Matching NNLO calculations with parton showers in GENEVA

Simone Alioli PSR 2015
 Krakow - 27 May 2015

```
SA, C. Bauer, C. Berggren, A. Hornig, F. Tackmann, C. Vermilion, J. Walsh, S. Zuberi JHEP09(2013)120
SA, C. Bauer, C. Berggren, F. Tackmann, J. Walsh, S. Zuberi JHEP06(2014)089
SA, C. Bauer, F. Tackmann, J. Walsh (in preparation)
```


IR-safe event definition beyond LO

- Only generate "physical events", i.e. events to which one can assign an IR-finite cross section $\mathrm{d} \sigma^{\mathrm{MC}}$.
- Introduce a resolution parameter $\mathcal{T}_{N}, \mathcal{T}_{N} \rightarrow 0$ in the IR region. Emissions below $\mathcal{T}_{N}^{\text {cut }}$ are unresolved (i.e. integrated over) and the kinematic considered is the one of the event before the emission.
- An M-parton event is thus really defined as an N-jet event, $N \leq M$, fully differential in Φ_{N} (standard "jet-algo" not needed)
- Price to pay: power corrections in $\mathcal{T}_{N}^{\mathrm{cut}}$ due to PS projection.
- Advantage: vanish for IR-safe observables as $\mathcal{T}_{N}^{\text {cut }} \rightarrow 0$
- Iterating the procedure, the phase space is sliced into jet-bins

IR-safe event definition beyond LO

- Only generate "physical events", i.e. events to which one can assign an IR-finite cross section $\mathrm{d} \sigma^{\mathrm{MC}}$.
- Introduce a resolution parameter $\mathcal{T}_{N}, \mathcal{T}_{N} \rightarrow 0$ in the IR region. Emissions below $\mathcal{T}_{N}^{\text {cut }}$ are unresolved (i.e. integrated over) and the kinematic considered is the one of the event before the emission.
- An M-parton event is thus really defined as an N-jet event, $N \leq M$, fully differential in Φ_{N} (standard "jet-algo" not needed)
- Price to pay: power corrections in $\mathcal{T}_{N}^{\text {cut }}$ due to PS projection.
- Advantage: vanish for IR-safe observables as $\mathcal{T}_{N}^{\text {cut }} \rightarrow 0$
- Iterating the procedure, the phase space is sliced into jet-bins

Inclusive N-jet bin

$$
\frac{\mathrm{d} \sigma_{\geq N}^{\mathrm{MC}}}{\mathrm{~d} \Phi_{N}}
$$

$L_{1}>L_{1}$

IR-safe event definition beyond LO

- Only generate "physical events", i.e. events to which one can assign an IR-finite cross section $\mathrm{d} \sigma^{\mathrm{MC}}$.
- Introduce a resolution parameter $\mathcal{T}_{N}, \mathcal{T}_{N} \rightarrow 0$ in the IR region. Emissions below $\mathcal{T}_{N}^{\text {cut }}$ are unresolved (i.e. integrated over) and the kinematic considered is the one of the event before the emission.
- An M-parton event is thus really defined as an N-jet event, $N \leq M$, fully differential in Φ_{N} (standard "jet-algo" not needed)
- Price to pay: power corrections in $\mathcal{T}_{N}^{\text {cut }}$ due to PS projection.
- Advantage: vanish for IR-safe observables as $\mathcal{T}_{N}^{\text {cut }} \rightarrow 0$
- Iterating the procedure, the phase space is sliced into jet-bins

Inclusive $(N+1)$-jet bin

$$
\frac{\mathrm{d} \sigma_{\geq N+1}^{\mathrm{MC}}}{\mathrm{~d} \Phi_{N+1}}\left(\mathcal{T}_{N}>\mathcal{T}_{N}^{\mathrm{cut}}\right)
$$

IR-safe event definition beyond LO

- Only generate "physical events", i.e. events to which one can assign an IR-finite cross section $\mathrm{d} \sigma^{\mathrm{Mc}}$.
- Introduce a resolution parameter $\mathcal{T}_{N}, \mathcal{T}_{N} \rightarrow 0$ in the IR region. Emissions below $\mathcal{T}_{N}^{\text {cut }}$ are unresolved (i.e. integrated over) and the kinematic considered is the one of the event before the emission.
- An M-parton event is thus really defined as an N-jet event, $N \leq M$, fully differential in Φ_{N} (standard "jet-algo" not needed)
- Price to pay: power corrections in $\mathcal{T}_{N}^{\text {cut }}$ due to PS projection.
- Advantage: vanish for IR-safe observables as $\mathcal{T}_{N}^{\text {cut }} \rightarrow 0$
- Iterating the procedure, the phase space is sliced into jet-bins

Exclusive N-jet bin
$\frac{\mathrm{d} \sigma_{N}^{\mathrm{Mc}}}{\mathrm{d} \Phi_{N}}\left(\mathcal{T}_{N}^{\text {cut }}\right)$

Excl. $(N+1)$-jet
$\frac{\mathrm{d} \sigma_{N+1}^{\mathrm{Mc}}}{\mathrm{d} \Phi_{N+1}}\left(\mathcal{T}_{N}>\mathcal{T}_{N}^{\mathrm{cut}} ;\right.$
$\mathcal{T}_{N+1}^{\text {cut }}$)
$\mathcal{T}_{1}{ }^{\text {cut }}$

Inclusive ($N+2$)-jet bin

$$
\begin{array}{r}
\frac{\mathrm{d} \sigma_{\geq N+2}^{\mathrm{MC}}}{\mathrm{~d} \Phi_{N+2}}\left(\mathcal{T}_{N}>\mathcal{T}_{N}^{\mathrm{cut}}\right. \\
\left.\mathcal{T}_{N+1}>\mathcal{T}_{N+1}^{\mathrm{cut}}\right)
\end{array}
$$

N-Jettiness as jet-resolution variable

- Use N-jettiness as resolution parameter. Global physical observable with straightforward definitions for hadronic colliders, in terms of beams $q_{a, b}$ and jet-directions q_{j}

$$
\mathcal{T}_{N}=\frac{2}{Q} \sum_{k} \min \left\{q_{1} \cdot p_{k}, \ldots, q_{N} \cdot p_{k}\right\} \Rightarrow \mathcal{T}_{N}=\frac{2}{Q} \sum_{k} \min \left\{q_{a} \cdot p_{k}, q_{b} \cdot p_{k}, q_{1} \cdot p_{k}, \ldots, q_{N} \cdot p_{k}\right\}
$$

- N-jettiness has good factorization properties, IR safe and resummable at all orders. Resummation known at NNLL for any N in SCET [Stewart etal. 1004.2489,
- $\mathcal{T}_{N} \rightarrow 0$ for N pencil-like jets, $\mathcal{T}_{N} \gg 0$ spherical limit.
- $\mathcal{T}_{N}<\mathcal{T}_{N}^{\text {cut }}$ acts as jet-veto, e.g. CJV $\mathcal{T}_{0}=\frac{2}{Q} \sum_{k} \min \left\{q_{a} \cdot p_{k}, q_{b} \cdot p_{k}\right\}<\mathcal{T}_{0}^{\text {cut }}$

Perturbative accuracy

- Fixed NLO_{N+1} (MCFM,BH,...) is insufficient outside FO region
- Resummation OK in peak region, fails to describe FO region
- Lowest accuracy across the whole spectrum in MEPS: CKKW, MLM
- Standard NLO+PS (POWHEG, MC@NLO) improve total rate, not spectrum

Perturbative accuracy

(Notation: $\tau=\mathcal{T} / Q, L=\ln \tau, L_{\mathrm{cut}}=\ln \tau^{\mathrm{cut}}$)

$$
\begin{aligned}
& \begin{array}{lllll}
\sigma\left(\tau^{\text {cut }}\right) & \mathrm{LL} \\
\sigma & \mathrm{NLL}_{\sigma} & \mathrm{NLL}_{\sigma}^{\prime} & \mathrm{NNLL}_{\sigma}
\end{array} \\
& +\alpha_{s}\left[\frac{c_{11}}{2} L_{\mathrm{cut}}^{2}+c_{10} L_{\mathrm{cut}}+c_{1,-1}+\quad F_{1}\left(\tau^{\mathrm{cut}}\right)\right] \quad \mathrm{NLO}_{\mathrm{N}} \\
& +\alpha_{s}^{2}[\quad \vdots+\vdots \quad+\quad+\quad \vdots \\
& \begin{array}{rllllll}
\frac{1}{\sigma_{B}} \frac{\mathrm{~d} \sigma}{\mathrm{~d} \tau} & =\alpha_{s} / \tau\left[c_{11} L+c_{10}\right. & + & \left.\tau f_{1}(\tau)\right] & \mathrm{LO}_{\mathrm{N}+1} \\
& +\alpha_{s}^{2} / \tau\left[c_{23} L^{3}+c_{22} L^{2}\right. & +c_{21} L & + & c_{20} & + & \left.\tau f_{2}(\tau)\right]
\end{array} \mathrm{NLO}_{\mathrm{N}+1}
\end{aligned}
$$

- Lowest pert. accuracy everywhere requires $\mathrm{NLL}_{\mathcal{T}}+\mathrm{LO}_{N+1}$
- NLL because $\alpha_{\mathrm{s}}\left(\alpha_{\mathrm{s}}^{n} L^{2 n}\right) \approx \alpha_{\mathrm{s}}$ in the peak.
- Next-to-Lowest pert. accuracy everywhere requires $\mathrm{NNLL}_{\mathcal{T}}+\mathrm{NLO}_{N+1}$

Relation between cumulant and spectrum

- Consistency between $\mathrm{d} \sigma_{N}^{\mathrm{Mc}}, \mathrm{d} \sigma_{\geq N+1}^{\mathrm{MC}}$ is required to push $\mathcal{T}_{N}^{\text {cut }}$ dependence to high-enough order to ensure spectrum is total derivative of the cumulant

$$
\frac{\mathrm{d}}{\mathrm{~d} \mathcal{T}_{N}^{\text {cut }}}\left[\frac{\mathrm{d} \sigma_{N}^{\mathrm{MC}}}{\mathrm{~d} \Phi_{N}}\left(\mathcal{T}_{N}^{\text {cut }}\right)\right]_{\mathcal{T}_{N}^{\text {cut }}=\mathcal{T}_{N}}=\int \frac{\mathrm{d} \Phi_{N+1}}{\mathrm{~d} \Phi_{N}} \delta\left[\mathcal{T}_{N}-\mathcal{T}_{N}\left(\Phi_{N+1}\right)\right] \frac{\mathrm{d} \sigma_{\geq N+1}^{\mathrm{MC}}}{\mathrm{~d} \Phi_{N+1}}\left(\mathcal{T}_{N}>\mathcal{T}_{N}^{\text {cut }}\right)
$$

- If this is not satisfied, claimed accuracy might be spoiled by \log of $\mathcal{T}_{N}^{\text {cut }}$.

- Introduce an unphysical infrared regulator $\mathcal{T}^{\text {cut }}$ and separate inclusive and exclusive regions: $\mathcal{T}^{\mathrm{cut}}$ dependence drops out to the order we are working.

$$
\sigma_{\geq N}=\int \mathrm{d} \Phi_{N} \frac{\mathrm{~d} \sigma}{\mathrm{~d} \Phi_{N}}\left(\mathcal{T}^{\mathrm{cut}}\right)+\int \mathrm{d} \Phi_{N+1} \frac{\mathrm{~d} \sigma}{\mathrm{~d} \Phi_{N+1}}(\mathcal{T}) \theta\left(\mathcal{T}>\mathcal{T}^{\mathrm{cut}}\right)
$$

- Introduce an unphysical infrared regulator $\mathcal{T}^{\text {cut }}$ and separate inclusive and exclusive regions: $\mathcal{T}^{\text {cut }}$ dependence drops out to the order we are working.

$$
\sigma_{\geq N}=\int \mathrm{d} \Phi_{N} \frac{\mathrm{~d} \sigma}{\mathrm{~d} \Phi_{N}}\left(\mathcal{T}^{\mathrm{cut}}\right)+\int \mathrm{d} \Phi_{N+1} \frac{\mathrm{~d} \sigma}{\mathrm{~d} \Phi_{N+1}}(\mathcal{T}) \theta\left(\mathcal{T}>\mathcal{T}^{\mathrm{cut}}\right)
$$

- Cumulant: \mathcal{T} integral over exclusive N-jets bin up to $\mathcal{T}^{\text {cut }}$

$$
\frac{\mathrm{d} \sigma}{\mathrm{~d} \Phi_{N}}\left(\mathcal{T}^{\mathrm{cut}}\right)=\frac{\mathrm{d} \sigma^{\text {resum }}}{\mathrm{d} \Phi_{N}}\left(\mathcal{T}^{\mathrm{cut}}\right)+\left[\frac{\mathrm{d} \sigma^{\mathrm{FO}}}{\mathrm{~d} \Phi_{N}}\left(\mathcal{T}^{\mathrm{cut}}\right)-\left.\frac{\mathrm{d} \sigma^{\text {resum }}}{\mathrm{d} \Phi_{N}}\left(\mathcal{T}^{\mathrm{cut}}\right)\right|_{\mathrm{FO}}\right]
$$

