+n b_{0} \log \left(\mu_{R}^{2} / Q^{2}\right) B\right) \Rightarrow\left(C+n b_{0} \log \left(\bar{\mu}_{R}^{2} / Q^{2}\right) B\right)
$$

with $\bar{\mu}_{R}^{2}=\left(q_{1} q_{2} \ldots q_{n}\right)^{2 / n}$

MiNLO details

Few technicalities for original MiNLO:

- $\mu_{F}=Q_{0}$ (as in CKKW)
- Cluster with CKKW also V and R kinematics
- Actual implementation uses FKS mapping for first cluster of $\boldsymbol{\Phi}_{n+1}$
- Ignore CKKW Sudakov for $1^{s t}$ clustering of $\boldsymbol{\Phi}_{n+1}$ (inclusive on extra radiation)
- Some freedom in choice of $\alpha_{\mathrm{S}}^{(\mathrm{NLO})}$ (entering V, R and $\Delta^{(1)}$):
* suggested average of LO α_{S}
* not free for "improved" MiNLO
- Used full NLL-improved Sudakovs $\left(A_{1}, B_{1}, A_{2}\right)$

Improved MiNLO: where are terms coming from when differentiating resum. formula?
$1 / q_{T}^{2}$, always from integration in Sudakov
α_{S} from $C^{(0)} \times B_{1}, \ldots$
α_{S}^{2} from $C^{(0)} \times B_{2}, \ldots$
...
$\alpha_{\mathrm{S}} L$ from A_{1} term in exponent
$\alpha_{S} L^{2}$ from A_{2} term in exponent
p_{T}^{H} spectrum:

- " $\mu_{\mathrm{HJ}-\mathrm{MiNLO}}=m_{H}, m_{H}, p_{T} "$
- At high $p_{T}, \mu_{\mathrm{HJ}-\mathrm{MiNLO}}=p_{T}$
- If $\beta=1 / 2$, NNLOPS $\rightarrow \mathrm{HJ}-\mathrm{MiNLO}$ at high p_{T}
- NNLO/NLO ~ 1.5, because HNNLO with $\mu=m_{H} / 2, \quad \mu_{\mathrm{HJ}-\mathrm{MiNLO}, \text { core }}=m_{H}$

