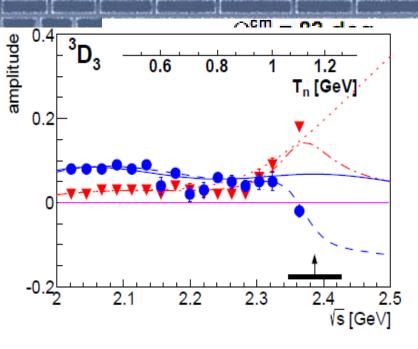
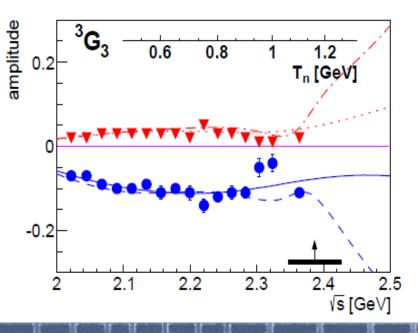

The quark model study of the dibaryon d*

Jialun Ping, Hongxia Huang Nanjing Normal University Fan Wang Nanjing University

Contents


- Motivation: the discovery of d* dibaryon
- Dynamical symmetry in strong interacting system
- Quark models for multi-quark system
- Dibaryon d* in quark models
 - Summary



section for the 2.15 GeV) up t Refs. [8] (open

this work for the FIG. 4 (color online). Top: Dalitz plots of $M_{d\pi^0}^2$ versus $M_{\pi^0\pi^0}^2$ 2—are given by at $\sqrt{s} = 2.38$ GeV (peak cross section) (left) and at $\sqrt{s} =$ sent the cross s 2.5 GeV (right). Bottom: Dalitz plot projections $M_{d\pi^0}^2$ (left) and tively, as expec $M^2_{\pi^0\pi^0}$ (right) axes at $\sqrt{s} = 2.38$ GeV. The curves denote calcurelations (see t lations for a s-channel resonance decaying into $\Delta \Delta$ with $J^P = 3^+$ resonance in the with (solid) and without (dash-dotted) form factor as well as for in the $\pi^0 \pi^0$ cha $J^P = 1^+$ (dashed). Hatched and shaded areas represent systematic uncertainties and phase-space distributions, respectively.

ections obtained from _{ator} for the beam energy V (dots), and 1.4 C Shown are the total c iency and Fermi mo s systematic uncertaint ted cross sections for I the *t*-channel $\Delta\Delta$ cor tion for a s-channel re 58 MeV (solid).

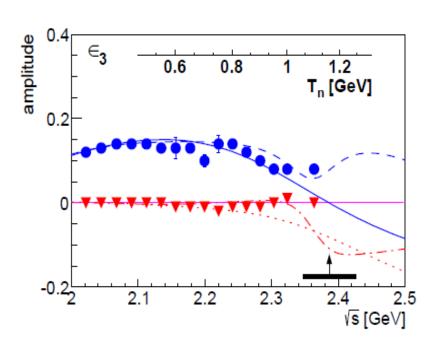
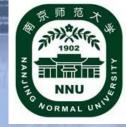



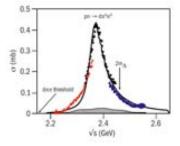
FIG. 3: (Color online) Changes to the (dimensionless) ${}^{3}D_{3}$ (top) and ${}^{3}G_{3}$ (middle) partial waves including their mixing amplitude ϵ_{3} (bottom). Solid (dotted) curves give the real (imaginary) part of the partial-wave amplitudes from SP07, whereas the dashed (dash-dotted) curves represent the new (weighted) solution. Results from previous single energy fits [16] are shown by solid circles (real part) and inverted triangles (imaginary part). Vertical arrow and horizontal bar indicate pole and width of the resonance.

CERN Courier 2011

http://cerncourier.com/cws/article/cern/46855

Aug 26, 2011

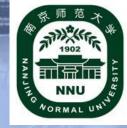
COSY finds evidence for an exotic particle...


Experiments at the Jülich Cooler Synchrotron, COSY, have found evidence for a new complex state in the two-baryon system, with mass 2.37 GeV and width 70 MeV. The structure, containing six valence quarks, could constitute either an exotic compact particle or a hadronic molecule. The result could cast light on the long-standing question of whether

WASA detector

there are eigenstates in the two-baryon system other than the deuteron ground-state. This has awaited an answer since Robert Jaffe first envisaged the possible existence of nontrivial six-quark configurations in QCD in 1977.

The new structure has been observed in high-precision measurements carried out by the WASA-at-COSY collaboration, using the Wide-Angle Shower Apparatus (WASA). The data exhibit a narrow isoscalar resonance-like structure in neutronproton collisions for events where a deuteron is produced together with a pair of neutral pions. From the differential distributions, the spin-parity of the new system is deduced to be $J^{P} = 3^{+}$ and its main decay mode is via formation of a $\Delta\Delta$ system below the nominal threshold of $2m_{\Delta}$. The collaboration will further test the resonance hypothesis in elastic protonneutron collisions with a polarized beam; the $J^{P} = 3^{+}$ partial waves should be dominated by the new structure, while its contribution to the elastic cross-section should be small.


The resonance structure also turns out to be intimately connected to the so-called ABC effect, in which the two pions produced in a nuclear fusion process are emitted preferentially in parallel. This 50-year-old puzzle,

Measurement of energy dependence

which is named after the initial letters of the surnames of its first observers A Abashian, N E Booth and K M Crowe, could now find its explanation in the way that such a resonance decays.

Further reading

P Adlarson et al. 2011 Phys. Rev. Lett. 106 242302.

CERN Courier 2014

http://cerncourier.com/cws/article/cern/57836

Jul 23, 2014

COSY confirms existence of six-quark states

Experiments at the Jülich Cooler Synchrotron (COSY) have found compelling evidence for a new state in the two-baryon system, with a mass of 2380 MeV, width of 80 MeV and quantum numbers $I(J^P) = O(3^+)$.

The structure, containing six valence quarks, constitutes a dibaryon, and could be either an exotic compact particle or a hadronic molecule. The result answers the long-standing question of whether there are more eigenstates in the twobaryon system than just the deuteron ground-state. This fundamental question has been awaiting an answer since at least 1964, when first Freeman Dyson and later Robert Jaffe envisaged the possible existence of non-trivial six-quark configurations.

Energy dependence

The new resonance was observed in high-precision measurements carried out by the WASA-at-COSY collaboration. The first signals of the new state had been seen before in neutron-proton collisions, where a deuteron is produced together

Quark configurations

with a pair of neutral pions (CERN Courier September 2011 p8). Now this state has also been observed in polarized neutronproton scattering and extracted using the partial-wave analysis technique - the generally accepted ultimate method to reveal a resonance. In the SAID partial-wave analysis, the inclusion of the new data produces a pole in the ³D₃ partial wave at (2380±10 - i 40±5) MeV.