- Introduce an unphysical infrared regulator $\mathcal{T}^{\text {cut }}$ and separate inclusive and exclusive regions: $\mathcal{T}^{\text {cut }}$ dependence drops out to the order we are working.

$$
\sigma_{\geq N}=\int \mathrm{d} \Phi_{N} \frac{\mathrm{~d} \sigma}{\mathrm{~d} \Phi_{N}}\left(\mathcal{T}^{\mathrm{cut}}\right)+\int \mathrm{d} \Phi_{N+1} \frac{\mathrm{~d} \sigma}{\mathrm{~d} \Phi_{N+1}}(\mathcal{T}) \theta\left(\mathcal{T}>\mathcal{T}^{\mathrm{cut}}\right)
$$

- Cumulant: \mathcal{T} integral over exclusive N-jets bin up to $\mathcal{T}^{\text {cut }}$

$$
\frac{\mathrm{d} \sigma}{\mathrm{~d} \Phi_{N}}\left(\mathcal{T}^{\mathrm{cut}}\right)=\frac{\mathrm{d} \sigma^{\text {resum }}}{\mathrm{d} \Phi_{N}}\left(\mathcal{T}^{\mathrm{cut}}\right)+\left[\frac{\mathrm{d} \sigma^{\mathrm{FO}}}{\mathrm{~d} \Phi_{N}}\left(\mathcal{T}^{\mathrm{cut}}\right)-\left.\frac{\mathrm{d} \sigma^{\text {resum }}}{\mathrm{d} \Phi_{N}}\left(\mathcal{T}^{\text {cut }}\right)\right|_{\mathrm{FO}}\right]
$$

- Spectrum: \mathcal{T} distribution of inclusive $N+1$-jets sample above $\mathcal{T}^{\text {cut }}$

$$
\frac{\mathrm{d} \sigma}{\mathrm{~d} \Phi_{N+1}}(\mathcal{T})=\frac{\mathrm{d} \sigma^{\mathrm{FO}}}{\mathrm{~d} \Phi_{N+1}}(\mathcal{T})\left[\frac{\mathrm{d} \sigma^{\text {resum }}}{\mathrm{d} \Phi_{N} \mathrm{~d} \mathcal{T}} /\left.\frac{\mathrm{d} \sigma^{\text {resum }}}{\mathrm{d} \Phi_{N} \mathrm{~d} \mathcal{T}}\right|_{\mathrm{FO}}\right]
$$

- Introduce an unphysical infrared regulator $\mathcal{T}^{\text {cut }}$ and separate inclusive and exclusive regions: $\mathcal{T}^{\text {cut }}$ dependence drops out to the order we are working.

$$
\sigma_{\geq N}=\int \mathrm{d} \Phi_{N} \frac{\mathrm{~d} \sigma}{\mathrm{~d} \Phi_{N}}\left(\mathcal{T}^{\mathrm{cut}}\right)+\int \mathrm{d} \Phi_{N+1} \frac{\mathrm{~d} \sigma}{\mathrm{~d} \Phi_{N+1}}(\mathcal{T}) \theta\left(\mathcal{T}>\mathcal{T}^{\mathrm{cut}}\right)
$$

- Cumulant: \mathcal{T} integral over exclusive N-jets bin up to $\mathcal{T}^{\text {cut }}$

$$
\frac{\mathrm{d} \sigma}{\mathrm{~d} \Phi_{N}}\left(\mathcal{T}^{\mathrm{cut}}\right)=\frac{\mathrm{d} \sigma^{\text {resum }}}{\mathrm{d} \Phi_{N}}\left(\mathcal{T}^{\mathrm{cut}}\right)+\left[\frac{\mathrm{d} \sigma^{\mathrm{FO}}}{\mathrm{~d} \Phi_{N}}\left(\mathcal{T}^{\mathrm{cut}}\right)-\left.\frac{\mathrm{d} \sigma^{\text {resum }}}{\mathrm{d} \Phi_{N}}\left(\mathcal{T}^{\text {cut }}\right)\right|_{\mathrm{FO}}\right]
$$

- Spectrum: \mathcal{T} distribution of inclusive $N+1$-jets sample above $\mathcal{T}^{\text {cut }}$

$$
\frac{\mathrm{d} \sigma}{\mathrm{~d} \Phi_{N+1}}(\mathcal{T})=\frac{\mathrm{d} \sigma^{\mathrm{FO}}}{\mathrm{~d} \Phi_{N+1}}(\mathcal{T})\left[\frac{\mathrm{d} \sigma^{\text {resum }}}{\mathrm{d} \Phi_{N} \mathrm{~d} \mathcal{T}} /\left.\frac{\mathrm{d} \sigma^{\text {resum }}}{\mathrm{d} \Phi_{N} \mathrm{~d} \mathcal{T}}\right|_{\mathrm{FO}}\right]
$$

- Correctly reproduces the expected limits for $\mathcal{T} \rightarrow 0$ and $\mathcal{T} \sim Q$.
- Introduce an unphysical infrared regulator $\mathcal{T}^{\text {cut }}$ and separate inclusive and exclusive regions: $\mathcal{T}^{\text {cut }}$ dependence drops out to the order we are working.

$$
\sigma_{\geq N}=\int \mathrm{d} \Phi_{N} \frac{\mathrm{~d} \sigma}{\mathrm{~d} \Phi_{N}}\left(\mathcal{T}^{\mathrm{cut}}\right)+\int \mathrm{d} \Phi_{N+1} \frac{\mathrm{~d} \sigma}{\mathrm{~d} \Phi_{N+1}}(\mathcal{T}) \theta\left(\mathcal{T}>\mathcal{T}^{\mathrm{cut}}\right)
$$

- Cumulant: \mathcal{T} integral over exclusive N-jets bin up to $\mathcal{T}^{\text {cut }}$

$$
\frac{\mathrm{d} \sigma}{\mathrm{~d} \Phi_{N}}\left(\mathcal{T}^{\mathrm{cut}}\right)=\frac{\mathrm{d} \sigma^{\text {resum }}}{\mathrm{d} \Phi_{N}}\left(\mathcal{T}^{\mathrm{cut}}\right)+\left[\frac{\mathrm{d} \sigma^{\mathrm{FO}}}{\mathrm{~d} \Phi_{N}}\left(\mathcal{T}^{\mathrm{cut}}\right)-\left.\frac{\mathrm{d} \sigma^{\text {resum }}}{\mathrm{d} \Phi_{N}}\left(\mathcal{T}^{\text {cut }}\right)\right|_{\mathrm{FO}}\right]
$$

- Spectrum: \mathcal{T} distribution of inclusive $N+1$-jets sample above $\mathcal{T}^{\text {cut }}$

$$
\frac{\mathrm{d} \sigma}{\mathrm{~d} \Phi_{N+1}}(\mathcal{T})=\frac{\mathrm{d} \sigma^{\mathrm{FO}}}{\mathrm{~d} \Phi_{N+1}}(\mathcal{T})\left[\frac{\mathrm{d} \sigma^{\text {resum }}}{\mathrm{d} \Phi_{N} \mathrm{~d} \mathcal{T}} /\left.\frac{\mathrm{d} \sigma^{\text {resum }}}{\mathrm{d} \Phi_{N} \mathrm{~d} \mathcal{T}}\right|_{\mathrm{FO}}\right]
$$

- Correctly reproduces the expected limits for $\mathcal{T} \rightarrow 0$ and $\mathcal{T} \sim Q$.
- Additive approach in spectrum better suited for Monte Carlo programs.

Additive matching

- Theoretically, both the multiplicative and additive approach are valid, the difference being higher order terms present in the multiplicative approach.

$$
\begin{gathered}
\frac{\mathrm{d} \sigma}{\mathrm{~d} \Phi_{N+1}}(\mathcal{T})=\frac{\mathrm{d} \sigma^{N N L L^{\prime}}}{\mathrm{d} \Phi_{N} \mathrm{~d} \mathcal{T}}\left[\frac{\mathrm{~d} \sigma^{N L O 1}}{\mathrm{~d} \Phi_{N+1}} /\left.\frac{\mathrm{d} \sigma^{N N L L^{\prime}}}{\mathrm{d} \Phi_{N} \mathrm{~d} \mathcal{T}}\right|_{N L O 1}\right] \\
\frac{\mathrm{d} \sigma}{\mathrm{~d} \Phi_{N+1}}(\mathcal{T})=\left[\frac{\mathrm{d} \sigma^{N N L L^{\prime}}}{\mathrm{d} \Phi_{N} \mathrm{~d} \mathcal{T}}-\left.\frac{\mathrm{d} \sigma^{N N L L^{\prime}}}{\mathrm{d} \Phi_{N} \mathrm{~d} \mathcal{T}}\right|_{N L O 1}\right]+\frac{\mathrm{d} \sigma^{N L O 1}}{\mathrm{~d} \Phi_{N+1}}
\end{gathered}
$$

- However, one must be careful these higher order terms do not spoil the accuracy after integration of the spectrum against the cumulant.

$$
\sigma_{\geq N}=\int \mathrm{d} \Phi_{N} \frac{\mathrm{~d} \sigma}{\mathrm{~d} \Phi_{N}}\left(\mathcal{T}^{\mathrm{cut}}\right)+\int \mathrm{d} \Phi_{N+1} \frac{\mathrm{~d} \sigma}{\mathrm{~d} \Phi_{N+1}}(\mathcal{T}) \theta\left(\mathcal{T}>\mathcal{T}^{\mathrm{cut}}\right)
$$

Example: $\alpha_{S} \mathcal{T}_{0}^{\text {cut }} \log \left(\mathcal{T}_{0}^{\text {cut }}\right) * \alpha_{s}^{2} \log \left(\mathcal{T}_{0}^{\text {cut }}\right)^{4} \approx \alpha_{S} \mathcal{T}_{0}^{\text {cut }} \log \left(\mathcal{T}_{0}^{\text {cut }}\right) * 1$

- Additive approach requires instead resummed and resummed expanded to be made more differential.

$$
\frac{\mathrm{d} \sigma^{N N L L^{\prime}}}{\mathrm{d} \Phi_{N} \mathrm{~d} \mathcal{T}} \Longrightarrow \frac{\mathrm{~d} \sigma^{N N L L^{\prime}}}{\mathrm{d} \Phi_{N+1}} \equiv \frac{\mathrm{~d} \sigma^{N N L L^{\prime}}}{\mathrm{d} \Phi_{N} \mathrm{~d} \mathcal{T}} P(z, \varphi)
$$

- Using splitting-function $P(z, \varphi)$ that integrates to 1 for each \mathcal{T}, automatically preserving \mathcal{T} distribution at given log accuracy .

Hadronic collisions: $p p \rightarrow\left(Z \rightarrow \ell^{+} \ell^{-}\right)+$jets

- To extend GENEVA approach to Drell-Yan we need :
- A factorizable and resummable resolution parameter: Beam Thrust $\mathcal{T}_{0}=\sum_{i} p_{T, i} e^{-\left|\eta_{i}-y_{V}\right|}$. Resummation known to NNLL

$$
\begin{aligned}
\frac{\mathrm{d} \sigma^{\mathrm{s}}}{\mathrm{~d} x_{a} \mathrm{~d} x_{b} \mathrm{~d} \mathcal{T}_{B}}= & \sigma_{B} \cdot H\left(\mu_{H}\right) \otimes U_{H}\left(\mu_{H}, \mu\right) \cdot B\left(x_{a}, \mu_{B_{a}}\right) \otimes U_{B}\left(\mu_{B_{a}}, \mu\right) \\
& \otimes B\left(x_{b}, \mu_{B_{b}}\right) \otimes U_{B}\left(\mu_{B_{b}}, \mu\right) \otimes S\left(\mathcal{T}_{B}, \mu_{S}\right) \otimes U_{S}\left(\mu_{S}, \mu\right)
\end{aligned}
$$

- We use NNLL Soft S, Beam B and Hard H functions. Evolution kernels U are obtained by RGE running at NNLL in SCET.

- Beam Functions convolutions with PDFs
- Preserving Beam Thrust and full V kinematics in $V+1 \rightarrow V+2$
- Efficient Pythia8 showering without changing \mathcal{T}_{0} for ISR
- Proper framework to deal with MPI
- Re-tuning of GENEVA+PYTHIA ...

