

Hadron structure in the covariant confined quark model

Thomas Gutsche

Institut für Theoretische Physik Universität Tübingen

Overview

- Covariant confined quark model
- Applications in the meson sector
- (Light baryons and their electromagnetic structure)
- Semileptonic decays of heavy baryons
- Summary

Recent Coworkers

- Tübingen: V. Lyubovitskij
- Dubna: M. Ivanov
- Mainz: J. Körner
- Napoli: P. Santorelli
- Almaty: N. Habyl

Covariant quark model

 main assumption: hadrons interact by quark exchange
 quantum field theory tool: interaction Lagrangian for coupling between composite hadron and its constituents

Coupling of a meson M(x) to the $q\bar{q}$ constituents

 $\mathcal{L}_{\rm int}^{\rm str}(x) = g_M M(x) \cdot J_M(x)$

with the non-local quark current

 $J_M(x) = \int dx_1 \int dx_2 F_M(x, x_1, x_2) \bar{q}_1(x_1) \Gamma_M \lambda_M q_2(x_2) + \text{h.c.}$ $\int \int \chi_M(x) = \int dx_1 \int dx_2 F_M(x, x_1, x_2) \bar{q}_1(x_1) \Gamma_M \lambda_M q_2(x_2) + \text{h.c.}$ Vertex function $\int f_M(x) = \int dx_1 \int dx_2 F_M(x, x_1, x_2) \bar{q}_1(x_1) \Gamma_M \lambda_M q_2(x_2) + \text{h.c.}$ Vertex function $\int f_M(x) = \int dx_1 \int dx_2 F_M(x, x_1, x_2) \bar{q}_1(x_1) \Gamma_M \lambda_M q_2(x_2) + \text{h.c.}$

compositeness condition

Salam 1962, Weinberg 1963

 composite field M and quarks are introduced as elementary particles

onon-local interaction between M and its constituents

•field renormalization constant Z: matrix element between physical and bare state

•Quasi-particle M is a stable composite bound state with

$$Z_M^{1/2} = < M_{bare} | M_{dressed} > = 0$$

compositeness condition

Exp. input

 $p^2 = m^2$

compositeness condition leads to self-consistent determination of the hadron-constituents coupling.

coupling g_M is determined by the condition

$$Z_M = 1 - \Sigma'_M(m_M^2) = 0$$

with the derivative of the mass operator

$$\Sigma'_{M}(m_{M}^{2}) = g_{M}^{2} \Pi'_{M}(m_{M}^{2}) = g_{M}^{2} \frac{d\Pi_{M}(p^{2})}{dp^{2}}$$

vertex function and propagators

overtex function characterizes finite size of hadron:

$$F_M(x, x_1, x_2) = \delta^{(4)}(x - \sum_{i=1}^2 w_i x_i) \Phi_M\left((x_1 - x_2)^2\right)$$

with $w_i = m_i / \sum m_i$ and translational invariance for any 4-vector a with

$$F_M(x+a, x_1+a, x_2+a) = F_M(x, x_1, x_2)$$

often choose simple Gaussian form with

 $\Phi_M(y^2) = \int \frac{d^4k}{(2\pi)^4} e^{-ik \cdot y} \tilde{\Phi}(-k^2), \qquad \tilde{\Phi}(-k_E^2) = \exp\left(-k_E^2/\Lambda_M^2\right)$

constituent quark propagator

$$S_q(k) = \frac{1}{m_q - k - i\epsilon}$$

with effective mass m_q

inclusion of photons or gauging the nonlocal Lagrangian

Strong interaction Lagrangian is non-local Gauged by applying gauge field exponential with

$$q_i(x_i) \rightarrow e^{-ie_{q_i}I(x_i,x,P)} q_i(x_i)$$
 with $I(x_i,x,P) = \int_x^{x_i} dz_\mu A^\mu$
Mandelstam (1961), Terning (1991)

Expansion of gauged Lagrangian with

 $\mathcal{L}_{\rm int}^{\rm str;em}(x) = g_M M(x) \int dx_1 \int dx_2 F_M(x, x_1, x_2)$

$$\times \bar{q}_1(x_1) e^{ie_{q_1}I(x_1,x,P)} \Gamma_M \lambda_M e^{-ie_{q_2}I(x_2,x,P)} q_2(x_2)$$

in powers of A_{μ} leads to:

inclusion of photons or gauging the nonlocal Lagrangian

electromagnetic vertex function

vector meson $\mathbf{V} \rightarrow \gamma$ transition

infrared confinement

up to now applications limited to hadrons with $m_M < m_1 + m_2$.

reason: free quark propagator, threshold singularities with free quarks

---> confinement = absence of quark poles

infrared confinement

Idea: consider scalar one-pole propagator

$$\frac{1}{m^2 - p^2} = \int_{0}^{\infty} d\alpha \exp[-\alpha (m^2 - p^2)]$$

in the Schwinger representation.