The mass of the new state is amazingly close to that predicted originally by Dyson, based on SU(6) symmetry breaking. Moreover, recent state-of-the-art Faddeev calculations by Avraham Gal and Humberto Garcilazo reproduce the features of this new state very well. The quantum numbers favour this state as a dibaryon resonance - the "inevitable" non-strange dibaryon predicted by Terry Goldman and colleagues in 1989.

HNP2015, Krabi, T

Further reading

P Adlarson et al. 2014 Phys. Rev. Lett. 112 202301.

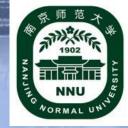
Theoretical side

1964, Dyson & Xuong, M(D₀₃)=2350 MeV (PRL13, 815)

no interesting

- 1977, Jaffe, H particle (PRL 38, 195)
- over 30 years searching: none
- 1989, T. Goldman,...,Fan Wang, (PRC 39, 1889)
 - "inevitable nonstrange dibaryon" d*
- 1995, Fan Wang, JL Ping, et al, (PRC 51, 3411)

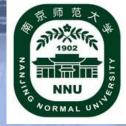
u,d,s world systematic searching


2009, JL Ping et al, (PRC 79, 024001)

d* as np scattering resonance

2013, Bashkanov et al., (PLB 727, 438)

hidden-color \rightarrow narrow width hidden-color \rightarrow narrow width


2014, F. Huang et al, arXiv:1408.0458,

Quark model: prediction power

 Gell-Mann-Zweig quark model: classification system -- *Eightfold Way* SU(3) flavor symmetry → Ω 1962: Theo. 1680 MeV (Gell-Mann-Okubo formula) 1964: Exp. 1686±12 MeV

Dyson & Xuong: Dibaryon M = A + B[T(T+1) + J(J+1) - 2] 1964: Theo. D₀₃ 2350 MeV
 2014: Exp. d* 2380 MeV
 The success of quark model

Dynamical symmetry in strong interaction system

- Dynamical symmetry:
 - H: Hamiltonian of a system

$$H = F(C, C_1, C_2, \dots) = F(C, C(s))$$

C,C₁,C₂,....: Casimir operators or class operators of group chain $G \supset G_1 \supset G_2 \supset \dots$ properties:

$$[H,G] \neq 0, \quad [H,C] = 0, [H,C(s)] = 0$$

Eigen energy of the system:

 $E = F(v, m_1, m_2,) = F(v, m)$

eigenvalues of operators C,C₁,C₂,.....

Group chain of quark system

Light hadron ground states:

orbital: U^x(1) (baryon) or SU^x(2) (dibaryon) color: SU^c(3) flavor: SU^f(3)

spin: $SU^{\sigma}(2)$

Group chain:

 $SU(18) \supset SU^{c}(3) \otimes (SU^{f\sigma}(6) \supset (SU^{f}(3) \supset SU^{I}(2) \otimes U^{Y}(1)) \otimes SU^{\sigma}(2))$ $[1^{n}] \quad [c] \quad [\mu] \quad [f] \quad I \quad Y \quad J$

Dynamical symmetry applied to light quark systems

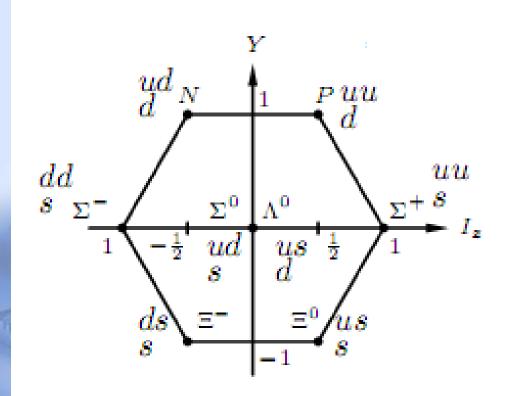

Color: singlet, [c] fixed

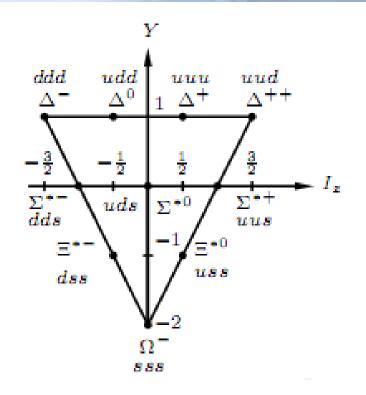
$$H = F(C_{SU^{f\sigma}(6)}, C_{SU^{f}(3)}, C_{SU^{I}(2)}, C_{U^{Y}(1)}, C_{SU^{\sigma}(2)})$$

$$M = M_0 + A C_{SU^{f}(3)} + B C_{SU^{\sigma}(2)} + C C_{U^{Y}(1)} + D C_{SU^{I}(2)}$$

Gursey-Radicati mass formula (PRL13(1964)173)

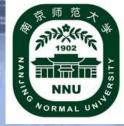
$$M = M_0 + A C_{SU^{f}(3)} + B J(J+1) + C Y + D \left[I(I+1) - Y^2 / 4 \right]$$

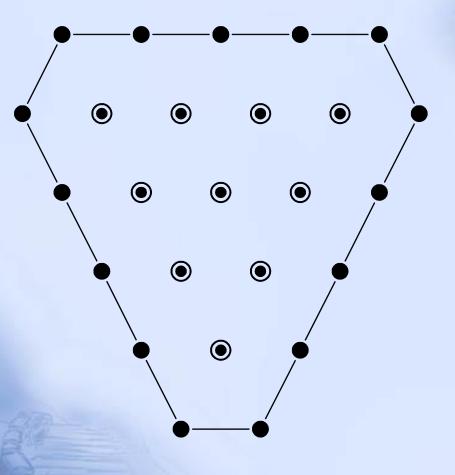


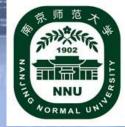


A=9.2962 B=48.238 C=-196.34 D=35.080 (unit: MeV)

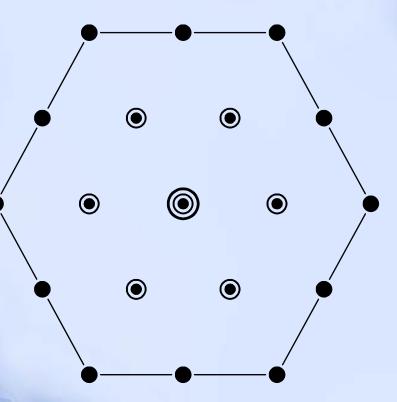
Baryon: M_0 =1021.9 MeV Dibaryon: M_0 =2093 MeV

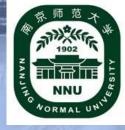

Baryons:

