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IR-safe event definition beyond LO

I Only generate “physical events”, i.e. events to which one can assign an
IR-finite cross section dσMC.

I Introduce a resolution parameter TN , TN → 0 in the IR region. Emissions
below T cut

N are unresolved ( i.e. integrated over) and the kinematic
considered is the one of the event before the emission.

I An M-parton event is thus really defined as an N-jet event, N ≤M , fully
differential in ΦN (standard “jet-algo” not needed )
• Price to pay: power corrections in T cut

N due to PS projection.
• Advantage: vanish for IR-safe observables as T cut

N → 0

I Iterating the procedure, the phase space is sliced into jet-bins
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N-Jettiness as jet-resolution variable

I Use N-jettiness as resolution parameter. Global physical observable with
straightforward definitions for hadronic colliders, in terms of beams qa,b and
jet-directions qj

TN =
2

Q

∑
k

min
{
q1 · pk, . . . , qN · pk

}
⇒ TN =

2

Q

∑
k

min
{
qa · pk, qb · pk, q1 · pk, . . . , qN · pk

}

Jet 2

Soft

Soft Jet 1

e+ e−

1

2 Jet 2

Jet b Jet a

Soft

Jet 3

Jet 1b

a

1

32

p p

ℓ−

ℓ+

I N-jettiness has good factorization properties, IR safe and resummable at
all orders. Resummation known at NNLL for any N in SCET [Stewart et al. 1004.2489,

1102.4344]I TN → 0 for N pencil-like jets, TN � 0 spherical limit.
I TN < T cut

N acts as jet-veto, e.g. CJV T0 = 2
Q

∑
k min

{
qa · pk, qb · pk

}
< T cut

0
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Perturbative accuracy

TT cut

Peak Transition Tail

O(αs) from
fixed order

O(αs) from
resummationresummation

O(αs) from

+ fixed order

excl. N jet incl. N+1 jet

I Fixed NLON+1 (MCFM,BH,. . .) is insufficient outside FO region
I Resummation OK in peak region, fails to describe FO region
I Lowest accuracy across the whole spectrum in MEPS: CKKW, MLM
I Standard NLO+PS (POWHEG, MC@NLO) improve total rate, not
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Perturbative accuracy

I Lowest pert. accuracy everywhere requires NLLT + LON+1

NLL because αs(αns L
2n) ≈ αs in the peak.

I Next-to-Lowest pert. accuracy everywhere requires NNLLT + NLON+1
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Relation between cumulant and spectrum

I Consistency between dσMC
N , dσMC

≥N+1 is required to push T cut
N dependence to

high-enough order to ensure spectrum is total derivative of the cumulant

d

dT cut
N

[
dσMC

N

dΦN
(T cut
N )

]
T cut
N

=TN

=

∫
dΦN+1

dΦN
δ[TN−TN (ΦN+1)]

dσMC
≥N+1

dΦN+1
(TN > T cut

N )

I If this is not satisfied, claimed accuracy might be spoiled by log of T cut
N .

Cumulant: dσMC
N /dΦN (T cut

N )

T c
N

σ
(T

c N
)

T cut
N

Resummation Fixed OrderTransition
pert. accuracypert. accuracy

LL

NnLL

NnLO

Spectrum:
dσMC
≥N+1

dΦN+1
(TN > T cut

N )

d
σ
/
d
T N

TN

Resummation Fixed OrderTransition
pert. accuracypert. accuracy

LL

NnLL

NnLO
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GENEVA Master Formula JHEP09(2013)120, JHEP06(2014)089

I Introduce an unphysical infrared regulator T cut and separate inclusive and
exclusive regions: T cut dependence drops out to the order we are working.

σ≥N =

∫∫∫
dΦN

dσ

dΦN
(T cut) +

∫∫∫
dΦN+1

dσ

dΦN+1
(T )θ(T > T cut)

I Cumulant: T integral over exclusive N-jets bin up to T cut

dσ

dΦN
(T cut) =

dσresum

dΦN
(T cut) +

[
dσFO

dΦN
(T cut)− dσresum

dΦN
(T cut)

∣∣∣∣
FO

]

I Spectrum: T distribution of inclusive N + 1-jets sample above T cut

dσ

dΦN+1
(T ) =

dσFO

dΦN+1
(T )

[
dσresum

dΦNdT

/
dσresum

dΦN dT

∣∣∣∣
FO

]

I Correctly reproduces the expected limits for T → 0 and T ∼ Q.

I Additive approach in spectrum better suited for Monte Carlo programs.
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Additive matching

I Theoretically, both the multiplicative and additive approach are valid, the
difference being higher order terms present in the multiplicative approach.

dσ

dΦN+1
(T ) =

dσNNLL′

dΦNdT

[
dσNLO1

dΦN+1

/
dσNNLL′

dΦN dT

∣∣∣∣
NLO1

]
dσ

dΦN+1
(T ) =

[
dσNNLL′

dΦNdT −
dσNNLL′

dΦN dT

∣∣∣∣
NLO1

]
+

dσNLO1

dΦN+1

I However, one must be careful these higher order terms do not spoil the
accuracy after integration of the spectrum against the cumulant.