Preserving the \mathcal{T}_{0} value in $V+1 \rightarrow V+2$ partons splittings

$$
\frac{\mathrm{d} \sigma^{\mathrm{NLO}}}{\mathrm{~d} \Phi_{1}}\left(\mathcal{T}_{0}\right)=\left[B_{1}\left(\Phi_{1}\right)+V_{1}\left(\Phi_{1}\right)\right] \delta\left(\mathcal{T}\left(\Phi_{1}\right)-\mathcal{T}_{0}\right)+\int \frac{\mathrm{d} \Phi_{2}}{\mathrm{~d} \Phi_{1}} B_{2}\left(\Phi_{2}\right) \delta\left(\mathcal{T}\left(\Phi_{1}\left(\Phi_{2}\right)\right)-\mathcal{T}_{0}\right)
$$

- When calculating NLO_{1} we must preserve $\mathrm{d} \Phi_{1}$. Cannot re-use existing calculations.
- Real emissions must preserve both $\mathrm{d}^{4} q \delta\left(q^{2}-M_{\ell^{+} \ell^{-}}^{2}\right)$ and

$$
\mathcal{T}_{0} \equiv \bar{p}_{T, 1} e^{-\left|y_{V}-\bar{\eta}_{1}\right|}=p_{T, 1} e^{-\left|y_{V}-\eta_{1}\right|}+p_{T, 2} e^{-\left|y_{V}-\eta_{2}\right|} .
$$

- Standard FKS or CS don't do this. They are design to preserve other quantities. We had to design our own map

- This map makes \mathcal{T}_{0}-subtraction local in \mathcal{T}_{0}. Better numerical convergence. Still averaged over $\mathrm{d} \Omega_{2}$

Scale profiles and theoretical uncertainties

- Theoretical uncertainties in resum. are evaluated by independently varying each μ.
- Range of variations is tuned to turn off the resummation before the nonsingular dominates (Y_{V}-dependent) and to respect SCET scaling $\mu_{H} \gtrsim \mu_{B} \gtrsim \mu_{S}$
- FO unc. are usual $\left\{2 \mu_{H}, \mu_{H} / 2\right\}$ variations.
- Final results added in quadrature.

Preserving the total cross-section

- Different advantages in resumming the cumulant (better cross-section and correlated unc.) or the spectrum (better profiles in trans and tail region and better point-by-point unc.)
- The two approaches only agree at all order. When the series is truncated results are incompatible.
- Similar problem in preserving total xsec in matched QCD resummation solved with ad-hoc smoother.
- We add higher-order term to the spectrum such that integral get closer to cumulant. Add the exact difference to central to restore it completely.
- Correlations now enforced by hand, automatic method to select profile scale enforcing correlations under investigation.

[slide from J. Walsh]
cumulant vs. integrated spectrum

Preserving the total cross-section

- Different advantages in resumming the cumulant (better cross-section and correlated unc.) or the spectrum (better profiles in trans and tail region and better point-by-point unc.)
- The two approaches only agree at all order. When the series is truncated results are incompatible.
- Similar problem in preserving total xsec in matched QCD resummation solved with ad-hoc smoother.
- We add higher-order term to the spectrum such that integral get closer to cumulant. Add the exact difference to central to restore it completely.
- Correlations now enforced by hand, automatic method to select profile scale enforcing correlations under investigation.

[slide from J. Walsh]
cumulant vs. integrated σ-improved spectrum

Combining fully exclusive NNLO with LL resummation.

- We have worked out analytically the ingredients (and the recipe) needed to achieve NNLO accuracy in LL accurate SMC.

Combining fully exclusive NNLO with LL resummation.

- We have worked out analytically the ingredients (and the recipe) needed to achieve NNLO accuracy in LL accurate SMC.

$$
\frac{\mathrm{d} \sigma \sum_{N+1}^{\mathrm{MC}}}{\mathrm{~d} \Phi_{N+1}}\left(\mathcal{T}_{N}>\mathcal{T}_{N}^{\text {cut }}\right)
$$

[1311.0286]

$$
\frac{\mathrm{d} \sigma_{N}^{\mathrm{Mc}}}{\mathrm{~d} \Phi_{N}}\left(\mathcal{T}_{N}^{\text {cut }}\right), \overbrace{\frac{\mathrm{d} \sigma_{N+1}^{\mathrm{MC}}}{\mathrm{~d} \Phi_{N+1}}\left(\mathcal{T}_{N}>\mathcal{T}_{N}^{\text {cut }} ; \mathcal{T}_{N+1}^{\text {cut }}\right), \quad \frac{\mathrm{d} \sigma_{\geq N+2}^{\mathrm{MC}}}{\mathrm{~d} \Phi_{N+2}}\left(\mathcal{T}_{N}>\mathcal{T}_{N}^{\text {cut }}, \mathcal{T}_{N+1}>\mathcal{T}_{N+1}^{\text {cut }}\right)}
$$

Combining fully exclusive NNLO with LL resummation.

- We have worked out analytically the ingredients (and the recipe) needed to achieve NNLO accuracy in LL accurate SMC.

$$
\frac{\mathrm{d} \sigma_{\sum N+1}^{\mathrm{MC}}}{\mathrm{~d} \Phi_{N+1}}\left(\mathcal{T}_{N}>\mathcal{T}_{N}^{\text {cut }}\right)
$$

[1311.0286]

$$
\frac{\mathrm{d} \sigma_{N}^{\mathrm{Mc}}}{\mathrm{~d} \Phi_{N}}\left(\mathcal{T}_{N}^{\text {cut }}\right), \overbrace{\frac{\mathrm{d} \sigma_{N+1}^{\mathrm{MC}}}{\mathrm{~d} \Phi_{N+1}}\left(\mathcal{T}_{N}>\mathcal{T}_{N}^{\text {cut }} ; \mathcal{T}_{N+1}^{\text {cut }}\right), \quad \frac{\mathrm{d} \sigma_{\geq N+2}^{\mathrm{Mc}}}{\mathrm{~d} \Phi_{N+2}}\left(\mathcal{T}_{N}>\mathcal{T}_{N}^{\text {cut }}, \mathcal{T}_{N+1}>\mathcal{T}_{N+1}^{\text {cut }}\right)}
$$

- Exclusive N-jet cross section

$$
\frac{\mathrm{d} \sigma_{N}^{\mathrm{Mc}}}{\mathrm{~d} \Phi_{N}}\left(\mathcal{T}_{N}^{\text {cut }}\right)=\underbrace{\frac{\mathrm{d} \sigma_{\geq N}^{C}}{\mathrm{~d} \Phi_{N}} \Delta_{N}\left(\Phi_{N} ; \mathcal{T}_{N}^{\text {cut }}\right)}_{\text {resummed }}+\underbrace{\frac{\mathrm{d} \sigma_{N}^{C-S}}{\mathrm{~d} \Phi_{N}}\left(\mathcal{T}_{N}^{\text {cut }}\right)}_{\text {FO singular matching }}+\underbrace{\frac{\mathrm{d} \sigma_{N}^{B-C}}{\mathrm{~d} \Phi_{N}}\left(\mathcal{T}_{N}^{\text {cut }}\right)}_{\begin{array}{c}
\text { FO nonsingular } \\
\text { matching }
\end{array}}
$$

Combining fully exclusive NNLO with LL resummation.

- We have worked out analytically the ingredients (and the recipe) needed to achieve NNLO accuracy in LL accurate SMC.

$$
\frac{\mathrm{d} \sigma_{\sum N+1}^{\mathrm{MC}}}{\mathrm{~d} \mathrm{\Phi} N+1}\left(\mathcal{T}_{N}>\mathcal{T}_{N}^{\mathrm{cut}}\right)
$$

[1311.0286]

$$
\frac{\mathrm{d} \sigma_{N}^{\mathrm{Mc}}}{\mathrm{~d} \Phi_{N}}\left(\mathcal{T}_{N}^{\text {cut }}\right), \overbrace{\frac{\mathrm{d} \sigma_{N+1}^{\mathrm{MC}}}{\mathrm{~d} \Phi_{N+1}}\left(\mathcal{T}_{N}>\mathcal{T}_{N}^{\text {cut }} ; \mathcal{T}_{N+1}^{\text {cut }}\right), \quad \frac{\mathrm{d} \sigma_{\geq N+2}^{\mathrm{Mc}}}{\mathrm{~d} \Phi_{N+2}}\left(\mathcal{T}_{N}>\mathcal{T}_{N}^{\text {cut }}, \mathcal{T}_{N+1}>\mathcal{T}_{N+1}^{\text {cut }}\right)}
$$

- Exclusive N-jet cross section

$$
\frac{\mathrm{d} \sigma_{N}^{\mathrm{Mc}}}{\mathrm{~d} \Phi_{N}}\left(\mathcal{T}_{N}^{\text {cut }}\right)=\underbrace{\frac{\mathrm{d} \sigma_{\geq N}^{C}}{\mathrm{~d} \Phi_{N}} \Delta_{N}\left(\Phi_{N} ; \mathcal{T}_{N}^{\text {cut }}\right)}_{\text {resummed }}+\underbrace{\frac{\mathrm{d} \sigma_{N}^{C-S}}{\mathrm{~d} \Phi_{N}}\left(\mathcal{T}_{N}^{\text {cut }}\right)}_{\text {FO singular matching }}+\underbrace{\frac{\mathrm{d} \sigma_{N}^{B-C}}{\mathrm{~d} \Phi_{N}}\left(\mathcal{T}_{N}^{\text {cut }}\right)}_{\begin{array}{c}
\text { FO nonsingular } \\
\text { matching }
\end{array}}
$$

- Singular part of NNLO cross-section, contains all $\log \left(\mathcal{T}_{N}^{\text {cut }}\right)$

Combining fully exclusive NNLO with LL resummation.

- We have worked out analytically the ingredients (and the recipe) needed to achieve NNLO accuracy in LL accurate SMC.

$$
\frac{\mathrm{d} \sigma_{\geq N+1}^{\mathrm{MC}}}{\mathrm{~d} \Phi_{N+1}}\left(\mathcal{T}_{N}>\mathcal{T}_{N}^{\mathrm{cut}}\right)
$$

[1311.0286]

$$
\frac{\mathrm{d} \sigma_{N}^{\mathrm{Mc}}}{\mathrm{~d} \Phi_{N}}\left(\mathcal{T}_{N}^{\text {cut }}\right), \overbrace{\frac{\mathrm{d} \sigma_{N+1}^{\mathrm{MC}}}{\mathrm{~d} \Phi_{N+1}}\left(\mathcal{T}_{N}>\mathcal{T}_{N}^{\text {cut }} ; \mathcal{T}_{N+1}^{\text {cut }}\right), \quad \frac{\mathrm{d} \sigma_{\geq N+2}^{\mathrm{MC}}}{\mathrm{~d} \Phi_{N+2}}\left(\mathcal{T}_{N}>\mathcal{T}_{N}^{\text {cut }}, \mathcal{T}_{N+1}>\mathcal{T}_{N+1}^{\text {cut }}\right)}
$$

- Exclusive N-jet cross section

$$
\frac{\mathrm{d} \sigma_{N}^{\mathrm{Mc}}}{\mathrm{~d} \Phi_{N}}\left(\mathcal{T}_{N}^{\text {cut }}\right)=\underbrace{\frac{\mathrm{d} \sigma_{\geq N}^{C}}{\mathrm{~d} \Phi_{N}} \Delta_{N}\left(\Phi_{N} ; \mathcal{T}_{N}^{\text {cut }}\right)}_{\text {resummed }}+\underbrace{\frac{\mathrm{d} \sigma_{N}^{C-S}}{\mathrm{~d} \Phi_{N}}\left(\mathcal{T}_{N}^{\text {cut }}\right)}_{\text {FO singular matching }}+\underbrace{\frac{\mathrm{d} \sigma_{N}^{B-C}}{\mathrm{~d} \Phi_{N}}\left(\mathcal{T}_{N}^{\text {cut }}\right)}_{\begin{array}{c}
\text { FO nonsingular } \\
\text { matching }
\end{array}}
$$

- Singular part of NNLO cross-section, contains all $\log \left(\mathcal{T}_{N}^{\text {cut }}\right)$
- Sudakov factor, provides (at least) LL resummation of $\mathcal{T}_{N}^{\text {cut }}$

$$
\Delta_{N}\left(\Phi_{N} ; \mathcal{T}_{N}^{\text {cut }}\right)=\exp \left\{-\int \frac{\mathrm{d} \Phi_{N+1}}{\mathrm{~d} \Phi_{N}} \frac{S_{N+1}\left(\Phi_{N+1}\right)}{B_{N}\left(\hat{\Phi}_{N}\right)} \theta\left[\mathcal{T}_{N}\left(\Phi_{N+1}\right)>\mathcal{T}_{N}^{\text {cut }}\right]\right\}
$$

Combining fully exclusive NNLO with LL resummation.