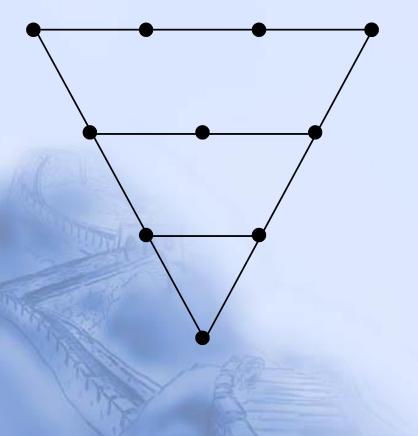

	Ν	Λ	Σ	Ξ	Δ	Σ*	Ξ*	Ω
Υ	1	0	0	-1	1	0	-1	-2
I.	1/2	0	1	1/2	3/2	1	1/2	0
J	1/2	1/2	1/2	1/2	3/2	3/2	3/2	3/2
[f]	[21]	[21]	[21]	[21]	[3]	[3]	[3]	[3]
theo	935	1114	1184	1328	1241	1384	1528	1672
err	2.6	1.9	2.6	1.6	4.8	3.8	2.7	1.7
ехр	939	1116	1193	1318	1232	1383	1533	1672

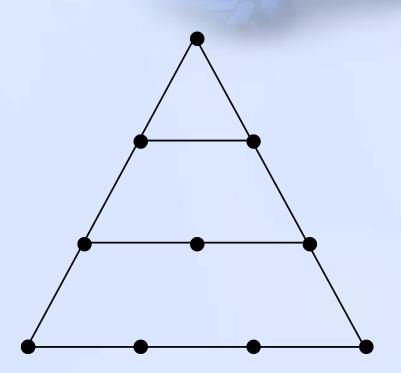


[f]=[6] dim=28




• [f]=[51] dim=35




• [f]=[42] dim=27

[f]=[411] dim=10 [f]=[33] dim=10

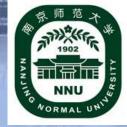
[f]=[321] dim=8

[f]=[222] dim=1

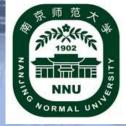
HNP2015, Krabi, Thailand, July 9

 $oldsymbol{O}$

Dibaryons:

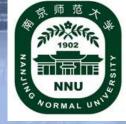

	D ₀₁	D ₁₀	D ₀₃	D ₃₀	D ₁₂	NΩ	ΩΩ	K H
Y	2	2	2	2	2	-1	-4	0
I	0	1	0	3	1	1/2	0	0
J	1	0	3	0	2	2	0	0
[f]	[33]	[42]	[33]	[6]	[42]	[321]	[6]	[222]
theo	1873	1884	2355	2420	2173	2652	3072	2093
err	5.6	6.6	6.6	13	7.2	4.0	4.7	2.9
exp	1876	1878?	2380	?	2148?	?	?	?

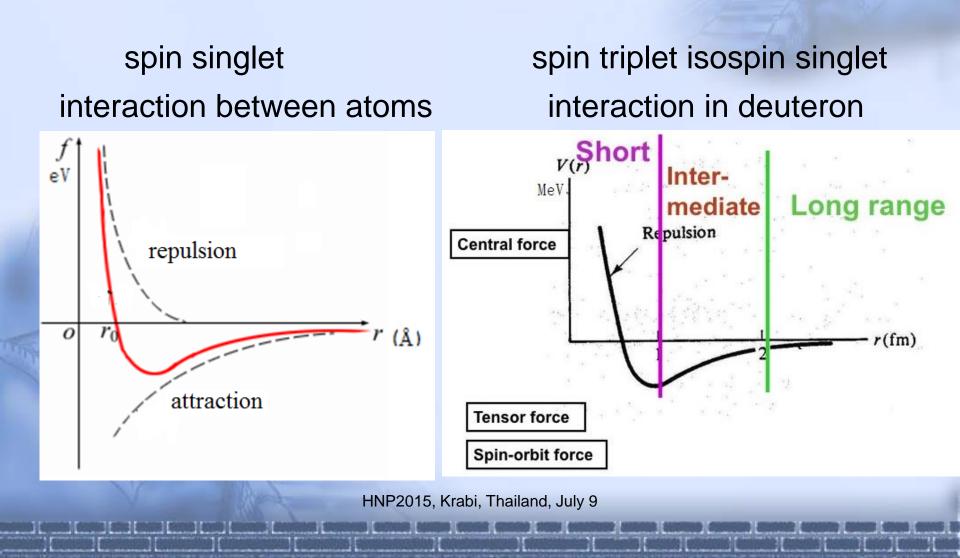
- D₀₁: deuteron (n-p bound state)
- D₁₀: di-neutron (zero-energy resonance)
- D₀₃: d*
- D₃₀: dibaryon candidate with larger decay width
- D₁₂: 1980's-1990's NN ¹D₂ phase shift

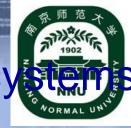

→ 2048-i59 MeV resonance.

 For the strange dibaryon: H(-200), mass is too low NΩ(-3½ 2): around threshold. HAL LQCD calculation arXiv:1403.7284[hep-lat]
 Ω Ω (-600): di-omega.

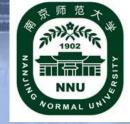
Glashow-Isgur naïve quark model


- Dynamical calculations of baryon masses and hadron interactions with quark models.
- GI model: Color confinement + One-gluon-exchange describes baryon properties quite well
 - Extended to multi-quark systems? fails to obtain the intermediate-range attraction of NN interaction


Quark model for multi-quark system

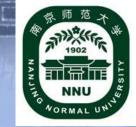

The criterions:

- 1. Describing the vast strong interaction experimental data from deuteron bound state to NN, YN scattering data.
- 2. Explaining the similarity of nuclear force and molecular force.
 - Predicting something new and if it confirmed by measurements.


Similarity between nuclear force and molecular force

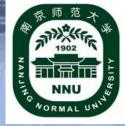
Improving quark models for multi-quark sy

- Two approaches:
- Chiral quark model: Color confinement + OGE + OBE describes hadron-hadron interactions well
 Quark delocalization color screening model (QDCSM) describes hadron-hadron interactions well, too F. Wang et al. PRL 69(1992)2901(arXiv:nucl-th/921002). G.H. Wu et al. PRC 53(1996)1161; NPA 673(2000)279.



Problems of chiral quark model

- fail to explain the similarity
 - between molecular force and nuclear force
 - Phenomenological one boson exchange and chiral perturbation have the same problem.
 - Phenomenological σ meson exchange effect is different from the correlated two-pion exchange:

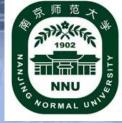

too weak attraction

N.Kaiser, et al., Nucl. Phys. **A637**, 395 (1998); E.Oset, et al., Prog. Theor. Phys. **103**, 351 (2000); M.Kaskulov et al., Phys. Rev. C **70**, 014002 (2004).

QDCSM (PRL69(1992)2901)

- Two ingredients (based on quark cluster model): quark delocalization (color and orbital destortion) color screening (an effective description of hidden color channel coupling.)
- describing deuteron, NN scattering, N-Hyperon scattering, flavor octet and decuplet BB interactions well
 PRL 69(1992)2901; PRC 53(1996)1161; NPA 673(2000)279......