σ≥N =

∫∫∫
dΦN

dσ

dΦN
(T cut) +

∫∫∫
dΦN+1

dσ

dΦN+1
(T )θ(T > T cut)

Example: αST cut
0 log (T cut

0 ) ∗α2
slog(T cut

0 )
4 ≈ αST cut

0 log (T cut
0 ) ∗ 1

I Additive approach requires instead resummed and resummed expanded to
be made more differential.

dσNNLL′

dΦNdT =⇒ dσNNLL′

dΦN+1
≡ dσNNLL′

dΦNdT P (z, ϕ)

I Using splitting-function P (z,ϕ) that integrates to 1 for each T ,
automatically preserving T distribution at given log accuracy .
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Hadronic collisions: pp→ (Z → `+`−) + jets

I To extend GENEVA approach to Drell-Yan we need :
• A factorizable and resummable resolution parameter: Beam Thrust
T0 =

∑
i pT,ie

−|ηi−yV |. Resummation known to NNLL

dσs

dxadxb dTB
=σB ·H(µH)⊗ UH(µH , µ) ·B(xa, µBa )⊗ UB(µBa , µ)

⊗B(xb, µBb )⊗ UB(µBb , µ)⊗ S (TB , µS)⊗ US(µS , µ)

We use NNLL Soft S, Beam B and Hard H functions. Evolution kernels U are
obtained by RGE running at NNLL in SCET.

ℓ−

Soft
ℓ+

p p

Jet b
Jet a

b aY

Soft

• Beam Functions convolutions with
PDFs
• Preserving Beam Thrust and full V

kinematics in V + 1→ V + 2

• Efficient Pythia8 showering without
changing T0 for ISR
• Proper framework to deal with MPI
• Re-tuning of GENEVA+PYTHIA . . .
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Preserving the T0 value in V + 1→ V + 2 partons splittings

dσNLO

dΦ1
(T0) = [B1(Φ1) + V1(Φ1)] δ(T (Φ1)− T0) +

∫
dΦ2

dΦ1
B2(Φ2)δ (T (Φ1(Φ2))− T0)

I When calculating NLO1 we must preserve dΦ1. Cannot re-use existing calculations.
I Real emissions must preserve both d4qδ(q2 −M2

`+`−
) and

T0 ≡ p̄T,1e−|yV −η̄1| = pT,1e
−|yV −η1| + pT,2e

−|yV −η2|.

I Standard FKS or CS don’t do this. They
are design to preserve other quantities.
We had to design our own map

I This map makes T0-subtraction local in
T0. Better numerical convergence. Still
averaged over dΩ2
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Scale profiles and theoretical uncertainties

I Theoretical uncertainties in resum. are
evaluated by independently varying
each µ.

I Range of variations is tuned to turn off
the resummation before the
nonsingular dominates (YV -dependent)
and to respect SCET scaling
µH & µB & µS

I FO unc. are usual {2µH , µH/2}
variations.

I Final results added in quadrature.
0

1

20 40 60 80 100
0.01

0.1

pjet
T [GeV]

|d
σ
/
d
p
je
t

T
|[

p
b
/
G
e
V
]

mH =125GeV
gg → H (8TeV)

(R=0.4, µFO=mH)

full NNLOsingular

nonsingular

ÈYÈ £ 2

ΜH

ΜB ΜS

0 20 40 60 80
0

50

100

150

200

T0

Μi
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Preserving the total cross-section

I Different advantages in resumming the
cumulant (better cross-section and
correlated unc.) or the spectrum (better
profiles in trans and tail region and
better point-by-point unc.)

I The two approaches only agree at all
order. When the series is truncated
results are incompatible.

I Similar problem in preserving total xsec
in matched QCD resummation solved
with ad-hoc smoother.

I We add higher-order term to the
spectrum such that integral get closer
to cumulant. Add the exact difference
to central to restore it completely.

I Correlations now enforced by hand,
automatic method to select profile scale
enforcing correlations under
investigation.

[slide from J. Walsh]
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Combining fully exclusive NNLO with LL resummation.

I We have worked out analytically the ingredients (and the recipe) needed to
achieve NNLO accuracy in LL accurate SMC. [1311.0286]

dσMC
N

dΦN
(T cut
N ),

dσMC
≥N+1

dΦN+1
(TN>T cut

N )︷ ︸︸ ︷
dσMC

N+1

dΦN+1
(TN > T cut

N ; T cut
N+1),

dσMC
≥N+2

dΦN+2
(TN > T cut

N , TN+1 > T cut
N+1)
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I Exclusive N-jet cross section

dσMC
N

dΦN
(T cut
N ) =

dσC≥N
dΦN

∆N (ΦN ; T cut
N )︸ ︷︷ ︸

resummed

+
dσC−SN

dΦN
(T cut
N )︸ ︷︷ ︸

FO singular matching

+
dσB−CN

dΦN
(T cut
N )︸ ︷︷ ︸

FO nonsingular
matching
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N )
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• Singular part of NNLO cross-section, contains all log(T cut
N )

• Sudakov factor, provides (at least) LL resummation of T cut
N

∆N (ΦN ; T cut
N ) = exp

{
−
∫

dΦN+1

dΦN

SN+1(ΦN+1)

BN (Φ̂N )
θ[TN (ΦN+1) > T cut

N ]

}
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+
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FO nonsingular
matching

• Singular part of NNLO cross-section, contains all log(T cut
N )

• Sudakov factor, provides LL resummation of T cut
N

• Corrects singular T cut
N dependence from Sudakov expansion.
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dσMC
N

dΦN
(T cut
N ),

dσMC
≥N+1

dΦN+1
(TN>T cut

N )︷ ︸︸ ︷
dσMC

N+1

dΦN+1
(TN > T cut

N ; T cut
N+1),

dσMC
≥N+2

dΦN+2
(TN > T cut

N , TN+1 > T cut
N+1)

I Exclusive N-jet cross section

dσMC
N

dΦN
(T cut
N ) =

dσC≥N
dΦN

∆N (ΦN ; T cut
N )︸ ︷︷ ︸

resummed

+
dσC−SN

dΦN
(T cut
N )︸ ︷︷ ︸

FO singular matching

+
dσB−CN

dΦN
(T cut
N )︸ ︷︷ ︸

FO nonsingular
matching

• Singular part of NNLO cross-section, contains all log(T cut
N )

• Sudakov factor, provides LL resummation of T cut
N

• Corrects singular T cut
N dependence from Sudakov expansion.