- We have worked out analytically the ingredients (and the recipe) needed to achieve NNLO accuracy in LL accurate SMC.

$$
\frac{\mathrm{d} \sigma_{\sum N+1}^{\mathrm{MC}}}{\mathrm{~d} \Phi_{N+1}}\left(\mathcal{T}_{N}>\mathcal{T}_{N}^{\text {cut }}\right)
$$

[1311.0286]

$$
\frac{\mathrm{d} \sigma_{N}^{\mathrm{Mc}}}{\mathrm{~d} \Phi_{N}}\left(\mathcal{T}_{N}^{\text {cut }}\right), \overbrace{\frac{\mathrm{d} \sigma_{N+1}^{\mathrm{MC}}}{\mathrm{~d} \Phi_{N+1}}\left(\mathcal{T}_{N}>\mathcal{T}_{N}^{\text {cut }} ; \mathcal{T}_{N+1}^{\text {cut }}\right), \quad \frac{\mathrm{d} \sigma_{\geq N+2}^{\mathrm{MC}}}{\mathrm{~d} \Phi_{N+2}}\left(\mathcal{T}_{N}>\mathcal{T}_{N}^{\text {cut }}, \mathcal{T}_{N+1}>\mathcal{T}_{N+1}^{\text {cut }}\right)}
$$

- Exclusive N-jet cross section

$$
\frac{\mathrm{d} \sigma_{N}^{\mathrm{MC}}}{\mathrm{~d} \Phi_{N}}\left(\mathcal{T}_{N}^{\text {cut }}\right)=\underbrace{\frac{\mathrm{d} \sigma_{\geq N}^{C}}{\mathrm{~d} \Phi_{N}} \Delta_{N}\left(\Phi_{N} ; \mathcal{T}_{N}^{\text {cut }}\right)}_{\text {resummed }}+\underbrace{\frac{\mathrm{d} \sigma_{N}^{C-S}}{\mathrm{~d} \Phi_{N}}\left(\mathcal{T}_{N}^{\text {cut }}\right)}_{\text {FO singular matching }}+\underbrace{\frac{\mathrm{d} \sigma_{N}^{B-C}}{\mathrm{~d} \Phi_{N}}\left(\mathcal{T}_{N}^{\text {cut }}\right)}_{\begin{array}{c}
\text { FO nonsingular } \\
\text { matching }
\end{array}}
$$

- Singular part of NNLO cross-section, contains all $\log \left(\mathcal{T}_{N}^{\text {cut }}\right)$
- Sudakov factor, provides LL resummation of $\mathcal{T}_{N}^{\text {cut }}$
- Corrects singular $\mathcal{T}_{N}^{\text {cut }}$ dependence from Sudakov expansion.

Combining fully exclusive NNLO with LL resummation.

- We have worked out analytically the ingredients (and the recipe) needed to achieve NNLO accuracy in LL accurate SMC.

$$
\frac{\mathrm{d} \sigma_{\sum N+1}^{\mathrm{MC}}}{\mathrm{~d} \mathrm{\Phi} N+1}\left(\mathcal{T}_{N}>\mathcal{T}_{N}^{\mathrm{cut}}\right)
$$

[1311.0286]

$$
\frac{\mathrm{d} \sigma_{N}^{\mathrm{Mc}}}{\mathrm{~d} \Phi_{N}}\left(\mathcal{T}_{N}^{\text {cut }}\right), \overbrace{\frac{\mathrm{d} \sigma_{N+1}^{\mathrm{MC}}}{\mathrm{~d} \Phi_{N+1}}\left(\mathcal{T}_{N}>\mathcal{T}_{N}^{\text {cut }} ; \mathcal{T}_{N+1}^{\text {cut }}\right), \quad \frac{\mathrm{d} \sigma_{\geq N+2}^{\mathrm{MC}}}{\mathrm{~d} \Phi_{N+2}}\left(\mathcal{T}_{N}>\mathcal{T}_{N}^{\text {cut }}, \mathcal{T}_{N+1}>\mathcal{T}_{N+1}^{\text {cut }}\right)}
$$

- Exclusive N-jet cross section

$$
\frac{\mathrm{d} \sigma_{N}^{\mathrm{Mc}}}{\mathrm{~d} \Phi_{N}}\left(\mathcal{T}_{N}^{\text {cut }}\right)=\underbrace{\frac{\mathrm{d} \sigma_{\geq N}^{C}}{\mathrm{~d} \Phi_{N}} \Delta_{N}\left(\Phi_{N} ; \mathcal{T}_{N}^{\text {cut }}\right)}_{\text {resummed }}+\underbrace{\frac{\mathrm{d} \sigma_{N}^{C-S}}{\mathrm{~d} \Phi_{N}}\left(\mathcal{T}_{N}^{\text {cut }}\right)}_{\text {FO singular matching }}+\underbrace{\frac{\mathrm{d} \sigma_{N}^{B-C}}{\mathrm{~d} \Phi_{N}}\left(\mathcal{T}_{N}^{\text {cut }}\right)}_{\begin{array}{c}
\text { FO nonsingular } \\
\text { matching }
\end{array}}
$$

- Singular part of NNLO cross-section, contains all $\log \left(\mathcal{T}_{N}^{\text {cut }}\right)$
- Sudakov factor, provides LL resummation of $\mathcal{T}_{N}^{\text {cut }}$
- Corrects singular $\mathcal{T}_{N}^{\text {cut }}$ dependence from Sudakov expansion.
- Corrects the finite terms to the exact inclusive cross section.

Combining fully exclusive NNLO with LL resummation.

- We have worked out analytically the ingredients (and the recipe) needed to achieve NNLO accuracy in LL accurate SMC.

$$
\frac{\mathrm{d} \sigma_{\sum N+1}^{\mathrm{MC}}}{\mathrm{~d} \Phi_{N+1}}\left(\mathcal{T}_{N}>\mathcal{T}_{N}^{\text {cut }}\right)
$$

[1311.0286]

$$
\frac{\mathrm{d} \sigma_{N}^{\mathrm{Mc}}}{\mathrm{~d} \Phi_{N}}\left(\mathcal{T}_{N}^{\text {cut }}\right), \overbrace{\frac{\mathrm{d} \sigma_{N+1}^{\mathrm{MC}}}{\mathrm{~d} \Phi_{N+1}}\left(\mathcal{T}_{N}>\mathcal{T}_{N}^{\text {cut }} ; \mathcal{T}_{N+1}^{\text {cut }}\right), \quad \frac{\mathrm{d} \sigma_{\geq N+2}^{\mathrm{Mc}}}{\mathrm{~d} \Phi_{N+2}}\left(\mathcal{T}_{N}>\mathcal{T}_{N}^{\text {cut }}, \mathcal{T}_{N+1}>\mathcal{T}_{N+1}^{\text {cut }}\right)}
$$

- Exclusive N-jet cross section (NNLO+LL)

$$
\frac{\mathrm{d} \sigma_{N}^{\text {Mc }}}{\mathrm{d} \Phi_{N}}\left(\mathcal{T}_{N}^{\text {cut }}\right)=\underbrace{\frac{\mathrm{d} \sigma_{\geq N}^{C}}{\mathrm{~d} \Phi_{N}} \Delta_{N}\left(\Phi_{N} ; \mathcal{T}_{N}^{\text {cut }}\right)}_{\text {resummed }}+\underbrace{\frac{\mathrm{d} \sigma_{N}^{C-S}}{\mathrm{~d} \Phi_{N}}\left(\mathcal{T}_{N}^{\text {cut }}\right)}_{\text {FO singular matching }}+\underbrace{\frac{\mathrm{d} \sigma_{N}^{B-C}}{\mathrm{~d} \Phi_{N}}\left(\mathcal{T}_{N}^{\text {cut }}\right)}_{\begin{array}{c}
\text { FO nonsingular } \\
\text { matching }
\end{array}}
$$

Combining fully exclusive NNLO with LL resummation.

- We have worked out analytically the ingredients (and the recipe) needed to achieve NNLO accuracy in LL accurate SMC. $\frac{\mathrm{d}_{\mathrm{m}}^{\mathrm{mc}} \mathrm{N}+1}{\mathrm{~d} \Phi_{N+1}}\left(\mathcal{T}_{N}>T_{N}^{\text {cut }}\right)$
[1311.0286]

$$
\frac{\mathrm{d} \sigma_{N}^{\mathrm{Mc}}}{\mathrm{~d} \Phi_{N}}\left(\mathcal{T}_{N}^{\mathrm{cut}}\right), \quad \overbrace{\mathrm{d} \sigma_{N+1}^{\mathrm{MC}}}^{\mathrm{d} \Phi_{N+1}}\left(\mathcal{T}_{N}>\mathcal{T}_{N}^{\mathrm{cut}} ; \mathcal{T}_{N+1}^{\mathrm{cut}}\right), \quad \frac{\mathrm{d} \sigma_{\geq N+2}^{\mathrm{Mc}}}{\mathrm{~d} \Phi_{N+2}}\left(\mathcal{T}_{N}>\mathcal{T}_{N}^{\mathrm{cut}}, \mathcal{T}_{N+1}>\mathcal{T}_{N+1}^{\mathrm{cut}}\right)
$$

- Exclusive N-jet cross section (NNLO+LL)

$$
\frac{\mathrm{d} \sigma_{N}^{\mathrm{MC}}}{\mathrm{~d} \Phi_{N}}\left(\mathcal{T}_{N}^{\text {cut }}\right)=\underbrace{\frac{\mathrm{d} \sigma_{\geq N}^{C}}{\frac{\mathrm{~d} \Phi_{N}}{}} \Delta_{N}\left(\Phi_{N} ; \mathcal{T}_{N}^{\mathrm{cut}}\right)}_{\text {resummed }}+\underbrace{\frac{\mathrm{d} \sigma_{N}^{C-S}}{\mathrm{~d} \Phi_{N}}\left(\mathcal{T}_{N}^{\text {cut }}\right)}_{\text {FO singular matching }}+\underbrace{\frac{\mathrm{d} \sigma_{N}^{B-C}}{\mathrm{~d} \Phi_{N}}\left(\mathcal{T}_{N}^{\text {cut }}\right)}_{\begin{array}{c}
\text { FO nonsingular } \\
\text { matching }
\end{array}}
$$

- Inclusive $N+1$-jet cross section (NLO+LL)

$$
\begin{aligned}
\frac{\mathrm{d} \sigma_{\geq N+1}^{\mathrm{MC}}}{\mathrm{~d} \Phi_{N+1}}\left(\mathcal{T}_{N}>\mathcal{T}_{N}^{\mathrm{cut}}\right)= & \left.\frac{\mathrm{d} \sigma_{\geq N}^{C}}{\mathrm{~d} \Phi_{N}}\right|_{\Phi_{N}=\hat{\Phi}_{N}} \frac{S_{N+1}\left(\Phi_{N+1}\right)}{B_{N}\left(\hat{\Phi}_{N}\right)} \Delta_{N}\left(\hat{\Phi}_{N} ; \mathcal{T}_{N}\right) \theta\left(\mathcal{T}_{N}>\mathcal{T}_{N}^{\text {cut }}\right) \\
& +\frac{\mathrm{d} \sigma_{\geq N+1}^{C-S}}{\mathrm{~d} \Phi_{N+1}}\left(\mathcal{T}_{N}>\mathcal{T}_{N}^{\text {cut }}\right)+\frac{\mathrm{d} \sigma_{\geq N+1}^{B-C}}{\mathrm{~d} \Phi_{N+1}}\left(\mathcal{T}_{N}>\mathcal{T}_{N}^{\text {cut }}\right)
\end{aligned}
$$

Combining fully exclusive NNLO with LL resummation.

- We have worked out analytically the ingredients (and the recipe) needed to achieve NNLO accuracy in LL accurate SMC. $\frac{d \sigma^{2} \mathbb{N + 1}}{d \Phi_{N+1}}\left(\mathcal{T}_{N}>\mathcal{T}_{N}^{\text {cut }}\right)$
[1311.0286]

$$
\frac{\mathrm{d} \sigma_{N}^{\mathrm{Mc}}}{\mathrm{~d} \Phi_{N}}\left(\mathcal{T}_{N}^{\text {cut }}\right), \overbrace{\frac{\mathrm{d} \sigma_{N+1}^{\mathrm{Mc}}}{\mathrm{~d} \Phi_{N+1}}\left(\mathcal{T}_{N}>\mathcal{T}_{N}^{\text {cut }} ; \mathcal{T}_{N+1}^{\text {cut }}\right), \quad \frac{\mathrm{d} \sigma_{\geq N+2}^{\mathrm{MC}}}{\mathrm{~d} \Phi_{N+2}}\left(\mathcal{T}_{N}>\mathcal{T}_{N}^{\text {cut }}, \mathcal{T}_{N+1}>\mathcal{T}_{N+1}^{\text {cut }}\right)}
$$

- Exclusive N-jet cross section (NNLO+LL)

$$
\frac{\mathrm{d} \sigma_{N}^{\mathrm{Mc}}}{\mathrm{~d} \Phi_{N}}\left(\mathcal{T}_{N}^{\text {cut }}\right)=\underbrace{\frac{\mathrm{d} \sigma_{\geq N}^{C}}{\mathrm{~d} \Phi_{N}} \Delta_{N}\left(\Phi_{N} ; \mathcal{T}_{N}^{\text {cut }}\right)}_{\text {resummed }}+\underbrace{\frac{\mathrm{d} \sigma_{N}^{C-S}}{\mathrm{~d} \Phi_{N}}\left(\mathcal{T}_{N}^{\text {cut }}\right)}_{\text {FO singular matching }}+\underbrace{\frac{\mathrm{d} \sigma_{N}^{B-C}}{\mathrm{~d} \Phi_{N}}\left(\mathcal{T}_{N}^{\text {cut }}\right)}_{\begin{array}{c}
\text { FO nonsingular } \\
\text { matching }
\end{array}}
$$

- Inclusive $N+1$-jet cross section (NLO+LL)

$$
\begin{aligned}
\frac{\mathrm{d} \sigma_{\geq N+1}^{\mathrm{MC}}}{\mathrm{~d} \Phi_{N+1}}\left(\mathcal{T}_{N}>\mathcal{T}_{N}^{\mathrm{cut}}\right)= & \left.\frac{\mathrm{d} \sigma_{\geq N}^{C}}{\mathrm{~d} \Phi_{N}}\right|_{\Phi_{N}=\hat{\Phi}_{N}} \frac{S_{N+1}\left(\Phi_{N+1}\right)}{B_{N}\left(\hat{\Phi}_{N}\right)} \Delta_{N}\left(\hat{\Phi}_{N} ; \mathcal{T}_{N}\right) \theta\left(\mathcal{T}_{N}>\mathcal{T}_{N}^{\mathrm{cut}}\right) \\
& +\frac{\mathrm{d} \sigma_{\geq N+1}^{C-S}}{\mathrm{~d} \Phi_{N+1}}\left(\mathcal{T}_{N}>\mathcal{T}_{N}^{\mathrm{cut}}\right)+\frac{\mathrm{d} \sigma_{\geq N+1}^{B-C}}{\mathrm{~d} \Phi_{N+1}}\left(\mathcal{T}_{N}>\mathcal{T}_{N}^{\text {cut }}\right)
\end{aligned}
$$

- Inclusive N-jet cross-section correct by construction, since they are related by exact derivative.