Quark delocalization:

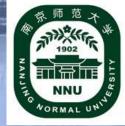

$$\psi_{l} = (\varphi_{l} + \varepsilon \varphi_{r}) / N, \ \psi_{r} = (\varphi_{r} + \varepsilon \varphi_{l}) / N$$
$$\varphi_{l} = \left(\frac{1}{2\pi b^{2}}\right)^{3/4} e^{-\frac{(\mathbf{r} + \mathbf{s}/2)^{2}}{2b^{2}}}, \quad \varphi_{r} = \left(\frac{1}{2\pi b^{2}}\right)^{3/4} e^{-\frac{(\mathbf{r} - \mathbf{s}/2)^{2}}{2b^{2}}}$$

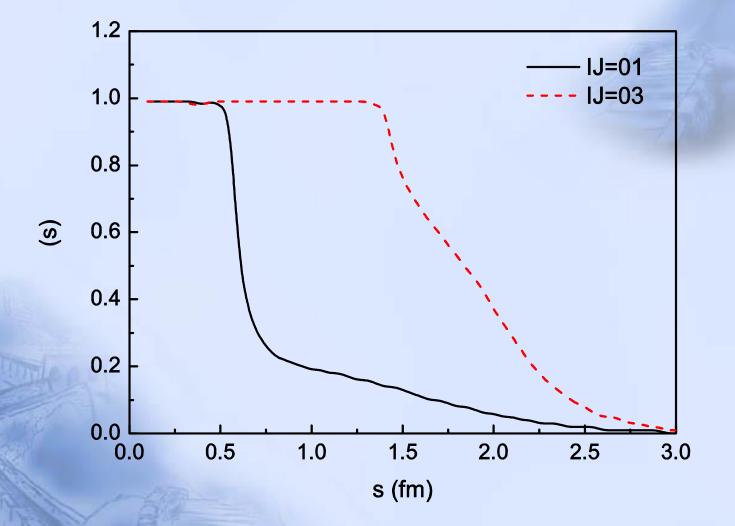
variational parameter $\epsilon(s) \leftarrow$ dynamics of system

The main advantage of QDCSM :

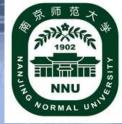
the delocalization parameter is determined through its own dynamics, so multiquark system chooses its most favorable configuration by its own dynamics.

QDCSM


Color screening:


qq interaction: inside baryon outside baryon

$$\begin{split} H &= \sum_{i=1}^{6} \left(m_{i} + \frac{p_{i}^{2}}{2m_{i}} \right) - T_{c} + \sum_{i < j} [V^{G}(r_{ij}) + V^{\pi}(r_{ij}) + V^{C}(r_{ij})], \\ V^{G}(r_{ij}) &= \frac{1}{4} \alpha_{s} \lambda_{i} \cdot \lambda_{j} \left[\frac{1}{r_{ij}} - \frac{\pi}{m_{q}^{2}} \left(1 + \frac{2}{3} \sigma_{i} \cdot \sigma_{j} \right) \delta(r_{ij}) - \frac{3}{4m_{q}^{2} r_{ij}^{3}} S_{ij} \right] + V_{ij}^{G,LS}, \\ V_{ij}^{G,LS} &= -\frac{\alpha_{s}}{4} \lambda_{i} \cdot \lambda_{j} \frac{1}{8m_{q}^{2}} \frac{3}{r_{ij}^{3}} [\mathbf{r}_{ij} \times (\mathbf{p}_{i} - \mathbf{p}_{j})] \cdot (\sigma_{i} + \sigma_{j}), \\ V^{\pi}(r_{ij}) &= \frac{1}{3} \alpha_{ch} \frac{\Lambda^{2}}{\Lambda^{2} - m_{\pi}^{2}} m_{\pi} \left\{ \left[Y(m_{\pi}r_{ij}) - \frac{\Lambda^{3}}{m_{\pi}^{3}} Y(\Lambda r_{ij}) \right] \sigma_{i} \cdot \sigma_{j} + \left[H(m_{\pi}r_{ij}) - \frac{\Lambda^{3}}{m_{\pi}^{3}} H(\Lambda r_{ij}) \right] S_{ij} \right\} \tau_{i} \cdot \tau_{j}, \\ V_{ij}^{\text{CON}}(r_{ij}) &= -a_{c} \lambda_{i} \cdot \lambda_{j} [f_{ij}(r_{ij}) + V_{0}] + V_{ij}^{C,LS}, \\ f_{ij}(r_{ij}) &= \left\{ \begin{array}{c} r_{ij}^{2} & \text{i,j in the same baryon orbit} \\ \frac{1}{\mu} \left(1 - e^{-\mu r_{ij}^{2}} \right), & \text{otherwise} \end{array} \right. \end{split}$$


different

the <u>color structure</u> is taken into consideration three gluons exchange →0 (inside baryon) = 0 (outside baryons)

RGM+GCM

RGM wavefunction

$$\Psi_{6q}\rangle = \mathcal{A}\sum_{L} \left[\left[\Phi_{B_1} \Psi_{B_2} \right]^{[\sigma]IS} \otimes \chi_L(\vec{R}) \right]^J,$$

$$\int H(\vec{R}, \vec{R}') \chi(\vec{R}') \,\mathrm{d}\vec{R}' = E \int N(\vec{R}, \vec{R}') \chi(\vec{R}') \,\mathrm{d}\vec{R}',$$

$$\chi(\vec{R}) = \frac{1}{\sqrt{4\pi}} \sum_{L} \left(\frac{3}{2\pi b^2}\right)^{3/4} \sum_{i} C_{i,L} \int e^{-\frac{3}{4}(\vec{R} - \vec{S}_i)^2/b^2} Y^L(\hat{\vec{S}}_i) d\Omega_{S_i}.$$

$$\sum_{j,L} C_{j,L} H_{i,j}^{L,L'} = E \sum_{j} C_{j,L'} N_{i,j}^{L'}$$

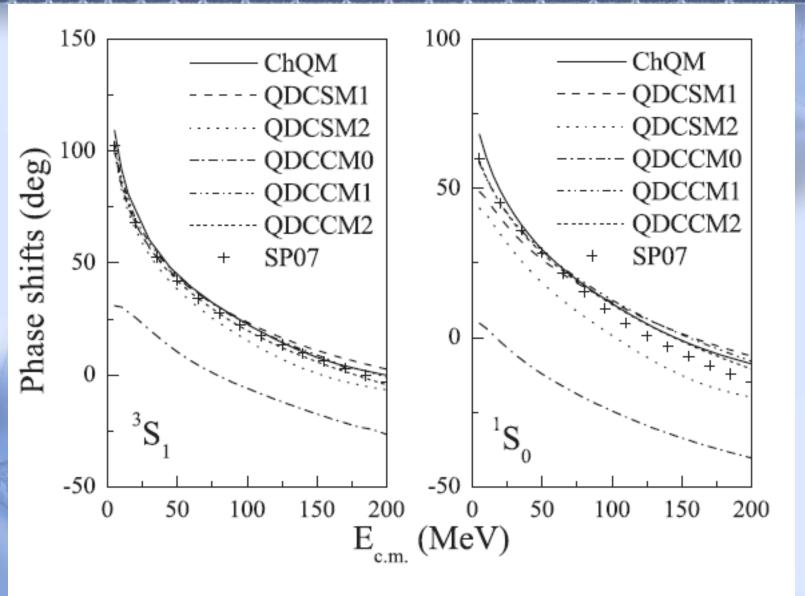
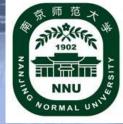



FIG. 1. The phase shifts of NN S-wave scattering.

deuteron

TABLE II. The properties of the deuteron.