• Corrects the finite terms to the exact inclusive cross section.
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FO singular matching

+
dσB−CN

dΦN
(T cut
N )︸ ︷︷ ︸

FO nonsingular
matching

I Inclusive N+1-jet cross section (NLO+LL)

dσMC
≥N+1

dΦN+1
(TN > T cut

N )=
dσC≥N
dΦN

∣∣∣∣
ΦN=Φ̂N

SN+1(ΦN+1)

BN (Φ̂N )
∆N (Φ̂N ; TN ) θ(TN > T cut

N )

+
dσC−S≥N+1

dΦN+1
(TN > T cut

N ) +
dσB−C≥N+1

dΦN+1
(TN > T cut

N )
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(T cut
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I Inclusive N+1-jet cross section (NLO+LL)

dσMC
≥N+1

dΦN+1
(TN > T cut

N )=
dσC≥N
dΦN

∣∣∣∣
ΦN=Φ̂N

SN+1(ΦN+1)

BN (Φ̂N )
∆N (Φ̂N ; TN ) θ(TN > T cut

N )

+
dσC−S≥N+1

dΦN+1
(TN > T cut

N ) +
dσB−C≥N+1

dΦN+1
(TN > T cut

N )

I Inclusive N-jet cross-section correct by construction, since they are related
by exact derivative.
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Combining fully exclusive NNLO with LL resummation.

I Split up inclusive N+1-jet cross section using resolution scale T cut
N+1

I Exclusive N+1-jet cross section (NLO+LL)

dσMC
N+1

dΦN+1
(TN > T cut

N ; T cut
N+1) =

resummed︷ ︸︸ ︷
dσ′C≥N+1

dΦN+1
(TN > T cut

N ) ∆N+1(ΦN+1; T cut
N+1)

+

(
dσC−SN+1

dΦN+1︸ ︷︷ ︸
FO singular
matching

+
dσB−CN+1

dΦN+1︸ ︷︷ ︸
FO nonsing.

matching

)
(TN > T cut

N ; T cut
N+1)

I Inclusive N+2-jet cross section (LO+LL)

dσMC
≥N+2

dΦN+2
(TN > T cut

N , TN+1 > T cut
N+1) =

dσ′C≥N+1

dΦN+1
(TN > T cut

N )

∣∣∣∣
ΦN+1=Φ̂N+1

× SN+2(ΦN+2)

BN+1(Φ̂N+1)
∆N+1(Φ̂N+1; TN+1) θ(TN+1 > T cut

N+1)

+

(
dσC−S≥N+2

dΦN+2
+

dσB−C≥N+2

dΦN+2

)
(TN > T cut

N , TN+1 > T cut
N+1)
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Adding the parton shower.

I Use the NNLO+LL fully-exclusive results dσMC
N , dσMC

N+1,dσ
MC
>N+2 as event

weights and their kinematics as starting point for showering.

Simone Alioli | GENEVA | PSR15 27/5/2015 | page 15



Adding the parton shower.

I Use the NNLO+LL fully-exclusive results dσMC
N , dσMC

N+1,dσ
MC
>N+2 as event

weights and their kinematics as starting point for showering.

I Three conditions have to be satisfied for the shower matching:

Simone Alioli | GENEVA | PSR15 27/5/2015 | page 15



Adding the parton shower.

I Use the NNLO+LL fully-exclusive results dσMC
N , dσMC

N+1,dσ
MC
>N+2 as event

weights and their kinematics as starting point for showering.

I Three conditions have to be satisfied for the shower matching:

1) Any exclusive observable must be (at least) LL in resummation regions;
maintain logarithmic accuracy of TN and TN+1 from MC cross sections.

Simone Alioli | GENEVA | PSR15 27/5/2015 | page 15



Adding the parton shower.

I Use the NNLO+LL fully-exclusive results dσMC
N , dσMC

N+1,dσ
MC
>N+2 as event

weights and their kinematics as starting point for showering.

I Three conditions have to be satisfied for the shower matching:

1) Any exclusive observable must be (at least) LL in resummation regions;
maintain logarithmic accuracy of TN and TN+1 from MC cross sections.
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respective resolved regions. No FO requirements for unresolved regions,
only filled by shower.
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N+1 only enters at higher orders.

I Conditions above also ensure double-counting is avoided.
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Adding the parton shower.

I Use the NNLO+LL fully-exclusive results dσMC
N , dσMC

N+1,dσ
MC
>N+2 as event

weights and their kinematics as starting point for showering.

I Three conditions have to be satisfied for the shower matching:

1) Any exclusive observable must be (at least) LL in resummation regions;
maintain logarithmic accuracy of TN and TN+1 from MC cross sections.

2) NNLO accuracy for N-jet obs. , NLO for N+1-jet and LO for N+2-jet, in
respective resolved regions. No FO requirements for unresolved regions,
only filled by shower.

3) Any leftover dependence on T cut
N and T cut

N+1 only enters at higher orders.

I Conditions above also ensure double-counting is avoided.

I Caveat: when showering the
NNLO N-jet bin care must be
taken.