Combining fully exclusive NNLO with LL resummation.

- Split up inclusive $N+1$-jet cross section using resolution scale $\mathcal{T}_{N+1}^{\text {cut }}$
- Exclusive $N+1$-jet cross section (NLO+LL)
resummed

$$
\left.\left.\begin{array}{rl}
\frac{\mathrm{d} \sigma_{N+1}^{\mathrm{MC}}}{\mathrm{~d} \Phi_{N+1}}\left(\mathcal{T}_{N}\right. & \left.>\mathcal{T}_{N}^{\text {cut }} ; \mathcal{T}_{N+1}^{\text {cut }}\right)=\overbrace{\frac{\mathrm{d} \sigma_{\geq N+1}^{\prime C}}{\mathrm{~d} \Phi_{N+1}}\left(\mathcal{T}_{N}>\mathcal{T}_{N}^{\text {cut }}\right) \Delta_{N+1}\left(\Phi_{N+1} ; \mathcal{T}_{N+1}^{\text {cut }}\right)}) \\
+ & (\underbrace{\frac{\mathrm{d} \sigma_{N+1}^{C-S}}{\mathrm{~d} \Phi_{N+1}}}_{\text {FO singular }}+\underbrace{\frac{\mathrm{d} \sigma_{N+1}^{B-C}}{\mathrm{~d} \Phi_{N+1}}}_{\text {matching }})\left(\mathcal{T}_{N}>\mathcal{T}_{N}^{\text {matching }}\right.
\end{array}\right) ; \mathcal{T}_{N+1}^{\text {cut }}\right) .
$$

- Inclusive $N+2$-jet cross section (LO+LL)

$$
\begin{aligned}
& \frac{\mathrm{d} \sigma_{\geq N+2}^{\mathrm{MC}}}{\mathrm{~d} \Phi_{N+2}}\left(\mathcal{T}_{N}>\mathcal{T}_{N}^{\text {cut }}, \mathcal{T}_{N+1}>\mathcal{T}_{N+1}^{\text {cut }}\right)=\left.\frac{\mathrm{d} \sigma_{\geq N+1}^{\prime C}}{\mathrm{~d} \Phi_{N+1}}\left(\mathcal{T}_{N}>\mathcal{T}_{N}^{\text {cut }}\right)\right|_{\Phi_{N+1}=\hat{\Phi}_{N+1}} \\
& \times \frac{S_{N+2}\left(\Phi_{N+2}\right)}{B_{N+1}\left(\hat{\Phi}_{N+1}\right)} \Delta_{N+1}\left(\hat{\Phi}_{N+1} ; \mathcal{T}_{N+1}\right) \theta\left(\mathcal{T}_{N+1}>\mathcal{T}_{N+1}^{\text {cut }}\right) \\
&+\left(\frac{\mathrm{d} \sigma_{\geq N+2}^{C-S}}{\mathrm{~d} \Phi_{N+2}}+\frac{\mathrm{d} \sigma_{\geq N+2}^{B-C}}{\mathrm{~d} \Phi_{N+2}}\right)\left(\mathcal{T}_{N}>\mathcal{T}_{N}^{\text {cut }}, \mathcal{T}_{N+1}>\mathcal{T}_{N+1}^{\text {cut }}\right)
\end{aligned}
$$

Adding the parton shower.

- Use the NNLO+LL fully-exclusive results $\mathrm{d} \sigma_{N}^{\mathrm{Mc}}, \mathrm{d} \sigma_{N+1}^{\mathrm{Mc}}, \mathrm{d} \sigma_{>N+2}^{\mathrm{MC}}$ as event weights and their kinematics as starting point for showering.

Adding the parton shower.

- Use the NNLO+LL fully-exclusive results $\mathrm{d} \sigma_{N}^{\mathrm{Mc}}, \mathrm{d} \sigma_{N+1}^{\mathrm{Mc}}, \mathrm{d} \sigma_{>N+2}^{\mathrm{Mc}}$ as event weights and their kinematics as starting point for showering.
- Three conditions have to be satisfied for the shower matching:

Adding the parton shower.

- Use the NNLO+LL fully-exclusive results $\mathrm{d} \sigma_{N}^{\mathrm{Mc}}, \mathrm{d} \sigma_{N+1}^{\mathrm{Mc}}, \mathrm{d} \sigma_{>N+2}^{\mathrm{MC}}$ as event weights and their kinematics as starting point for showering.
- Three conditions have to be satisfied for the shower matching:

1) Any exclusive observable must be (at least) LL in resummation regions; maintain logarithmic accuracy of \mathcal{T}_{N} and \mathcal{T}_{N+1} from MC cross sections.

Adding the parton shower.

- Use the NNLO+LL fully-exclusive results $\mathrm{d} \sigma_{N}^{\mathrm{Mc}}, \mathrm{d} \sigma_{N+1}^{\mathrm{Mc}}, \mathrm{d} \sigma_{>N+2}^{\mathrm{MC}}$ as event weights and their kinematics as starting point for showering.
- Three conditions have to be satisfied for the shower matching:

1) Any exclusive observable must be (at least) LL in resummation regions; maintain logarithmic accuracy of \mathcal{T}_{N} and \mathcal{T}_{N+1} from MC cross sections.
2) NNLO accuracy for N-jet obs. , NLO for $N+1$-jet and LO for $N+2$-jet, in respective resolved regions. No FO requirements for unresolved regions, only filled by shower.

Adding the parton shower.

- Use the NNLO+LL fully-exclusive results $\mathrm{d} \sigma_{N}^{\mathrm{Mc}}, \mathrm{d} \sigma_{N+1}^{\mathrm{Mc}}, \mathrm{d} \sigma_{>N+2}^{\mathrm{MC}}$ as event weights and their kinematics as starting point for showering.
- Three conditions have to be satisfied for the shower matching:

1) Any exclusive observable must be (at least) LL in resummation regions; maintain logarithmic accuracy of \mathcal{T}_{N} and \mathcal{T}_{N+1} from MC cross sections.
2) NNLO accuracy for N-jet obs. , NLO for $N+1$-jet and LO for $N+2$-jet, in respective resolved regions. No FO requirements for unresolved regions, only filled by shower.
3) Any leftover dependence on $\mathcal{T}_{N}^{\text {cut }}$ and $\mathcal{T}_{N+1}^{\text {cut }}$ only enters at higher orders.

Adding the parton shower.

- Use the NNLO+LL fully-exclusive results $\mathrm{d} \sigma_{N}^{\mathrm{Mc}}, \mathrm{d} \sigma_{N+1}^{\mathrm{Mc}}, \mathrm{d} \sigma_{>N+2}^{\mathrm{MC}}$ as event weights and their kinematics as starting point for showering.
- Three conditions have to be satisfied for the shower matching:

1) Any exclusive observable must be (at least) LL in resummation regions; maintain logarithmic accuracy of \mathcal{T}_{N} and \mathcal{T}_{N+1} from MC cross sections.
2) NNLO accuracy for N-jet obs. , NLO for $N+1$-jet and LO for $N+2$-jet, in respective resolved regions. No FO requirements for unresolved regions, only filled by shower.
3) Any leftover dependence on $\mathcal{T}_{N}^{\text {cut }}$ and $\mathcal{T}_{N+1}^{\text {cut }}$ only enters at higher orders.

- Conditions above also ensure double-counting is avoided.

Adding the parton shower.

- Use the NNLO+LL fully-exclusive results $\mathrm{d} \sigma_{N}^{\mathrm{Mc}}, \mathrm{d} \sigma_{N+1}^{\mathrm{Mc}}, \mathrm{d} \sigma_{>N+2}^{\mathrm{MC}}$ as event weights and their kinematics as starting point for showering.
- Three conditions have to be satisfied for the shower matching:

1) Any exclusive observable must be (at least) LL in resummation regions; maintain logarithmic accuracy of \mathcal{T}_{N} and \mathcal{T}_{N+1} from MC cross sections.
2) NNLO accuracy for N-jet obs. , NLO for $N+1$-jet and LO for $N+2$-jet, in respective resolved regions. No FO requirements for unresolved regions, only filled by shower.
3) Any leftover dependence on $\mathcal{T}_{N}^{\text {cut }}$ and $\mathcal{T}_{N+1}^{\text {cut }}$ only enters at higher orders.

- Conditions above also ensure double-counting is avoided.
- Caveat: when showering the NNLO N-jet bin care must be taken.
- Single parton variables not IR-safe at NNLO
- Conditions above could be applied after showering as a global veto

NNLO+PS in GENEVA

- What do we need need to make a NNLO+PS out of GENEVA ?

- Inclusive cross section NNLL' + NLO accurate
- Perturbative $\mathcal{O}\left(\alpha_{s}\right)$ everywhere
- Logarithms of merging scale ($\mathcal{T}_{N}^{\text {cut }}$) cancel at NNLL' by construction: merging of 2 NLOs is a by-product
- Starting from NNLL' resummation, NNLO singular is automatically included

$$
\sqrt{ } \frac{\mathrm{d} \sigma_{N}^{C-S}}{\mathrm{~d} \Phi_{N}}\left(\mathcal{T}_{N}^{\mathrm{cut}}\right)=0
$$

$\boldsymbol{X} \frac{\mathrm{d} \sigma_{N}^{B-C}}{\mathrm{~d} \Phi_{N}}\left(\mathcal{T}_{N}^{\text {cut }}\right) \rightarrow \frac{\mathrm{d} \sigma_{N}^{\text {nonsingular }}}{\mathrm{d} \Phi_{N}}\left(\mathcal{T}_{N}^{\text {cut }}\right)$ suppressed by powers of $\mathcal{T}_{N}^{\text {cut }}$

- Only non-singular power-supressed contribution stemming from RV and RR are missing. Their effect can be made negligible by lowering $\mathcal{T}_{N}^{\text {cut }}$.
- Adding the NNLO non-singular terms back to 0 -jet bin allows to raise $\mathcal{T}_{N}^{\text {cut }}$ to more moderate values.

NNLO validation

- NNLO xsec and inclusive distributions validated against DYNNLO. Also checked against VRAP

- Comparison for 7 TeV LHC, $\mathcal{T}_{0}^{\text {cut }}=1$. Very good agreement for NNLO quantities, both central scale and variations.
- Non-trivial correlations for outer scales, ad-hoc procedure to ensure exact reproducibility of fixed-order variations.

NNLO validation

- NNLO xsec and inclusive distributions validated against DYNNLO. Also checked against VRAP

- Comparison for 7 TeV LHC, $\mathcal{T}_{0}^{\text {cut }}=1$. Very good agreement for NNLO quantities, both central scale and variations.
- Non-trivial correlations for outer scales, ad-hoc procedure to ensure exact reproducibility of fixed-order variations.

NNLO validation

- NNLO xsec and inclusive distributions validated against DYNNLO. Also checked against VRAP

- Comparison for 7 TeV LHC, $\mathcal{T}_{0}^{\text {cut }}=1$. Very good agreement for NNLO quantities, both central scale and variations.
- Non-trivial correlations for outer scales, ad-hoc procedure to ensure exact reproducibility of fixed-order variations.