	Salamanca	QDCSM				
	model	set 1	set 2	set 3		
B (MeV)	2.0	1.94	2.01	2.01		
$\sqrt{r^2}$ (fm)	1.96	1.93	1.92	1.94		
$P_D(\%)$	4.86	5.25	5.25	5.25		

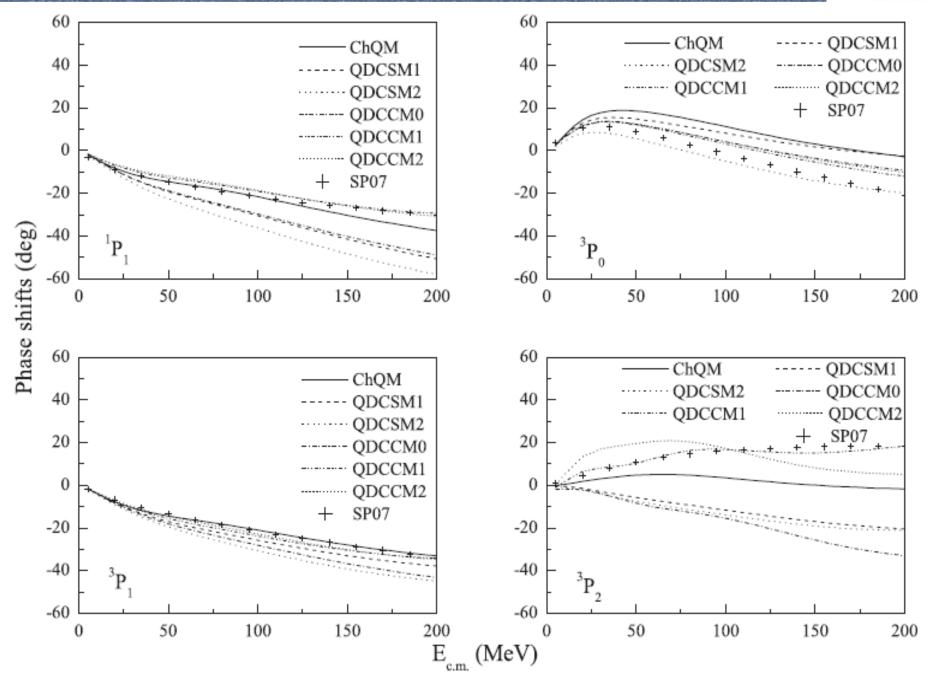


FIG. 2. The phase shifts of NN P wave scattering.

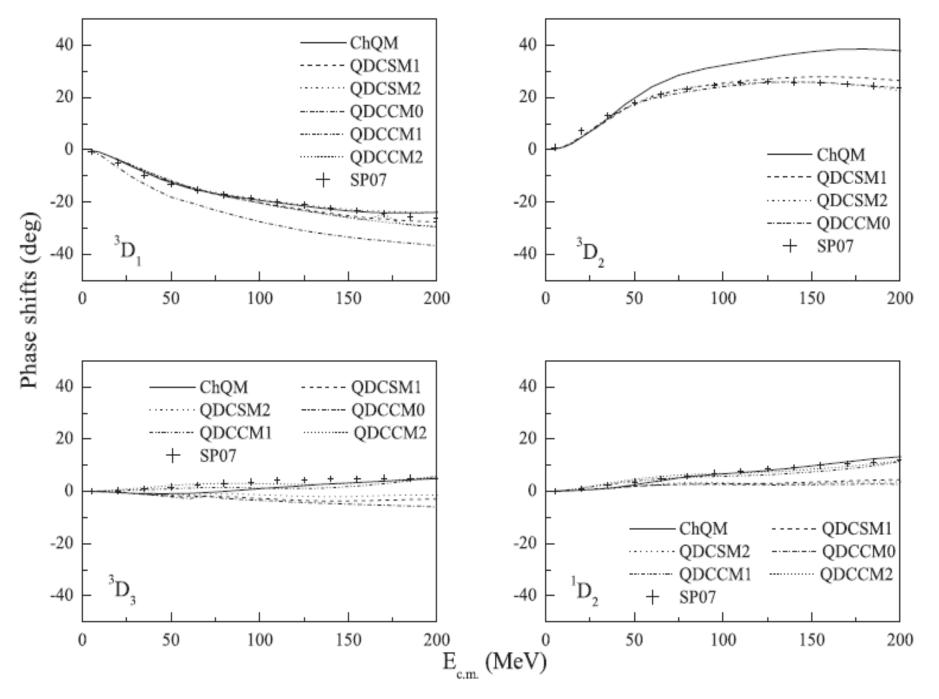


FIG. 4. The phase shifts of NN D-wave scattering.

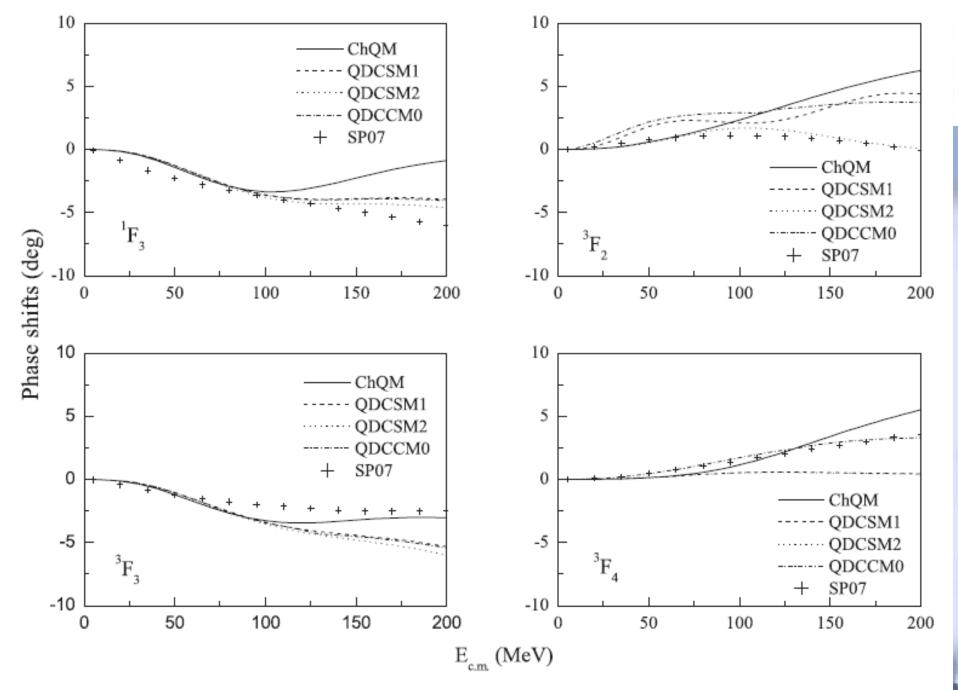


FIG. 5. The phase shifts of NN F-wave scattering.