Single parton variables not IR-safe
at NNLO
Conditions above could be applied
after showering as a global veto

pcut
T pcut

T
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NNLO+PS in GENEVA

I What do we need need to make a NNLO+PS out of GENEVA ?

I Inclusive cross section NNLL’ +
NLO accurate

I Perturbative O (αs) everywhere
I Logarithms of merging scale (T cut

N )
cancel at NNLL’ by construction:
merging of 2 NLOs is a by-product

I Starting from NNLL’ resummation, NNLO singular is automatically included

X dσC≥N
dΦN

∆N (ΦN ; T cut
N )→ dσresummed

N
dΦN

(T cut
N ) X dσC−S

N
dΦN

(T cut
N ) = 0

%
dσB−C
N

dΦN
(T cut
N )→ dσ

nonsingular
N

dΦN
(T cut
N ) suppressed by powers of T cut

N

I Only non-singular power-supressed contribution stemming from RV and
RR are missing. Their effect can be made negligible by lowering T cut

N .
I Adding the NNLO non-singular terms back to 0-jet bin allows to raise T cut

N

to more moderate values.
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NNLO validation

I NNLO xsec and inclusive distributions validated against DYNNLO. Also
checked against VRAP
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I Comparison for 7 TeV LHC, T cut
0 = 1. Very good agreement for NNLO

quantities, both central scale and variations.
I Non-trivial correlations for outer scales, ad-hoc procedure to ensure exact

reproducibility of fixed-order variations.
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Including T 1 resummation

I Define separately excl. 1-jet and incl. 2-jets using T cut
1

dσMC
0

dΦ0
(T cut

0 ) =
dσresum

0

dΦ0
(T cut

0 ) +
dσnons

0

dΦ0
(T cut

0 ) ,

dσMC
1

dΦ1
(T0 > T cut

0 ; T cut
1 ) =

dσresum
1

dΦ1
(T0 > T cut

0 ; T cut
1 ) +

dσnons
1

dΦ1
(T0 > T cut

0 ; T cut
1 ) ,

dσMC
≥2

dΦ2
(T0 > T cut

0 , T1 > T cut
1 ) =

dσresum
≥2

dΦ2
(T0 > T cut

0 ) θ(T1 > T cut
1 )

+
dσnons
≥2

dΦ2
(T0 > T cut

0 , T1 > T cut
1 ) .

I We also perform a Sudakov-like LL resummation of T cut
1 to obtain a

sensible separation between 1 and 2 jets, always enforcing unitarity

dσresum
1

dΦ1
(T0 > T cut

0 ; T cut
1 ) =

dσC≥1

dΦ1
(T0 > T cut

0 )U1(Φ1, T cut
1 ) ,

dσresum
≥2

dΦ2
(T0 > T cut

0 ) =
dσC≥1

dΦ1
(T0 > T cut

0 )U ′1(Φ1, T1)

∣∣∣∣
Φ1=ΦT1 (Φ2)

P(Φ2) ,
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Including T 1 resummation

I Some freedom in choice of what gets exponentianted by the U1 Sudakov
dσC≥1

dΦ1
(T0 > T cut

0 ) =
dσresum
≥1

dΦ1
θ(T0 > T cut

0 ) +

[
dσC≥1

dΦ1
(T0 > T cut

0 )

]
NLO1

−
dσs
≥1

dΦ1
θ(T0 > T cut

0 ) ,[
dσC≥1

dΦ1
(T0 > T cut

0 )

]
NLO1

= (B1 + V1)(Φ1) θ(T0 > T cut
0 ) +

∫
dΦ2

dΦ̃1

C2(Φ2) θ(T̃0 > T cut
0 ) .

I The complement gets automatically taken care of by the non-singular
contributions. Dependence on T cut

1 cancels by construction.

dσnons
1

dΦ1
(T cut

1 ) =

∫
dΦ2

[
B2(Φ2)

dΦT1
θ(T0 > T cut

0 )θ(T1 < T cut
1 )− C2(Φ2)

dΦ̃1

θ(T̃0 > T cut
0 )

]
−B1(Φ1)U

(1)
1 (Φ1, T cut

1 ) ,

dσnons
≥2

dΦ2
(T1 > T cut

1 ) =
{
B2(Φ2) [1−ΘT (Φ2) θ(T1 < T cut

1 )]

−B1(ΦT1 )U
(1)′
1 (ΦT1 , T1)P(Φ2) θ(T1 > T cut

1 )
}
θ(T0 > T cut

0 ) .
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Showering and Hadronization

I Push T cut
0 towards zero allows to replace as much of the shower as

possible with GENEVA higher logarithmic resummation.
I However, ultimately non-perturbative effects have to take over.
I Shower fills in T0 < T cut

0 from 0-jet events and T1 < T cut
1 from 1-jet ones.

Small spill-over parameter λ > |T
GE+PY
0 −T GE0 |

T GE0
.

I Internal shower machinery untouched. Running shower repeatedly until
conditions are met. Choice of starting scale can make showering quite
efficient.
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Showering and hadronization

T0− constrained T0− unconstrained

I At small T0, large shift from unconstrained shower even when T cut
1 small.

I Hadronization completely unconstrained and left to Pythia.
I As expected, O(1) shift in peak region. At larger T0 it only reduces to power

corrections
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Showering and hadronization

I Inclusive quantities not modified
I PYTHIA 8 tuning to data includes tuning of the shower parameters→

replacing PYTHIA by GENEVA showering could imply re-tuning is
necessary
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Showering and hadronization

I PYTHIA8 includes variations of perturbative parameters into tunes.
I Some distributions particularly sensitive to PYTHIA8 choices.
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Showering and hadronization

I First study to determine freedom in selection of particular PYTHIA8
parameters governing the shower, like pref

T0
or αs(MZ)

I Adopted approach much more conservative than standard ranges
suggested in PYTHIA manual.