Including \mathcal{T}_{1} resummation

- Define separately excl. 1-jet and incl. 2-jets using $\mathcal{T}_{1}^{\text {cut }}$

$$
\begin{gathered}
\frac{\mathrm{d} \sigma_{0}^{\mathrm{MC}}}{\mathrm{~d} \Phi_{0}}\left(\mathcal{T}_{0}^{\text {cut }}\right)=\frac{\mathrm{d} \sigma_{0}^{\text {resum }}}{\mathrm{d} \Phi_{0}}\left(\mathcal{T}_{0}^{\text {cut }}\right)+\frac{\mathrm{d} \sigma_{0}^{\text {nons }}}{\mathrm{d} \Phi_{0}}\left(\mathcal{T}_{0}^{\text {cut }}\right), \\
\frac{\mathrm{d} \sigma_{1}^{\mathrm{Mc}}}{\mathrm{~d} \Phi_{1}}\left(\mathcal{T}_{0}>\mathcal{T}_{0}^{\mathrm{cut}} ; \mathcal{T}_{1}^{\text {cut }}\right)=\frac{\mathrm{d} \sigma_{1}^{\text {resum }}}{\mathrm{d} \Phi_{1}}\left(\mathcal{T}_{0}>\mathcal{T}_{0}^{\text {cut }} ; \mathcal{T}_{1}^{\text {cut }}\right)+\frac{\mathrm{d} \sigma_{1}^{\text {nons }}}{\mathrm{d} \Phi_{1}}\left(\mathcal{T}_{0}>\mathcal{T}_{0}^{\text {cut }} ; \mathcal{T}_{1}^{\text {cut }}\right), \\
\frac{\mathrm{d} \sigma_{\geq 2}^{\mathrm{MC}}}{\mathrm{~d} \Phi_{2}}\left(\mathcal{T}_{0}>\mathcal{T}_{0}^{\text {cut }}, \mathcal{T}_{1}>\mathcal{T}_{1}^{\text {cut }}\right)=\frac{\mathrm{d} \sigma_{\geq 2}^{\text {resum }}}{\mathrm{d} \Phi_{2}}\left(\mathcal{T}_{0}>\mathcal{T}_{0}^{\text {cut }}\right) \theta\left(\mathcal{T}_{1}>\mathcal{T}_{1}^{\text {cut }}\right) \\
+\frac{\mathrm{d} \sigma_{\geq 2}^{\text {nons }}}{\mathrm{d} \Phi_{2}}\left(\mathcal{T}_{0}>\mathcal{T}_{0}^{\text {cut }}, \mathcal{T}_{1}>\mathcal{T}_{1}^{\text {cut }}\right) .
\end{gathered}
$$

- We also perform a Sudakov-like LL resummation of $\mathcal{T}_{1}^{\text {cut }}$ to obtain a sensible separation between 1 and 2 jets, always enforcing unitarity

$$
\begin{aligned}
\frac{\mathrm{d} \sigma_{1}^{\text {resum }}}{\mathrm{d} \Phi_{1}}\left(\mathcal{T}_{0}>\mathcal{T}_{0}^{\mathrm{cut}} ; \mathcal{T}_{1}^{\mathrm{cut}}\right) & =\frac{\mathrm{d} \sigma_{\geq 1}^{C}}{\mathrm{~d} \Phi_{1}}\left(\mathcal{T}_{0}>\mathcal{T}_{0}^{\mathrm{cut}}\right) U_{1}\left(\Phi_{1}, \mathcal{T}_{1}^{\mathrm{cut}}\right) \\
\frac{\mathrm{d} \sigma_{\geq 2}^{\text {resum }}}{\mathrm{d} \Phi_{2}}\left(\mathcal{T}_{0}>\mathcal{T}_{0}^{\mathrm{cut}}\right) & =\left.\frac{\mathrm{d} \sigma_{\geq 1}^{C}}{\mathrm{~d} \Phi_{1}}\left(\mathcal{T}_{0}>\mathcal{T}_{0}^{\mathrm{cut}}\right) U_{1}^{\prime}\left(\Phi_{1}, \mathcal{T}_{1}\right)\right|_{\Phi_{1}=\Phi_{1}^{\mathcal{T}}\left(\Phi_{2}\right)} \mathcal{P}\left(\Phi_{2}\right)
\end{aligned}
$$

Including \mathcal{T}_{1} resummation

- Some freedom in choice of what gets exponentianted by the U_{1} Sudakov

$$
\begin{gathered}
\frac{\mathrm{d} \sigma_{\geq 1}^{C}}{\mathrm{~d} \Phi_{1}}\left(\mathcal{T}_{0}>\mathcal{T}_{0}^{\mathrm{cut}}\right)=\frac{\mathrm{d} \sigma_{\geq 1}^{\mathrm{resum}}}{\mathrm{~d} \Phi_{1}} \theta\left(\mathcal{T}_{0}>\mathcal{T}_{0}^{\mathrm{cut}}\right)+\left[\frac{\mathrm{d} \sigma_{\geq 1}^{C}}{\mathrm{~d} \Phi_{1}}\left(\mathcal{T}_{0}>\mathcal{T}_{0}^{\mathrm{cut}}\right)\right]_{\mathrm{NLO}_{1}} \\
\\
-\frac{\mathrm{d} \sigma_{\geq 1}^{\mathrm{s}}}{\mathrm{~d} \Phi_{1}} \theta\left(\mathcal{T}_{0}>\mathcal{T}_{0}^{\mathrm{cut}}\right), \\
{\left[\frac{\mathrm{d} \sigma_{\geq 1}^{C}}{\mathrm{~d} \Phi_{1}}\left(\mathcal{T}_{0}>\mathcal{T}_{0}^{\mathrm{cut}}\right)\right]_{\mathrm{NLO}_{1}}=\left(B_{1}+V_{1}\right)\left(\Phi_{1}\right) \theta\left(\mathcal{T}_{0}>\mathcal{T}_{0}^{\mathrm{cut}}\right)+\int \frac{\mathrm{d} \Phi_{2}}{\mathrm{~d} \tilde{\Phi}_{1}} C_{2}\left(\Phi_{2}\right) \theta\left(\tilde{\mathcal{T}}_{0}>\mathcal{T}_{0}^{\mathrm{cut}}\right) .}
\end{gathered}
$$

- The complement gets automatically taken care of by the non-singular contributions. Dependence on $\mathcal{T}_{1}^{\text {cut }}$ cancels by construction.

$$
\begin{aligned}
\frac{\mathrm{d} \sigma_{1}^{\text {nons }}}{\mathrm{d} \Phi_{1}}\left(\mathcal{T}_{1}^{\text {cut }}\right)= & \int \mathrm{d} \Phi_{2}\left[\frac{B_{2}\left(\Phi_{2}\right)}{\mathrm{d} \Phi_{1}^{\mathcal{T}}} \theta\left(\mathcal{T}_{0}>\mathcal{T}_{0}^{\text {cut }}\right) \theta\left(\mathcal{T}_{1}<\mathcal{T}_{1}^{\text {cut }}\right)-\frac{C_{2}\left(\Phi_{2}\right)}{\mathrm{d} \tilde{\Phi}_{1}} \theta\left(\tilde{\mathcal{T}}_{0}>\mathcal{T}_{0}^{\text {cut }}\right)\right] \\
& -B_{1}\left(\Phi_{1}\right) U_{1}^{(1)}\left(\Phi_{1}, \mathcal{T}_{1}^{\text {cut }}\right),
\end{aligned}
$$

$$
\frac{\mathrm{d} \sigma_{22}^{\mathrm{nons}}}{\mathrm{~d} \Phi_{2}}\left(\mathcal{T}_{1}>\mathcal{T}_{1}^{\mathrm{cut}}\right)=\left\{B_{2}\left(\Phi_{2}\right)\left[1-\Theta^{\mathcal{T}}\left(\Phi_{2}\right) \theta\left(\mathcal{T}_{1}<\mathcal{T}_{1}^{\mathrm{cut}}\right)\right]\right.
$$

$$
\left.-B_{1}\left(\Phi_{1}^{\mathcal{T}}\right) U_{1}^{(1) \prime}\left(\Phi_{1}^{\mathcal{T}}, \mathcal{T}_{1}\right) \mathcal{P}\left(\Phi_{2}\right) \theta\left(\mathcal{T}_{1}>\mathcal{T}_{1}^{\text {cut }}\right)\right\} \theta\left(\mathcal{T}_{0}>\mathcal{T}_{0}^{\text {cut }}\right)
$$

Showering and Hadronization

- Push $\mathcal{T}_{0}^{\text {cut }}$ towards zero allows to replace as much of the shower as possible with GENEVA higher logarithmic resummation.
- However, ultimately non-perturbative effects have to take over.
- Shower fills in $\mathcal{T}_{0}<\mathcal{T}_{0}^{\text {cut }}$ from 0-jet events and $\mathcal{T}_{1}<\mathcal{T}_{1}{ }^{\text {cut }}$ from 1-jet ones. Small spill-over parameter $\lambda>\frac{\left|\tau_{0}^{G E+P Y}-\tau_{0}^{G E}\right|}{\tau_{0}^{G E}}$.
- Internal shower machinery untouched. Running shower repeatedly until conditions are met. Choice of starting scale can make showering quite efficient.

Showering and hadronization

- At small \mathcal{T}_{0}, large shift from unconstrained shower even when $\mathcal{T}_{1}^{\text {cut }}$ small.
- Hadronization completely unconstrained and left to Pythia.
- As expected, $\mathcal{O}(1)$ shift in peak region. At larger \mathcal{T}_{0} it only reduces to power corrections

Showering and hadronization

- Inclusive quantities not modified
- PYTHIA 8 tuning to data includes tuning of the shower parameters \rightarrow replacing PYTHIA by GENEVA showering could imply re-tuning is necessary

Showering and hadronization

- PYTHIA8 includes variations of perturbative parameters into tunes.
- Some distributions particularly sensitive to PYTHIA8 choices.

Showering and hadronization

- First study to determine freedom in selection of particular PYTHIA8 parameters governing the shower, like $p_{T_{0}}^{\text {ref }}$ or $\alpha_{s}\left(M_{Z}\right)$
- Adopted approach much more conservative than standard ranges suggested in PYTHIA manual.
- Trying to leave only true non-perturbative effects to further tuning.

Showering and Hadronization

\triangleright How much is \mathcal{T}_{0} constrain affecting the shower ?

Showering and Hadronization

- How can we relax the \mathcal{T}_{0} constrain?

We need the shower to fill back the phase space that we consider unresolved. This specifically depends on the map we have used in the calculation. Pythia uses a very different map.

- Do the first $1 \rightarrow 2$ splitting ourselves with out \mathcal{T}_{0}-preserving map and using a $\operatorname{LL} U_{1}\left(\Phi_{1} ; \mathcal{T}_{1}^{\text {cut }}, \mathcal{T}_{1}^{\mathrm{IR}}\right)$ Sudakov.
- PYTHIA will then start after our first emission, no further constraint on it.
- One could use NLL $U_{1}\left(\Phi_{1} ; \mathcal{T}_{1}^{\text {cut }}, \mathcal{T}_{1}^{\mathrm{IR}}\right)$ or use POWHEG/MC@NLO method to do this splitting with higher accuracy.

$$
\begin{aligned}
& \frac{\mathrm{d} \sigma_{1}^{\mathrm{MC}}}{\mathrm{~d} \Phi_{1}}\left(\mathcal{T}_{0}>\mathcal{T}_{0}^{\mathrm{cut}} ; \mathcal{T}_{1}^{\mathrm{cut}} ; \mathcal{T}_{1}^{\mathrm{IR}}\right)=\frac{\mathrm{d} \sigma_{1}^{\mathrm{MC}}}{\mathrm{~d} \Phi_{1}}\left(\mathcal{T}_{0}>\mathcal{T}_{0}^{\mathrm{cut}} ; \mathcal{T}_{1}^{\mathrm{cut}}\right) U_{1}\left(\Phi_{1} ; \mathcal{T}_{1}^{\mathrm{cut}}, \mathcal{T}_{1}^{\mathrm{IR}}\right) \text {, } \\
& \frac{\mathrm{d} \sigma_{\geq 2}^{\mathrm{MC}}}{\mathrm{~d} \Phi_{2}}\left(\mathcal{T}_{0}>\mathcal{T}_{0}^{\mathrm{cut}}, \mathcal{T}_{1}>\mathcal{T}_{1}^{\mathrm{IR}}\right)=\frac{\mathrm{d} \sigma_{\geq 2}^{\mathrm{MC}}}{\mathrm{~d} \Phi_{2}}\left(\mathcal{T}_{0}>\mathcal{T}_{0}^{\mathrm{cut}}, \mathcal{T}_{1}>\mathcal{T}_{1}^{\mathrm{cut}}\right)
\end{aligned}
$$

Predictions for other observables : q_{T} and ϕ^{*}

- Comparison with DYqT Bozzi etal. arxiv:1007:2351 and BDMT results Bantie eal. arXiv:1205.4760
- Inclusive cuts for DYqT, ATLAS cuts for BDMT. Each normalized to own XS.
- Analytic predictions formally higher log accuracy than GENEVA
- PYTHIA8 provides non-perturbative hadronization corrections

Predictions for other observables : q_{T} and ϕ^{*}

- Comparison with DYqT Bozzi etal arxiv:1007:2351 and BDMT results Bantie eal. arXiv:1205.4760
- Inclusive cuts for DYqT, ATLAS cuts for BDMT. Each normalized to own XS.
- Analytic predictions formally higher log accuracy than GENEVA
- PYTHIA8 provides non-perturbative hadronization corrections