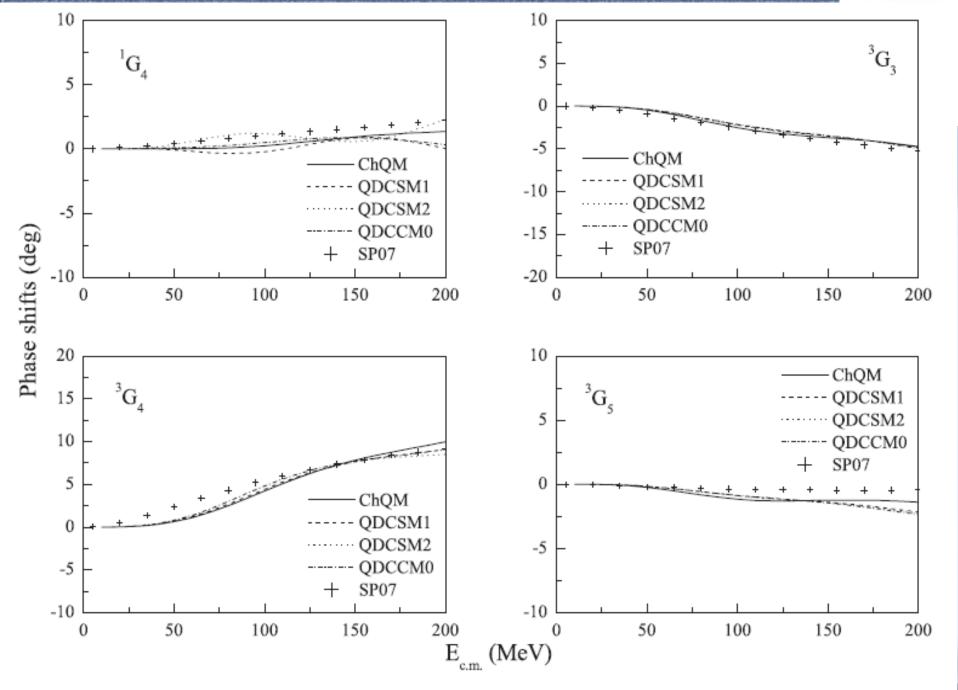


FIG. 6. The phase shifts of NN G-wave scattering.

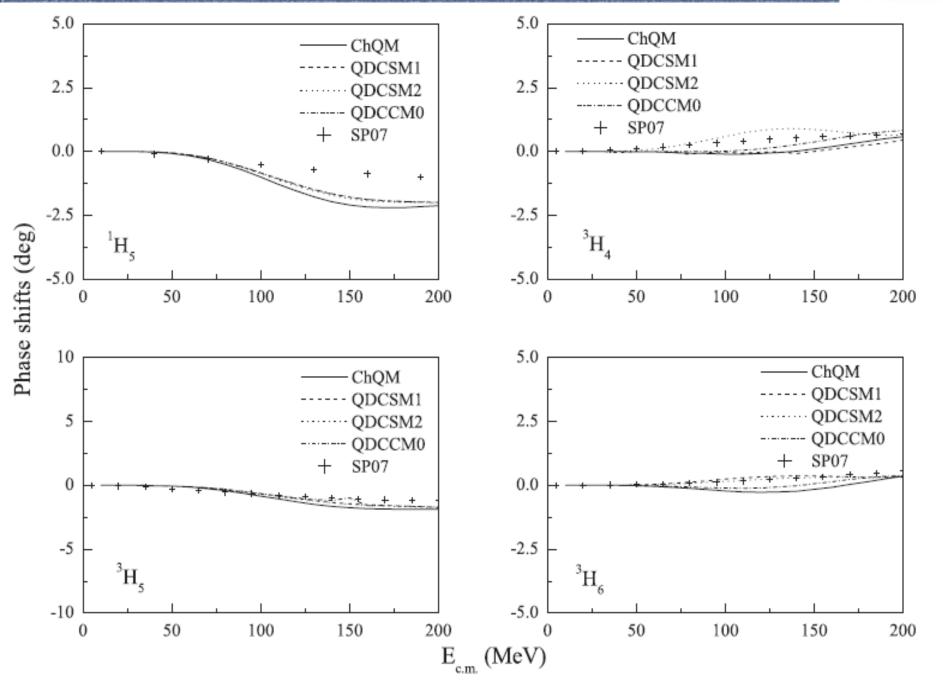
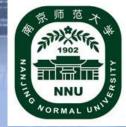



FIG. 7. The phase shifts of NN H-wave scattering.

the similarity: molecular and nuclear force

Atoms: electric neutral,

electric charge and orbital distortion \rightarrow molecular force (electron percolation)

Nucleons: color neutral, color charge and orbital distortion → nuclear force (quark delocalization)

d* in quark models

- "inevitable" dibaryon
 - T. Goldman, K. Maltman, F. Wang et al.,

in Brookhaven 1988: Glueballs, hybrids and exotic hadrons, p. 413; PRC39 (1989) 1889.

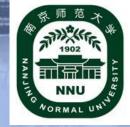
1. Kinetic energies: quark delocalization reduces the quark kinetic energy of dibaryon systems. 2. Color Magnetic Interaction $-(\frac{3}{4})\sum_{i \leq l} \sigma_i \cdot \sigma_j \lambda_i^a \lambda_j^a$

2. Color-Magnetic Interaction i < j attraction between flavor decuplet baryons.

gives rise effective

the existence of $IJ^P=03^+$ dibaryon is inevitable $IJ^P=03^+$ dibaryon: a spin excitation of d, named d*

Two kinds of dibaryons

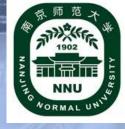


in Intersections between particle and nuclear physics (1994) p.538.