I Trying to leave only true non-perturbative effects to further tuning.
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Showering and Hadronization

I How much is T0 constrain affecting the shower ?
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Showering and Hadronization

I How can we relax the T0 constrain ?

We need the shower to fill back the
phase space that we consider
unresolved. This specifically depends
on the map we have used in the
calculation. Pythia uses a very different
map.

I Do the first 1→ 2 splitting ourselves
with out T0-preserving map and using a
LL U1(Φ1; T cut

1 , T IR
1 ) Sudakov.

I PYTHIA will then start after our first
emission, no further constraint on it.

I One could use NLL U1(Φ1; T cut
1 , T IR

1 )
or use POWHEG/MC@NLO method to
do this splitting with higher accuracy.

dσMC
1

dΦ1
(T0>T cut

0 ;T cut
1 ;T IR

1 ) =
dσMC

1
dΦ1

(T0>T cut
0 ;T cut

1 )U1(Φ1;T cut
1 ,T IR

1 ) ,

dσMC
≥2

dΦ2
(T0>T cut

0 ,T1>T IR
1 ) =

dσMC
≥2

dΦ2
(T0>T cut

0 ,T1>T cut
1 )

+
dσMC

1
dΦ1

(T0>T cut
0 ;T cut

1 )U′1(Φ1;T cut
1 ,T1)

∣∣∣∣
Φ1=ΦT1 (Φ2)

P(Φ2) .
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Predictions for other observables : qT and φ∗

I Comparison with DYqT Bozzi et al. arXiv:1007.2351 and BDMT results Banfi et al.

arXiv:1205.4760

I Inclusive cuts for DYqT, ATLAS cuts for BDMT. Each normalized to own XS.
I Analytic predictions formally higher log accuracy than GENEVA
I PYTHIA8 provides non-perturbative hadronization corrections
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I φ∗ strongly correlated to qT , φ∗ = tan
(
π−∆φ

2

)
sin θ∗ ≈

∣∣∣∑i

kT,i
Q

sinφi

∣∣∣
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Predictions for other observables : jet-veto acceptance

I Comparison with JetVHeto results Banfi et al. arXiv:1308.4634

I Analytic predictions at NNLL formally higher log accuracy than GENEVA
I Must reduce to total xsec in the tail. Small differences due to different

hard-scale and NWA.
I Non-trivial propagation of spectrum uncertainties to cumulant result.

Neglected correlations yield larger uncertainties.
I Imposing total XS hard variations only results in small uncertainties in peak

region.
uncorrelated variations
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Predictions for other observables : jet-veto acceptance

I Comparison with JetVHeto results Banfi et al. arXiv:1308.4634

I Analytic predictions at NNLL formally higher log accuracy than GENEVA
I Must reduce to total xsec in the tail. Small differences due to different

hard-scale and NWA.
I Non-trivial propagation of spectrum uncertainties to cumulant result.

Neglected correlations yield larger uncertainties.
I Imposing total XS hard variations only results in small uncertainties in peak

region.
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I Testing new profile scales that correctly capture the right uncertainty.
see J. Walsh talk at SCET ’15
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Comparisons with data

I First preliminary results for 7 TeV LHC .
I Results consistent with NNLO0 MC expectations
I Higher multiplicities could be improved at LO with standard CKKW /MLM

approaches
I Provided sufficent resummation available for TN further NLO matrix elements could

be included.
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Comparisons with data

I Preliminary comparisons. All scale variations show to provide breakdown on
uncertainties.

I More accurate uncertainty requires the envelope of resummation scales added in
quadrature to hard scale variations.

I For inclusive quantities, fixed order scale variations including correlations provide
the best estimate of theory uncertainty
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Comparisons with Z/γ∗pT LHC 7 TeV data

I Preliminary comparisons. All scale variations shown to provide breakdown on
uncertainties.

I More accurate uncertainty requires the envelope of resummation scales added in
quadrature to hard scale variations.

ATLAS 2011 ATLAS 2014
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Comparisons with Z/γ∗pT LHC 7 TeV data

I Preliminary comparisons. All scale variations shown to provide breakdown on
uncertainties.

I More accurate uncertainty requires the envelope of resummation scales added in
quadrature to hard scale variations.

BDMT ATLAS 2014
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Comparisons with Z/γ∗pT LHC 7 TeV data

I Preliminary comparisons. All scale variations shown to provide breakdown on
uncertainties.

I More accurate uncertainty requires the envelope of resummation scales added in
quadrature to hard scale variations.

NNLO ATLAS 2014

I NNLO Z + 1-jet required to reduce theory uncertainty in the tail.
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Comparisons with Z/γ∗pT LHC 7 TeV data

I Preliminary comparisons. All scale variations shown to provide breakdown on
uncertainties.

I More accurate uncertainty requires the envelope of resummation scales added in
quadrature to hard scale variations.

MC ATLAS 2014

I NNLO Z + 1-jet required to reduce theory uncertainty in the tail.
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Comparisons with φ∗ LHC 7 TeV data

I Similar good agreement in φ∗ distribution

ATLAS 2012 BDMT / RESBOS
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Comparisons with φ∗ LHC 7 TeV data

I Similar good agreement in φ∗ distribution

ATLAS 2012 MC
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Conclusions and outlook

is NNLO event generator that can be interfaced with
shower/hadronization.