Predictions for other observables : q_{T} and ϕ^{*}

- Comparison with DYqT Bozzi etal arxiv:1007:2351 and BDMT results Bantie eal. arXiv:1205.4760
- Inclusive cuts for DYqT, ATLAS cuts for BDMT. Each normalized to own XS.
- Analytic predictions formally higher log accuracy than GENEVA
- PYTHIA8 provides non-perturbative hadronization corrections

- ϕ^{*} strongly correlated to $q_{T}, \phi^{*}=\tan \left(\frac{\pi-\Delta \phi}{2}\right) \sin \theta^{*} \approx\left|\sum_{i} \frac{k_{T, i}}{Q} \sin \phi_{i}\right|$

Predictions for other observables : jet-veto acceptance

- Comparison with JetVHeto results Banfi etal. arxiv:1308.4634
- Analytic predictions at NNLL formally higher log accuracy than GENEVA
- Must reduce to total xsec in the tail. Small differences due to different hard-scale and NWA.
- Non-trivial propagation of spectrum uncertainties to cumulant result. Neglected correlations yield larger uncertainties.
- Imposing total XS hard variations only results in small uncertainties in peak region.
uncorrelated variations

correlated variations

Predictions for other observables : jet-veto acceptance

- Comparison with JetVHeto results Banfi etal. arxiv: 1308.4634
- Analytic predictions at NNLL formally higher log accuracy than GENEVA
- Must reduce to total xsec in the tail. Small differences due to different hard-scale and NWA.
- Non-trivial propagation of spectrum uncertainties to cumulant result. Neglected correlations yield larger uncertainties.
- Imposing total XS hard variations only results in small uncertainties in peak region.
uncorrelated variations

correlated variations

Predictions for other observables : jet-veto acceptance

- Comparison with JetVHeto results Banti etal. arxiv:1308.4634
- Analytic predictions at NNLL formally higher log accuracy than GENEVA
- Must reduce to total xsec in the tail. Small differences due to different hard-scale and NWA.
- Non-trivial propagation of spectrum uncertainties to cumulant result. Neglected correlations yield larger uncertainties.
- Imposing total XS hard variations only results in small uncertainties in peak region.

- Testing new profile scales that correctly capture the right uncertainty.

Comparisons with data

Exclusive jet multiplicity

- First preliminary results for 7 TeV LHC .
- Results consistent with $\mathrm{NNLO}_{0} \mathrm{MC}$ expectations
- Higher multiplicities could be improved at LO with standard CKKW /MLM approaches
- Provided sufficent resummation available for \mathcal{T}_{N} further NLO matrix elements could be included.

Comparisons with data

- Preliminary comparisons. All scale variations show to provide breakdown on uncertainties.
- More accurate uncertainty requires the envelope of resummation scales added in quadrature to hard scale variations.
- For inclusive quantities, fixed order scale variations including correlations provide the best estimate of theory uncertainty

Comparisons with data

- Preliminary comparisons. All scale variations show to provide breakdown on uncertainties.
- More accurate uncertainty requires the envelope of resummation scales added in quadrature to hard scale variations.
- For inclusive quantities, fixed order scale variations including correlations provide the best estimate of theory uncertainty

Comparisons with data

- Preliminary comparisons. All scale variations show to provide breakdown on uncertainties.
- More accurate uncertainty requires the envelope of resummation scales added in quadrature to hard scale variations.
- For inclusive quantities, fixed order scale variations including correlations provide the best estimate of theory uncertainty

Comparisons with $Z / \gamma^{*} p_{T}$ LHC 7 TeV data

- Preliminary comparisons. All scale variations shown to provide breakdown on uncertainties.
- More accurate uncertainty requires the envelope of resummation scales added in quadrature to hard scale variations.

ATLAS 2011

ATLAS 2014

Comparisons with $Z / \gamma^{*} p_{T}$ LHC 7 TeV data

- Preliminary comparisons. All scale variations shown to provide breakdown on uncertainties.
- More accurate uncertainty requires the envelope of resummation scales added in quadrature to hard scale variations.

BDMT

ATLAS 2014

Comparisons with $Z / \gamma^{*} p_{T}$ LHC 7 TeV data

- Preliminary comparisons. All scale variations shown to provide breakdown on uncertainties.
- More accurate uncertainty requires the envelope of resummation scales added in quadrature to hard scale variations.

- NNLO $Z+1$-jet required to reduce theory uncertainty in the tail.

Comparisons with $Z / \gamma^{*} p_{T}$ LHC 7 TeV data

- Preliminary comparisons. All scale variations shown to provide breakdown on uncertainties.
- More accurate uncertainty requires the envelope of resummation scales added in quadrature to hard scale variations.

- NNLO $Z+1$-jet required to reduce theory uncertainty in the tail.

Comparisons with ϕ^{*} LHC 7 TeV data

- Similar good agreement in ϕ^{*} distribution

ATLAS 2012

BDMT / RESBOS

Comparisons with ϕ^{*} LHC 7 TeV data

- Similar good agreement in ϕ^{*} distribution

ATLAS 2012
ϕ_{η}^{*} spectrum, $\mathrm{Z} \rightarrow$ ee (bare)

MC

Conclusions and outlook

GENEVA is NNLO event generator that can be interfaced with shower/hadronization.

- Based on IR-safe, jet-like definitions of events.
- Uses a physics observable, N-jettiness, factorizable and whose resummation is known to NNLL as jet resolution parameter. $e^{+} e^{-}$and Drell-Yan results extremely encouraging.
- Worked out theoretical framework for NNLO+PS: given formulas for jet cross section at the necessary accuracy in both fixed order $\left(\mathrm{NNLO}_{N}, \mathrm{NLO}_{N+1}, \mathrm{LO}_{N+2}\right)$ and resummation regions (LL). Discussed shower matching.
- POWHEG, MC@NLO, GENEVA and MiNLO-NNLOPS re-derived as special limits. GENEVA also immediately follows, imposing NNLL' accuracy .
- Good agreement with analytical calculation / tools and with LHC data.

Future directions:

- Adding more jets, e.g. $p p \rightarrow V+0,1,2$ and validation with LHC data.
- Next process is $g g \rightarrow H+0,1,2$ jets.
- Investigate resummation of different resolution parameters / double resummation
- Study interface to other SMC: HERWIG++, SHERPA...
- Comprehensive tuning program of GENEVA + SMC.

Backup

GENEVA: quick overview

Combines 3 key ingredients in a single framework:

1. Fully Exclusive NLO Calculations

- $\mathrm{NLO}_{N}, \mathrm{NLO}_{N+1}, \ldots$

2. Higher-order Resummation (using SCET, but not limited to it)

- $\mathrm{LL}_{\mathcal{O}}, \mathrm{NLL}_{\mathcal{O}}, \mathrm{NLL}^{\prime}$, $\mathrm{NNLL}_{\mathcal{O}} \ldots$

3. Parton Shower and Hadronization

- Pythia8, Herwig++, ...

GENEVA guiding principle

Give a coherent description at the Next-to-Lowest perturbative accuracy in both fixed-order perturbation theory and logarithmic resummation, including event-by-event theoretical uncertainties, and combine it with parton shower and hadronization.

First application: $e^{+} e^{-} \rightarrow$ jets

Simpler process to test our construction.
Thrust spectrum known to $\mathrm{N}^{3} \mathrm{LL}^{\prime} \mathcal{T}+\mathrm{NNLO}_{3}$.
Several 2-jet shapes known to $\mathrm{NNLL}_{\mathcal{O}}+\mathrm{NNLO}_{3}$.
LEP data available for validation.

- Use 2- and 3-jettiness.

$$
\begin{aligned}
\mathcal{T}_{2} & =E_{\mathrm{cm}}\left(1-\max _{\hat{n}} \frac{\sum_{k}\left|\hat{n} \cdot \vec{p}_{k}\right|}{\sum_{k}\left|\vec{p}_{k}\right|}\right) \\
& =E_{\mathrm{cm}}(1-T)
\end{aligned}
$$

- Opportunely partitioning the phase-space
- Perturbatively calculating NLO/Resumm. jet-cross sections.

Resummation of \mathcal{T}_{2}

- GENEVA precisely reproduces full NNLL'+NLO3 analytic result : simply getting out what we put in!

- Error bars are always theory uncertainties, obtained via scale variations. Statistical uncertainties negligible and not shown.
- Resummation unc. obtained via quadrature sum of single scale variations $\left(\mu_{S}, \mu_{J}\right)$ inside profile scale bands plus direct sum of FO uncertainties $\left(\mu_{H}\right)$.
- GENEVA $\mathcal{T}_{2}^{\text {cut }}=\mathbf{1} \mathrm{GeV}$ above
- Theoretical uncertainties agree across most of the spectrum, differences after kinematic 3-body endpoint consequence of different matching procedure (multiplicative vs. additive).

Resummation of \mathcal{T}_{2}

- GENEVA precisely reproduces full NNLL'+NLO3 analytic result : simply getting out what we put in!

- Error bars are always theory uncertainties, obtained via scale variations. Statistical uncertainties negligible and not shown.
- Resummation unc. obtained via quadrature sum of single scale variations $\left(\mu_{S}, \mu_{J}\right)$ inside profile scale bands plus direct sum of FO uncertainties $\left(\mu_{H}\right)$.
- GENEVA $\mathcal{T}_{2}^{\text {cut }}=\mathbf{1} \mathrm{GeV}$ above
- Theoretical uncertainties agree across most of the spectrum, differences after kinematic 3-body endpoint consequence of different matching procedure (multiplicative vs. additive).

Interface with the parton shower

- The shower must not be allowed to spoil NNLL' \mathcal{T} accuracy of GENEVA, but only used to fill out jets.

- \mathcal{T}_{2} spectrum for 3 and 4-parton events constrained by higher-order resummation. Only allow small variations $\Delta \mathcal{T}_{2}<\mathcal{T}_{2}^{\text {cut }}(1+\epsilon)$.
- 2-parton events must remain in 2-jets bin, up to small corrections
- Similarly for $\mathcal{T}_{3}\left(\Phi_{4}\right)$ spectrum and 3 -jets bin. Proxy for \mathcal{T}-ordered PS.
- Shower unconstrained in the far tail at the moment, since only LO_{4} there.

Interface with the parton shower

- The shower must not be allowed to spoil NNLL' \mathcal{T} accuracy of GENEVA, but only used to fill out jets.

Interface with the parton shower

- The shower must not be allowed to spoil NNLL' \mathcal{T} accuracy of GENEVA, but only used to fill out jets.

Accuracy of observables different from resolution parameter

- After showering we are formally limited by shower resummation for generic observables $\mathcal{O} \neq \mathcal{T}_{\epsilon}$. Naively, (N)LL is expected.
- What is the perturbative accuracy we obtain for other \mathcal{O} ?
- C-parameter - perturbative structure very similar to \mathcal{T}_{2}

Accuracy of observables different from resolution parameter

- After showering we are formally limited by shower resummation for generic observables $\mathcal{O} \neq \mathcal{T}_{\epsilon}$. Naively, (N)LL is expected.
- What is the perturbative accuracy we obtain for other \mathcal{O} ?
- C-parameter - perturbative structure very similar to \mathcal{T}_{2}

Accuracy of observables different from resolution parameter

- After showering we are formally limited by shower resummation for generic observables $\mathcal{O} \neq \mathcal{T}_{\epsilon}$. Naively, (N)LL is expected.
- What is the perturbative accuracy we obtain for other \mathcal{O} ?
- C-parameter - perturbative structure very similar to \mathcal{T}_{2}

Accuracy of observables different from resolution parameter

- After showering we are formally limited by shower resummation for generic observables $\mathcal{O} \neq \mathcal{T}_{\epsilon}$. Naively, (N)LL is expected.
- What is the perturbative accuracy we obtain for other \mathcal{O} ?
- C-parameter - perturbative structure very similar to \mathcal{T}_{2}

Accuracy of observables different from resolution parameter

- After showering we are formally limited by shower resummation for generic observables $\mathcal{O} \neq \mathcal{T}_{\epsilon}$. Naively, (N)LL is expected.
- What is the perturbative accuracy we obtain for other \mathcal{O} ?
- Heavy jet mass - perturbative structure partially related to \mathcal{T}_{2}

Accuracy of observables different from resolution parameter

- After showering we are formally limited by shower resummation for generic observables $\mathcal{O} \neq \mathcal{T}_{\epsilon}$. Naively, (N)LL is expected.
- What is the perturbative accuracy we obtain for other \mathcal{O} ?
- Jet Broadening - perturbative structure completely different from \mathcal{T}_{2}

- Good agreement in central values and scale uncertainties envelopes at NNLL, also for observables with a very different resummation structure.
- NNLL resummation allows to push $\mathcal{T}_{2}^{\text {cut }}$ to very small values, effectively replacing the shower evolution.
- Ultimately, we rely on Pythia8 hadronization model for non-pert. physics

Hadronization and comparison with LEP data.

