The net-proton kurtosis in heavy-ion collisions

Christoph Herold with Yupeng Yan, Chinorat Kobdaj

School of Physics, Suranaree University of Technology

Hadron Nuclear Physics 2015, Krabi

The particle zoo

The particle zoo

www.particlezoo.net

Hadrons and Quark-gluon-plasma

The phase diagram zoo

Cuark-Gloon Rams

The QCD phase diagram

Finding the critical point - I

1. From the QCD Lagrangian

- Solve partition function Z on a lattice (sign problem)
- Solve Dyson-Schwinger equations

⁽Fischer, Luecker, Phys. Lett. B 718 (2013) 1036-1043)

Finding the critical point - II

2. From effective models

- Respect chiral symmetry (Sigma model, NJL model, ...)
- Existence/location of CP not universal!

Finding the critical point - III

3. From experiment

• Fluctuations sensitive to critical region ...

(STAR collaboration, PoS CPOD (2014) 019)

• ... and first-order phase transition?

 $\kappa\sigma^2$ (Kurtosis) interesting, sensitive to ξ and volume independent

The Kurtosis, visually

- distinguish peak, shoulders and tails
- for normal distribution 0, for Poisson 1

The Kurtosis from effective models

Kurtosis as calculated from effective PQM model (mean-field)

First-order phase transition

⁽Herold, Nahrgang, Yan, Kobdaj, J. Phys. G 41 (2014))

Something is going on, but how do we measure that?

The Kurtosis in heavy-ion collisions

$$\langle \delta N^4 \rangle = \langle N \rangle + \kappa_4 \left(\frac{gd}{T} \int_{\rho} \frac{n_{\rho}}{\gamma_{\rho}} \right)^4 + \dots$$

Non-statistical behavior from fluctuations in order parameter

Modeling Heavy-Ion Collisions - I

Ingredients for fully dynamical model:

- Fluid (quarks)
- Fluctuations (chiral fields)

Chiral fluid dynamics (χ FD)

$$-rac{\delta S_{
m cl}}{\delta \sigma} - D = \xi \;, \;\; \partial_\mu T^{\mu
u}_{
m q} = S^
u_\sigma$$

(Nahrgang, Leupold, Herold, Bleicher, Phys. Rev. C 84 (2011))

- Potential and equation of state from effective QCD models
- Successfully describes: critical fluctuations, spinodal decomposition

Modeling Heavy-Ion Collisions - II

How to study kurtosis in χ FD

- In-medium (net-baryon)
- After freezeout (net-proton)

Comparison with STAR data

What we want to understand

- Impact of CP and phase transition on kurtosis
- Impact of the equation of state

The kurtosis in χ FD

Fixed volume vs. rapidity (|y| < 0.5) and p_T cut (100 MeV/fm³ $< p_T < 500$ MeV/fm³) Things to be considered:

- baryon number conservation
- Ratios of cumulants depend on fraction of measured to total baryons

(Herold, Nahrgang, Yan, Kobdaj, J. Phys. G 41 (2014))

The kurtosis in χ FD after freezeout - I

We consider 2 different equations of state

Behavior of the pressure along the phase boundary distinguishes

- Hadron-quark (HQ): from dilute hadron gas to dense QGP
- Liquid-gas (LG): from dense liquid to dilute gas

The kurtosis in χ FD after freezeout - II

HQ eos

 p_T cut (0.4 GeV³ < p_T < 2.0 GeV)

- significant enhancement for low beam energies
- dip as CP signal

(STAR collaboration, PoS CPOD (2014) 019)

The kurtosis in χ FD after freezeout - III

LG eos

HQ eos

Summary and Conclusions

- Modeling phase transitions in HICs
- Fluid + chiral dynamics
- Study kurtosis as signal for CP and phase transition

- Enhancement at low beam energies possible with right EoS
- Time inside critical region influences strength of CP signal