I Based on IR-safe, jet-like definitions of events.
I Uses a physics observable, N-jettiness, factorizable and whose resummation is

known to NNLL as jet resolution parameter. e+e− and Drell-Yan results extremely
encouraging.

I Worked out theoretical framework for NNLO+PS: given formulas for jet cross section
at the necessary accuracy in both fixed order (NNLON ,NLON+1,LON+2) and
resummation regions (LL). Discussed shower matching.

I POWHEG, MC@NLO, GENEVA and MiNLO-NNLOPS re-derived as special limits.
GENEVA also immediately follows, imposing NNLL’ accuracy .

I Good agreement with analytical calculation / tools and with LHC data.

Future directions:

• Adding more jets, e.g. pp→ V + 0, 1, 2 and validation with LHC data.
• Next process is gg → H + 0, 1, 2 jets.
• Investigate resummation of different resolution parameters / double resummation
• Study interface to other SMC: HERWIG++, SHERPA . . .
• Comprehensive tuning program of GENEVA + SMC.

Thank you for your attention!
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GENEVA: quick overview

Combines 3 key ingredients in a
single framework:

1. Fully Exclusive NLO Calculations
I NLON , NLON+1, . . .

2. Higher-order Resummation (using
SCET, but not limited to it)
I LLO, NLLO, NLL’O, NNLLO . . .

3. Parton Shower and Hadronization
I Pythia8, Herwig++, . . .

GENEVA guiding principle
Give a coherent description at the Next-to-Lowest perturbative accuracy in
both fixed-order perturbation theory and logarithmic resummation, including
event-by-event theoretical uncertainties, and combine it with parton shower
and hadronization.
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First application: e+e−→ jets

X Simpler process to test our construction.

X Thrust spectrum known to N3LL’T + NNLO3.

X Several 2-jet shapes known to NNLLO+NNLO3.

X LEP data available for validation.

• Use 2- and 3-jettiness.

T2 =Ecm

(
1−maxn̂

∑
k |n̂ · ~pk|∑
k |~pk|

)
=Ecm(1− T )

• Opportunely partitioning the
phase-space

• Perturbatively calculating
NLO/Resumm. jet-cross sections. dσ

dΦ2
(T cut

2 )︸ ︷︷ ︸
NNLL′T2

dσ

dΦ3
(T2, T cut

3 ) +
dσ

dΦ4
(T2, T3)︸ ︷︷ ︸

NNLL′T2+NLO3
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Resummation of T 2

I GENEVA precisely reproduces full NNLL’+NLO3 analytic result :
simply getting out what we put in!
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• Error bars are always theory uncertainties, obtained via scale variations.
Statistical uncertainties negligible and not shown.

• Resummation unc. obtained via quadrature sum of single scale variations
(µS , µJ ) inside profile scale bands plus direct sum of FO uncertainties (µH ).

• GENEVA T cut
2 = 1 GeV above

• Theoretical uncertainties agree across most of the spectrum, differences after
kinematic 3-body endpoint consequence of different matching procedure
(multiplicative vs. additive). Simone Alioli | GENEVA | PSR15 27/5/2015 | page 36
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• Error bars are always theory uncertainties, obtained via scale variations.
Statistical uncertainties negligible and not shown.

• Resummation unc. obtained via quadrature sum of single scale variations
(µS , µJ ) inside profile scale bands plus direct sum of FO uncertainties (µH ).

• GENEVA T cut
2 = 1 GeV above

• Theoretical uncertainties agree across most of the spectrum, differences after
kinematic 3-body endpoint consequence of different matching procedure
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Interface with the parton shower

I The shower must not be allowed to spoil NNLL’T accuracy of GENEVA,
but only used to fill out jets.

I T2 spectrum for 3 and 4-parton events constrained by higher-order
resummation. Only allow small variations ∆T2 < T cut

2 (1 + ε).
I 2-parton events must remain in 2-jets bin, up to small corrections
I Similarly for T3(Φ4) spectrum and 3-jets bin. Proxy for T -ordered PS.
I Shower unconstrained in the far tail at the moment, since only LO4 there.
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Interface with the parton shower

I The shower must not be allowed to spoil NNLL’T accuracy of GENEVA,
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Interface with the parton shower

I The shower must not be allowed to spoil NNLL’T accuracy of GENEVA,
but only used to fill out jets.
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Accuracy of observables different from resolution parameter

I After showering we are formally limited by shower resummation for generic
observables O 6= T∈. Naively, (N)LL is expected.

I What is the perturbative accuracy we obtain for other O ?
I C-parameter – perturbative structure very similar to T2
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I Good agreement in central values and scale uncertainties envelopes at
NNLL, also for observables with a very different resummation structure.

I NNLL resummation allows to push T cut
2 to very small values, effectively

replacing the shower evolution.
I Ultimately, we rely on Pythia8 hadronization model for non-pert. physics.
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NNLL, also for observables with a very different resummation structure.
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replacing the shower evolution.
I Ultimately, we rely on Pythia8 hadronization model for non-pert. physics.
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NNLL, also for observables with a very different resummation structure.

I NNLL resummation allows to push T cut
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replacing the shower evolution.
I Ultimately, we rely on Pythia8 hadronization model for non-pert. physics.
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Accuracy of observables different from resolution parameter

I After showering we are formally limited by shower resummation for generic
observables O 6= T∈. Naively, (N)LL is expected.

I What is the perturbative accuracy we obtain for other O ?
I C-parameter – perturbative structure very similar to T2
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I Good agreement in central values and scale uncertainties envelopes at
NNLL, also for observables with a very different resummation structure.