- Two-jettiness $=E_{\mathrm{cm}}(1-T)$

- Hadronization (non-perturbative effect) is unconstrained.
- No ad-hoc tune yet, default Pythia8 Tune1 with $\alpha_{\mathrm{s}}(m Z)=\mathbf{0 . 1 1 3 5}$ from τ fits.
- Large shift due to hadronization, $\mathcal{O}(1)$, in the peak.
- Power suppressed effects elsewhere, as expected.

Hadronization and comparison with LEP data.

- C-parameter

- Hadronization (non-perturbative effect) is unconstrained.
- No ad-hoc tune yet, default Pythia8 Tune1 with $\alpha_{\mathrm{s}}(m Z)=\mathbf{0 . 1 1 3 5}$ from τ fits.
- Large shift due to hadronization, $\mathcal{O}(1)$, in the peak.
- Power suppressed effects elsewhere, as expected.

Hadronization and comparison with LEP data.

- Heavy jet mass

- Hadronization (non-perturbative effect) is unconstrained.
- No ad-hoc tune yet, default Pythia8 Tune1 with $\alpha_{\mathrm{s}}(m Z)=0.1135$ from τ fits.
- Large shift due to hadronization, $\mathcal{O}(1)$, in the peak.
- Power suppressed effects elsewhere, as expected.

Hadronization and comparison with LEP data.

- Jet Broadening

- Hadronization (non-perturbative effect) is unconstrained.
- No ad-hoc tune yet, default Pythia8 Tune1 with $\alpha_{s}(m Z)=0.1135$ from τ fits.
- Large shift due to hadronization, $\mathcal{O}(1)$, in the peak.
- Power suppressed effects elsewhere, as expected.

Comparison with existing approaches: MiNLO NNLO+PS.

- MiNLO v1 is CKKW-inspired recipe to set a priori the scales of a NLO calculation involving multiple scales.

Comparison with existing approaches: MiNLO NNLO+PS.

- MiNLO v1 is CKKW-inspired recipe to set a priori the scales of a NLO calculation involving multiple scales.
- Like CKKW, it also includes LL Sudakovs factors, that regulate IR divergencies (e.g. $\mathrm{H}+1$ jets finite $p_{\mathrm{T}}^{j} \rightarrow 0$)

Comparison with existing approaches: MiNLO NNLO+PS.

- MiNLO v1 is CKKW-inspired recipe to set a priori the scales of a NLO calculation involving multiple scales.
- Like CKKW, it also includes LL Sudakovs factors, that regulate IR divergencies (e.g. $\mathrm{H}+1$ jets finite $p_{\mathrm{T}}^{j} \rightarrow 0$)
- NLO accuracy for inclusive sample not achieved in MiNLO v1
- The reason is that resumming $q_{T \text { cut }}$ with LL Sudakov generates terms $\mathcal{O}\left(\alpha_{\mathrm{s}}^{1.5}\right)$

Comparison with existing approaches: MiNLO NNLO+PS.

- MiNLO v1 is CKKW-inspired recipe to set a priori the scales of a NLO calculation involving multiple scales.
- Like CKKW, it also includes LL Sudakovs factors, that regulate IR divergencies (e.g. $\mathrm{H}+1$ jets finite $p_{\mathrm{T}}^{j} \rightarrow 0$)
- NLO accuracy for inclusive sample not achieved in MiNLO v1
- The reason is that resumming $q_{T \text { cut }}$ with LL Sudakov generates terms $\mathcal{O}\left(\alpha_{\mathrm{s}}^{1.5}\right)$
- By carefully comparing with NNLL resummation and including missing terms $\left(B_{2}\right)$ in MiNLO Sudakovs, NLO accuracy for inclusive sample can be restored \rightarrow MiNLO v2 .

Comparison with existing approaches: MiNLO NNLO+PS.

- MiNLO v1 is CKKW-inspired recipe to set a priori the scales of a NLO calculation involving multiple scales.
[Hamilton et al. 1206.3572]
- Like CKKW, it also includes LL Sudakovs factors, that regulate IR divergencies (e.g. $\mathrm{H}+1$ jets finite $p_{\mathrm{T}}^{j} \rightarrow 0$)
- NLO accuracy for inclusive sample not achieved in MiNLO v1
- The reason is that resumming $q_{T \text { cut }}$ with LL Sudakov generates terms $\mathcal{O}\left(\alpha_{\mathrm{s}}^{1.5}\right)$
- By carefully comparing with NNLL resummation and including missing terms (B_{2}) in MiNLO Sudakovs, NLO accuracy for inclusive sample can be restored \rightarrow MiNLO v2 .
[Hamilton et al. 1212.4504]
- Merging scale can be basically pushed to $\Lambda_{Q C D}$: achieves NLO merging without merging scale ($H+0$ jets is never present)

Comparison with existing approaches: MiNLO NNLO+PS.

- MiNLO v1 is CKKW-inspired recipe to set a priori the scales of a NLO calculation involving multiple scales.
[Hamilton et al. 1206.3572]
- Like CKKW, it also includes LL Sudakovs factors, that regulate IR divergencies (e.g. $\mathrm{H}+1$ jets finite $p_{\mathrm{T}}^{j} \rightarrow 0$)
- NLO accuracy for inclusive sample not achieved in MiNLO v1
- The reason is that resumming $q_{T c u t}$ with LL Sudakov generates terms $\mathcal{O}\left(\alpha_{\mathrm{s}}^{1.5}\right)$
- By carefully comparing with NNLL resummation and including missing terms (B_{2}) in MiNLO Sudakovs, NLO accuracy for inclusive sample can be restored \rightarrow MiNLO v2.
[Hamilton et al. 1212.4504]
- Merging scale can be basically pushed to $\Lambda_{Q C D}$: achieves NLO merging without merging scale ($H+0$ jets is never present)
- For simple processes (e.g. $g g \rightarrow H$), using HNNLO [Catani etal. 0800.3232] for event-by-event reweighting results in a NNLO+PS [Hamilton,Nason,Re,Zanderighi 1309.0017]

$$
\mathcal{W}(y)=\frac{\left(\frac{d \sigma}{d y}\right)_{\mathrm{HNNLO}}}{\left(\frac{d \sigma}{d y}\right)_{\mathrm{HJ}-\mathrm{MiNLO}}}=\frac{c_{2} \alpha_{\mathrm{S}}^{2}+c_{3} \alpha_{\mathrm{S}}^{3}+c_{4} \alpha_{\mathrm{S}}^{4}}{c_{2} \alpha_{\mathrm{S}}^{2}+c_{3} \alpha_{\mathrm{S}}^{3}+c_{4}^{\prime} \alpha_{\mathrm{S}}^{4}+\ldots}=1+\frac{c_{4}-c_{4}^{\prime}}{c_{2}} \alpha_{\mathrm{S}}^{2}+\ldots
$$

- Integrates back to the total NNLO cross-section
- NLO accuracy of $H j$ not spoiled
- Need to reweight after generation

Comparison with existing approaches: MiNLO NNLO+PS.

- $H j$-MiNLO NNLO+PS results

[Hamilton,Nason,Re,Zanderighi 1309.0017]

Comparison with existing approaches: MiNLO NNLO+PS.

- Hj-MiNLO NNLO+PS results

[Hamilton,Nason,Re,Zanderighi 1309.0017]

Comparison with existing approaches: MiNLO NNLO+PS.

- Hj-MiNLO NNLO+PS results

[Hamilton,Nason,Re,Zanderighi 1309.0017]

- We have re-derived MiNLO NNLO+PS formula as a check of our framework. It follows directly with a specific choice of splitting functions.
- Alternative choice of splitting functions proposed in [1311.0286] has pros and cons: $\quad \checkmark$ No need to know NLL resummation for NNLO+PS
\checkmark No need to reweight after generation
X Can't just simply run NNLO code as is ...

Comparison with existing approaches: MiNLO NNLO+PS.

- Also available for Z production [Karlberg et al. 1407.2949]

Comparison with existing approaches: UNNLOPS.

- Recent results from SHERPA+BlackHat [1405.3607]
- Uses q_{T}-subtraction for zero jet bin (phase-space slicing)
- NNLO accuracy is maintained via UNNLOPS approach, basically enforcing spectrum is derivative of the cumulant via unitarity

N-jettiness subtractions

- Basic idea very much resemble q_{T}-subtraction. Divide phase space into NNLO_{N} and NLO_{N+1}, only apply extra subtraction to NNLO_{N}.
- N -jettiness more powerful than q_{T} of the colorless system (or massive colored system). Any number of massless leg could in principle be dealt with.
- Simplest approach is to just use slicing. This amounts to approximate the α_{S}^{2} terms by their singular counterpart, neglecting α_{S}^{2} non-singular
- First example of N -jettiness like slicing $\tau=\left(p_{b}+p_{X}\right)^{2} / m_{t}^{2}$ in top-decay Gao etal. [1210.2808]
- 1-jettiness slicing recently applied to $W+1$-jet and $H+1$-jet production. Boughezal et al. [1504.02131, 1505.03893] .
- Proper subtraction requires instead to use the singular to regulate the (integrated) divergencies left over by the NLO subtraction (as done in q_{T}-subtraction).

$$
\begin{aligned}
\sigma(X) & =\sigma^{\mathrm{s}}\left(X, \mathcal{T}_{\text {off }}\right)+\int_{\mathcal{T}_{\delta}} \mathrm{d} \mathcal{T}_{N}\left[\frac{\mathrm{~d} \sigma(X)}{\mathrm{d} \mathcal{T}_{N}}-\frac{\mathrm{d} \sigma^{\mathrm{s}}(X)}{\mathrm{d} \mathcal{T}_{N}} \theta\left(\mathcal{T}_{N}<\mathcal{T}_{\text {off }}\right)\right]+\mathcal{O}\left(\delta_{\mathrm{IR}}\right) \\
& =\sigma^{\mathrm{s}}\left(X, \mathcal{T}_{\text {off }}\right)+\int_{\mathcal{T}_{\delta}}^{\mathcal{T}_{\text {off }}} \mathrm{d} \mathcal{T}_{N} \frac{\mathrm{~d} \sigma^{\text {nons }}(X)}{\mathrm{d} \mathcal{T}_{N}}+\int_{\mathcal{T}_{\text {off }}} \frac{\mathrm{d} \sigma(X)}{\mathrm{d} \mathcal{T}_{N}}+\mathcal{O}\left(\delta_{\mathrm{IR}}\right)
\end{aligned}
$$

- Method used in GENEVA for NNLO results sA et al. [1311.0286] .
- General method formalized in Gaunt et al. [1505.04794]. Also discussed how to make the subtraction more differential for better numerical stability.

N-jettiness subtractions

- The error can be estimated considering dominant missing non-singulars at $\mathcal{O}\left(\alpha_{\mathrm{s}}\right)$ and $\mathcal{O}\left(\alpha_{\mathrm{s}}^{2}\right)$ go as
$\Delta \sigma^{(1)}\left(\delta_{I R}\right) / \sigma^{(1)} \approx c \delta_{I R} \log \delta_{I R}$
$\Delta \sigma^{(2)}\left(\delta_{I R}\right) / \sigma^{(2)} \approx c \delta_{I R} \log ^{3} \delta_{I R}$
- When $\sigma^{(2)}$ is small, a larger $\Delta \sigma^{(2)}\left(\delta_{I R}\right)$ could be tolerated.
- In any case, the correct behaviour of the non-singular towards zero should always be checked.
- This results from very delicate cancellations between 2 divergent quantities $\sigma(\tau)-\sigma^{\text {sing. }}(\tau)$, so their ratio going to 1 does not necessarily imply $\sigma^{\text {non-sing. }}(\tau)$ being zero.

Beam Functions

- Beam functions are perturbative objects, connected to PDF via OPE in SCET

$$
B_{i}\left(t, x ; \mu_{B}\right)=\sum_{k} \int_{x}^{1} \frac{\mathrm{~d} \xi}{\xi} \mathcal{I}_{i k}\left(t, \frac{x}{\xi} ; \mu_{B}\right) f_{k}\left(\xi ; \mu_{B}\right)
$$

- Calculating these integral on-the-fly is computationally intensive
- We have prepared interpolation grids for all convolutions, will distribute them independently from GENEVA
- These grids are essentially LHAPDF6 grids, we use the LHAPDF6 log-bicubic interpolator to get the values on-the-fly

Beam Functions

- Beam functions are perturbative objects, connected to PDF via OPE in SCET

$$
B_{i}\left(t, x ; \mu_{B}\right)=\sum_{k} \int_{x}^{1} \frac{\mathrm{~d} \xi}{\xi} \mathcal{I}_{i k}\left(t, \frac{x}{\xi} ; \mu_{B}\right) f_{k}\left(\xi ; \mu_{B}\right)
$$

- Calculating these integral on-the-fly is computationally intensive
- We have prepared interpolation grids for all convolutions, will distribute them independently from GENEVA
- These grids are essentially LHAPDF6 grids, we use the LHAPDF6 log-bicubic interpolator to get the values on-the-fly
- Results have been validated against direct integration, e.g. CT10NNLO $P_{g g} \otimes g$