Octet-octet dibaryons:


low spin (J<=1) and small binding energy typical example: deuteron

 Decuplet-decuplet dibaryons: high spin (J>=2) and large binding energy
 coupling with octet-octet channels and shown as resonances typical example: d*
 Octet-decuplet dibaryons: typical example: NΔ, NΩ


Robust of d* in quark models

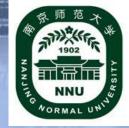
- In PRC 51 (1995) 3411 we did a general survey of the dibaryon candidates in the u,d,s three-flavor like quark world and found the d*(IJP=03+) has the largest binding energy.
 - The binding energy is large enough to allow the quark model to have as large an uncertainty as 200 MeV, the d* is still survive.
 - This confirms our 1989 predictions.
 - A relativistic quark model calculation confirmed the nonrelativistic quark model result.
 - Mod. Phys. Lett. A13(1998)59;arXiv:nucl-th/9803002.

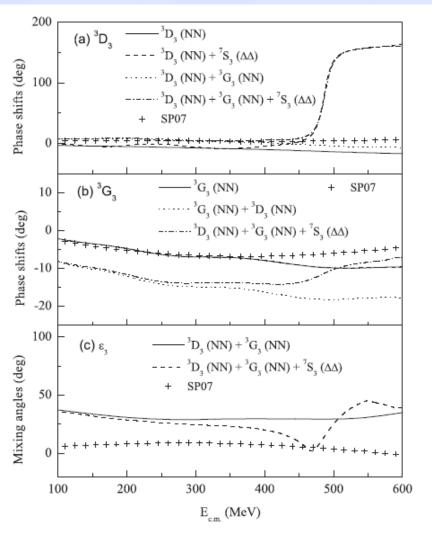
d* mass and width in NN- $\Delta\Delta$ channel coupling scattering

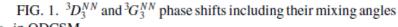
Nch	ChQM2		ChQM2a		QDCSM0		QDCSM1		QDCSM3	
	М	Г	М	Г	М	Г	М	Г	М	Г
1c	2425	_	2430		2413	_	2365	_	2276	_
2cc	2428	17	2433	10	2416	20	2368	20	2278	19
4cc	2413	14	2424	9	2400	14	2357	14	2273	17
10cc	2393	14			_	_	_	_	_	_
10cc'	2353	17			_				_	_
10cc"	2351	21			_	_	_	_	—	_

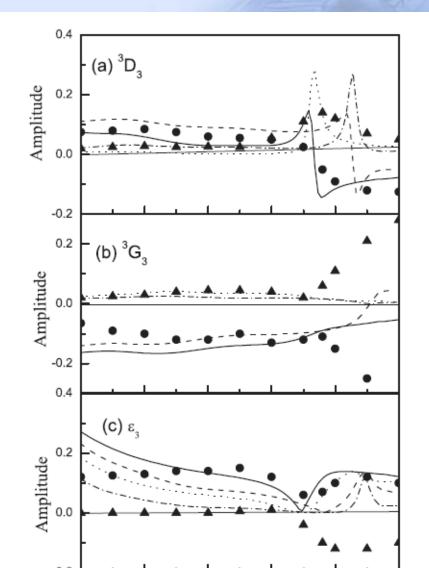
Total decay width of d*

$M_R \\ \Gamma_{NN} \\ \Gamma_{\text{inel}} \\ B_{NN}$	ChQM2:	2393 14 136 0.09
M_R Γ_{NN} Γ_{inel} B_{NN}	QDCSM1:	2357 14 96 0.13

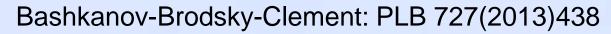

Only phase space reduction: (structure of d* is not considered)


$$\Gamma_{b\Delta}(M_{b\Delta}) \approx \Gamma_{f\Delta} \frac{k_b^{2\ell} \rho(M_{b\Delta})}{k_f^{2\ell} \rho(M_{f\Delta})},$$

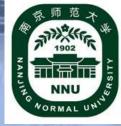

[33] B. Julia-Diaz, T.-S. H. Lee, A. Matsuyama, and T. Sato, Phys. Rev. C 76, 065201 (2007).


NN 3D3-3G3 partial-waves in NN- <u>A</u>channel coupling scattering PRC 90(2014)064003;arXiv:1404.0947[nucl-th].

٢a



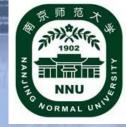
Narrow width of d*



According to M. Harvey [66] there are only two possible quark structures for an $I(J^P) = O(3^+)$ resonance in the two-baryon system:

$$|\Psi_{d^*}\rangle = \sqrt{\frac{1}{5}} |\Delta\Delta\rangle + \sqrt{\frac{4}{5}} |6Q\rangle$$
 and
 $|\Psi_{d^*}\rangle = \sqrt{\frac{4}{5}} |\Delta\Delta\rangle - \sqrt{\frac{1}{5}} |6Q\rangle.$

Here $\Delta\Delta$ means the asymptotic $\Delta\Delta$ configuration and 6*Q* is the genuine "hidden color" six-quark configuration. The first solution denotes a S^6 quark structure (all six quarks in the S-shell), the second one a S^4P^2 configuration (4 quarks in the S-shell and 2 quarks in the P-shell). The quark structure with the large $\Delta\Delta$ coupling would correspond to a deltaron and can be excluded. Thus it is natural to assign the observed d^* resonance to the S^6 six-quark predominantly "hidden color" state, thus providing an explanation for its narrow decay width.

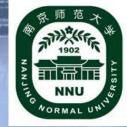


A. Gal et al., PRL 111 (2013) 172301 M=2363±20 MeV Γ=65±17 MeV

Huang-Zhang-Shen-Wang: arXiv: 1408.0458
 CC channel: 66%--68% → 70 MeV

A. Gal et al., Nucl. Phys. A928 (2014) 73
 M=2363±20 MeV Γ=33±20 MeV

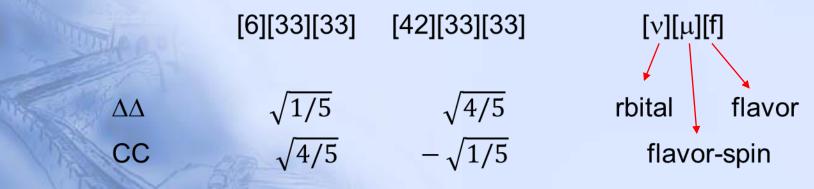
What is the hidden-color channels?