I NNLL resummation allows to push T cut
2 to very small values, effectively

replacing the shower evolution.
I Ultimately, we rely on Pythia8 hadronization model for non-pert. physics.
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Accuracy of observables different from resolution parameter

I After showering we are formally limited by shower resummation for generic
observables O 6= T∈. Naively, (N)LL is expected.

I What is the perturbative accuracy we obtain for other O ?

I Heavy jet mass – perturbative structure partially related to T2
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I Good agreement in central values and scale uncertainties envelopes at
NNLL, also for observables with a very different resummation structure.

I NNLL resummation allows to push T cut
2 to very small values, effectively

replacing the shower evolution.
I Ultimately, we rely on Pythia8 hadronization model for non-pert. physics.
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Accuracy of observables different from resolution parameter

I After showering we are formally limited by shower resummation for generic
observables O 6= T∈. Naively, (N)LL is expected.

I What is the perturbative accuracy we obtain for other O ?

I Jet Broadening – perturbative structure completely different from T2
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I Good agreement in central values and scale uncertainties envelopes at
NNLL, also for observables with a very different resummation structure.

I NNLL resummation allows to push T cut
2 to very small values, effectively

replacing the shower evolution.
I Ultimately, we rely on Pythia8 hadronization model for non-pert. physics.
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Hadronization and comparison with LEP data.

• Two-jettiness = Ecm(1− T )
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I Hadronization (non-perturbative effect) is unconstrained.
I No ad-hoc tune yet, default Pythia8 Tune1 with αs(mZ) = 0.1135 from τ

fits.
[Abbate et al. 1006.3080]

I Large shift due to hadronization, O(1), in the peak.
I Power suppressed effects elsewhere, as expected.
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Hadronization and comparison with LEP data.

• C-parameter
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Hadronization and comparison with LEP data.

• Heavy jet mass

ò

ò

ò

ò

ò

ò

ò

ò

ò

0
0

200

400

600

800

1000

1200

0.02 0.04 0.06 0.08 0.1
ρ

d
σ
/
d
ρ
[n
b
] GENEVA+PYTHIA8

ALEPH (91.2GeV)

OPAL (91.2GeV)

Default

Tune 3

αs(mZ)=0.118

No hadr.

ò

ò

ò

0

20

40

60

80

100

120

0.1 0.12 0.14 0.16 0.18 0.2
ρ

d
σ
/
d
ρ
[n
b
]

GENEVA+PYTHIA8

ALEPH (91.2GeV)

OPAL (91.2GeV)

Default

Tune 3

αs(mZ)=0.118

No hadr.

I Hadronization (non-perturbative effect) is unconstrained.
I No ad-hoc tune yet, default Pythia8 Tune1 with αs(mZ) = 0.1135 from τ

fits.
[Abbate et al. 1006.3080]

I Large shift due to hadronization, O(1), in the peak.
I Power suppressed effects elsewhere, as expected.

Simone Alioli | GENEVA | PSR15 27/5/2015 | page 39



Hadronization and comparison with LEP data.

• Jet Broadening
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Comparison with existing approaches: MiNLO NNLO+PS.

I MiNLO v1 is CKKW-inspired recipe to set a priori the scales of a NLO
calculation involving multiple scales. [Hamilton et al. 1206.3572]
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I Like CKKW, it also includes LL Sudakovs factors, that regulate IR
divergencies (e.g. H+1 jets finite pjT → 0)
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I NLO accuracy for inclusive sample not achieved in MiNLO v1
The reason is that resumming qTcut with LL Sudakov generates terms O(α1.5
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Comparison with existing approaches: MiNLO NNLO+PS.

I MiNLO v1 is CKKW-inspired recipe to set a priori the scales of a NLO
calculation involving multiple scales. [Hamilton et al. 1206.3572]

I Like CKKW, it also includes LL Sudakovs factors, that regulate IR
divergencies (e.g. H+1 jets finite pjT → 0)

I NLO accuracy for inclusive sample not achieved in MiNLO v1
The reason is that resumming qTcut with LL Sudakov generates terms O(α1.5

s )

I By carefully comparing with NNLL resummation and including missing
terms (B2) in MiNLO Sudakovs, NLO accuracy for inclusive sample can be
restored→ MiNLO v2 . [Hamilton et al. 1212.4504]
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calculation involving multiple scales. [Hamilton et al. 1206.3572]

I Like CKKW, it also includes LL Sudakovs factors, that regulate IR
divergencies (e.g. H+1 jets finite pjT → 0)

I NLO accuracy for inclusive sample not achieved in MiNLO v1
The reason is that resumming qTcut with LL Sudakov generates terms O(α1.5

s )

I By carefully comparing with NNLL resummation and including missing
terms (B2) in MiNLO Sudakovs, NLO accuracy for inclusive sample can be
restored→ MiNLO v2 . [Hamilton et al. 1212.4504]

I Merging scale can be basically pushed to ΛQCD: achieves NLO merging
without merging scale (H+0 jets is never present)
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Comparison with existing approaches: MiNLO NNLO+PS.

I MiNLO v1 is CKKW-inspired recipe to set a priori the scales of a NLO
calculation involving multiple scales. [Hamilton et al. 1206.3572]

I Like CKKW, it also includes LL Sudakovs factors, that regulate IR
divergencies (e.g. H+1 jets finite pjT → 0)

I NLO accuracy for inclusive sample not achieved in MiNLO v1
The reason is that resumming qTcut with LL Sudakov generates terms O(α1.5

s )

I By carefully comparing with NNLL resummation and including missing
terms (B2) in MiNLO Sudakovs, NLO accuracy for inclusive sample can be
restored→ MiNLO v2 . [Hamilton et al. 1212.4504]

I Merging scale can be basically pushed to ΛQCD: achieves NLO merging
without merging scale (H+0 jets is never present)

I For simple processes (e.g. gg → H), using HNNLO [Catani et al. 0801.3232] for
event-by-event reweighting results in a NNLO+PS [Hamilton,Nason,Re,Zanderighi 1309.0017]

W (y) =

(
dσ
dy

)
HNNLO(

dσ
dy

)
HJ−MiNLO

=
c2α

2
S + c3α

3
S + c4α

4
S

c2α2
S + c3α3

S + c′4α
4
S + . . .

= 1 +
c4 − c′4
c2

α2
S + . . .

Integrates back to the total NNLO cross-section
NLO accuracy of Hj not spoiled
Need to reweight after generation
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Comparison with existing approaches: MiNLO NNLO+PS.

I Hj-MiNLO NNLO+PS results [Hamilton,Nason,Re,Zanderighi 1309.0017]
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Comparison with existing approaches: MiNLO NNLO+PS.

I Hj-MiNLO NNLO+PS results [Hamilton,Nason,Re,Zanderighi 1309.0017]
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Comparison with existing approaches: MiNLO NNLO+PS.

I Hj-MiNLO NNLO+PS results [Hamilton,Nason,Re,Zanderighi 1309.0017]
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I We have re-derived MiNLO NNLO+PS formula as a check of our
framework. It follows directly with a specific choice of splitting functions.

I Alternative choice of splitting functions proposed in [1311.0286] has pros and
cons: X No need to know NLL resummation for NNLO+PS

X No need to reweight after generation

% Can’t just simply run NNLO code as is . . .
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Comparison with existing approaches: MiNLO NNLO+PS.

I Also available for Z production [Karlberg et al. 1407.2949]
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Comparison with existing approaches: UNNLOPS.
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I Recent results from
SHERPA+BlackHat [1405.3607]

I Uses qT−subtraction for zero jet
bin (phase-space slicing)

I NNLO accuracy is maintained via
UNNLOPS approach, basically
enforcing spectrum is derivative of
the cumulant via unitarity
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N-jettiness subtractions

I Basic idea very much resemble qT -subtraction. Divide phase space into NNLON

and NLON+1 , only apply extra subtraction to NNLON .
I N-jettiness more powerful than qT of the colorless system (or massive colored

system). Any number of massless leg could in principle be dealt with.
I Simplest approach is to just use slicing. This amounts to approximate the α2

S terms
by their singular counterpart, neglecting α2

S non-singular
I First example of N-jettiness like slicing τ = (pb + pX)2/m2

t in top-decay Gao et al.

[1210.2808]

I 1-jettiness slicing recently applied to W + 1-jet and H + 1-jet production. Boughezal et al.

[1504.02131, 1505.03893] .
I Proper subtraction requires instead to use the singular to regulate the (integrated)

divergencies left over by the NLO subtraction (as done in qT -subtraction).

σ(X) = σs(X, Toff) +

∫
Tδ

dTN
[

dσ(X)

dTN
−

dσs(X)

dTN
θ(TN < Toff)

]
+O (δIR)

= σs(X, Toff) +

∫ Toff

Tδ
dTN

dσnons(X)

dTN
+

∫
Toff

dσ(X)

dTN
+O (δIR) .

I Method used in GENEVA for NNLO results SA et al. [1311.0286] .
I General method formalized in Gaunt et al. [1505.04794] . Also discussed how to make the

subtraction more differential for better numerical stability.

Simone Alioli | GENEVA | PSR15 27/5/2015 | page 44



N-jettiness subtractions

I The error can be estimated considering
dominant missing non-singulars at
O(αs) and O(α2

s ) go as

∆σ(1)(δIR)/σ(1) ≈ c δIR log δIR

∆σ(2)(δIR)/σ(2) ≈ c δIR log3 δIR

I When σ(2) is small, a larger ∆σ(2)(δIR)
could be tolerated.

I In any case, the correct behaviour of
the non-singular towards zero should
always be checked.

I This results from very delicate
cancellations between 2 divergent
quantities σ(τ)− σsing.(τ), so their ratio
going to 1 does not necessarily imply
σnon−sing.(τ) being zero.
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Beam Functions

µΛ µB µHchanging x changing t

I Beam functions are perturbative objects, connected to PDF via OPE in SCET

Bi(t, x;µB) =
∑
k

∫ 1

x

dξ

ξ
Iik
(
t,
x

ξ
;µB

)
fk(ξ;µB)

I Calculating these integral on-the-fly is computationally intensive
I We have prepared interpolation grids for all convolutions, will distribute them

independently from GENEVA
I These grids are essentially LHAPDF6 grids, we use the LHAPDF6 log-bicubic

interpolator to get the values on-the-fly
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Beam Functions

I Beam functions are perturbative objects, connected to PDF via OPE in SCET

Bi(t, x;µB) =
∑
k

∫ 1

x

dξ

ξ
Iik
(
t,
x

ξ
;µB

)
fk(ξ;µB)

I Calculating these integral on-the-fly is computationally intensive
I We have prepared interpolation grids for all convolutions, will distribute them

independently from GENEVA
I These grids are essentially LHAPDF6 grids, we use the LHAPDF6 log-bicubic

interpolator to get the values on-the-fly

I Results have been validated against direct integration, e.g. CT10NNLO Pgg
⊗
g
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