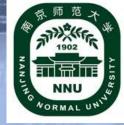

M. Harvey: NPA352(1981)301: SU(2) J.Q. Chen: NPA393(1983)122 F.Wang, J.L.Ping, T. Goldman: PRC51(1995)1648: SU(3)

Physical basis:

$$\begin{split} \Psi_{\alpha k}(B_1 B_2) &= \mathcal{A}[\psi(B_1)\psi(B_2)] \stackrel{[\sigma]}{W} \stackrel{I}{M_I} \stackrel{J}{M_J} \\ &= \mathcal{A}\left[\left| [\sigma_1] [\mu_1] \stackrel{[\nu_1]}{[f_1]} Y_1 I_1 J_1 \right\rangle \right| [\sigma_2] [\mu_2] \stackrel{[\nu_2]}{[f_2]} Y_2 I_2 J_2 \right\rangle \right] \stackrel{[\sigma]}{W} \stackrel{I}{M_I} \stackrel{J}{M_J} ; \end{split}$$

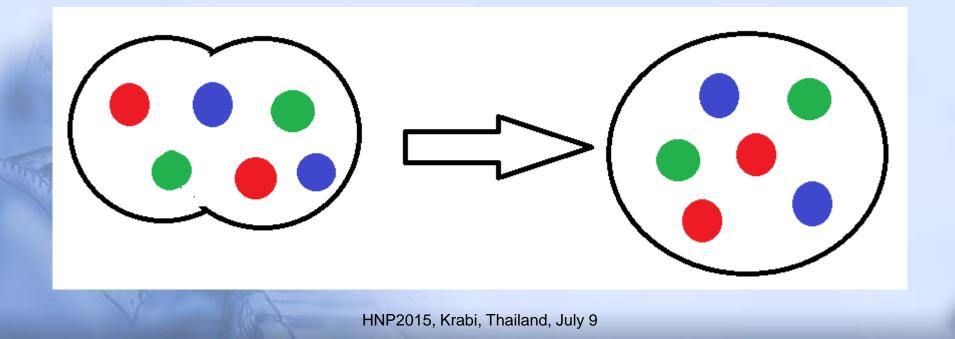
Symmetry basis:

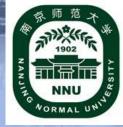

$$\Phi_{lpha K}(q^6) = \left[[\sigma] W[\mu] \beta[f] Y I J M_I M_J
ight
angle$$



Tranformation between physics basis and symmetry basis:

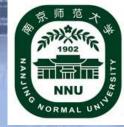
$$\begin{split} \mathcal{A}\left[\left|[\sigma_{1}][\mu_{1}][f_{1}]Y_{1}I_{1}J_{1}\right\rangle\right|[\sigma_{2}][\mu_{2}][f_{2}]Y_{2}I_{2}J_{2}\right\rangle\right] \stackrel{[\sigma]}{W} \stackrel{I}{M}_{I} \stackrel{J}{M}_{J} \\ &= \sum_{\tilde{\nu}\mu\beta f\gamma} C_{[\tilde{\nu}][\sigma][\mu]}^{[\tilde{\nu}][\sigma][\mu]} C_{[\mu_{1}][\sigma_{1}][\mu_{1}][f_{1}]J_{1},[\mu_{2}][f_{2}]J_{2}}^{[\mu]\beta[f]\gamma J} C_{[f_{1}]Y_{1}I_{1}[f_{2}]Y_{2}I_{2}}^{[f]\gamma YI} \left|[\sigma]W[\mu]\beta[f]YIJM_{I}M_{J}\right\rangle \,. \end{split}$$


For IJP=03+:



d*: a compact object

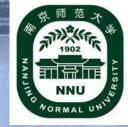
taking limit: six quarks in one bag



6 quarks are in the same orbit: [v]=[6], [42] disappears

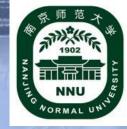
Symmetry basis: only [6][33][33] exists -----> number of physical basis: 1

> ΔΔ and CC are the same ! antisymmetrization


 $< \Delta \Delta \mid CC > =1$

+S/2, -S/2: the reference centers of baryons S \rightarrow 0, [6] exists, [42] disappears $< \Delta \Delta | CC > =1$

Continuity $\rightarrow \langle \Delta \Delta | CC \rangle$ approx. 1, when S is small.

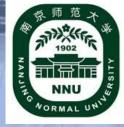

S (fm)	$< \Delta \Delta \mid CC >$	S (fm)	$< \Delta \Delta \mid CC >$
3	0	0.3	0.997
2	7x10 ⁻³	0.2	0.999
1	0.7	0.1	0.99996
0.5	0.98	0.001	~ 1
0.4	0.99		

Schmidt orthogonalization

$$|CC'\rangle = |CC\rangle - \frac{\langle \Delta \Delta | CC\rangle}{\langle \Delta \Delta | \Delta \Delta \rangle} |\Delta \Delta\rangle$$

S (fm)	E1	$\Delta\Delta(\%)$	CC' (%)	E2	$\Delta\Delta(\%)$	<i>CC</i> ′(%)
3	2580	100	0	7770	0	100
2	2571	100	0	4870	0	100
1	2436	98	2	3093	2	98
0.5	2635	98	2	3270	2	98
0.3	2706	95	5	3341	5	95
0.2	2731	94	6	3366	6	94
∩ 1	0740	00	7	0004	7	00

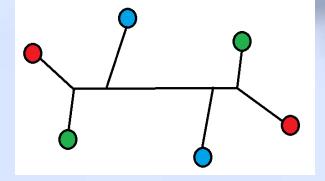
Outer-product of the permutation group

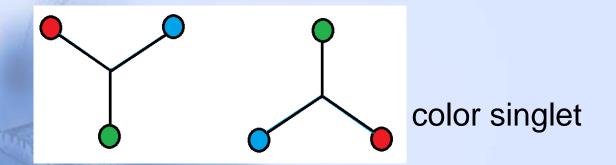

- For color SU(3), the dimension of irreps [222] =1
- For S(6), the dimension of irreps [222] =5
- Constructing the bases of 6-quark system

from two three-quark clusters

Outer-product of S(6) or CGC of SU(3)

5 bases of [222] [111]x[111] (color singlet) or [21]x[21] (color octet)


Hidden-color channel is not necessary for quark-only system!

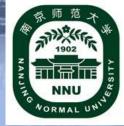


Hidden color configuration

• String-like structure:


hidden-color

work on progress...


Summary

- Based on the dynamical symmetry, the quark model can describe the masses of baryon and dibaryon well. It has the predictive power.
- The improved quark models describe hadron-hadron interactions well
- d* is a compact object in quark model. Its compact six-quark structure is responsible for the narrow width.
- To explain the narrow width of d* by using hidden-color channel is questionable.
- Once the total width of d* is reproduced, the branching ratios of different channels can be reproduced by isospin symmetry and the phase space (Bashkanov et al., arXiv: 1502.07156).
 - There are more dibaryons to be discovered.

Thanks!!!

ABC Effects

The ABC effect—first observed by Abashian, Booth, and Crowe [1] in the double-pionic fusion of deuterons and protons to ³He—stands for an unexpected enhancement at low masses in the invariant $\pi\pi$ mass spectrum $M_{\pi\pi}$. Follow-up experiments [2–11] revealed this effect to

 N.E. Booth, A. Abashian, and K. M. Crowe, Phys. Rev. Lett. 7, 35 (1961); 5, 258 (1960); Phys. Rev. 132, 2296 (1963).