Introduce integration limit with the infrared confinement scale: λ with mass dimension (m)

$$\int_{0}^{1/\lambda^{2}} d\alpha \exp[-\alpha(m^{2} - p^{2})] = \frac{1 - \exp[-(m^{2} - p^{2})/\lambda^{2}]}{m^{2} - p^{2}}$$

entire function, confined propagator (similar to NJL (Ebert 1996), constant self-dual field Leutwyler/Efimov (1995)) Consider general I-loop diagram with n propagators:

$$\Pi(p_1, \dots, p_n) = \int_0^\infty d^n \alpha \int [d^4 k]^l \Phi \exp[-\sum_{i=1}^n \alpha_i (m_i^2 - p_i^2)]$$

numerator: product of propagators and vertices

after loop integration

 $\Pi = \int_{0}^{\infty} d^{n} \alpha F(\alpha_{1}, \dots, \alpha_{n})$

complete structure of diagram

with the identity
$$1 = \int\limits_{0}^{\infty} dt \, \delta(t - \sum\limits_{i=1}^{n} lpha_i)$$
 we get

$$\Pi = \int_{0}^{\infty} dt t^{n-1} \int_{0}^{1} d^{n} \alpha \, \delta \left(1 - \sum_{i=1}^{n} \alpha_{i} \right) F(t\alpha_{1}, \dots, t\alpha_{n})$$

confinement: introduce infrared cut-off at $1/\lambda^2$

$$\mathbf{1}/\lambda^{\mathbf{2}}$$
$$\Pi^{c} = \int_{0}^{1} dt t^{n-1} \int_{0}^{1} d^{n} \alpha \, \delta\left(1 - \sum_{i=1}^{n} \alpha_{i}\right) F(t\alpha_{1}, \dots, t\alpha_{n})$$

consequences:

oall thresholds are removed in the quark-loop diagram

oinfrared cut-off $1/\lambda^2$ is universal -- same for all physical processes

T. Branz, A. Faessler, TG, M. Ivanov, J. Körner, V. Lyubovitskij, PRD D81, 034010 (2010)

first fits and parameters

see T. Branz, A. Faessler, TG, M. Ivanov, J. Körner, V. Lyubovitskij, PRD D81, 034010 (2010)

update in M. Ivanov et al., PRD D85, 034004 (2012)

 π and ρ properties:

first fits and parameters

see T. Branz, A. Faessler, TG, M. Ivanov, J. Körner, V. Lyubovitskij, PRD D81, 034010 (2010) update in M. Ivanov et al., PRD D85, 034004 (2012)

 π and ρ properties:

Quantity	Our	Data (PDG)					
$f_{\pi}, { m MeV}$	130.2	$130.4 \pm 0.04 \pm 0.2$					
$g_{\pi\gamma\gamma}, \mathrm{GeV}^{-1}$	0.23	0	.276				
$g_{ ho\gamma}$	0.2		0.2				
$g_{\rho\pi\gamma}, \mathrm{GeV}^{-1}$	0.75	0.723 ± 0.037		Intrared cut-off		l cut-ott	
					ł		
		→ m	Λ_{π}	$\Lambda_{ ho}$	λ		
m	= m ₄	0.217	0.711	0.295	0.181	GeV	
••••u	a		parame	eters			

form factor $\pi^{\pm} \to \pi^{\pm} \gamma^*$ for space-like photon momentum Q^2

transition form factor $\gamma\gamma^*\to\pi^0$ for space-like photon momentum Q^2

+ "nonlocal" graphs

further model parameters: basic electroweak properties

 $m_s m_c m_b$ 0.360 1.6 4.8 GeV

TABLE II:	Weak	leptonic	decay	constants	f_P	(V)	in	MeV	Ι.
-----------	------	----------	-------	-----------	-------	-----	----	-----	----

Meson	Our	Data [15]
π^-	130.2	$130.4 \pm 0.04 \pm 0.2$
K^{-}	155.4	$155.5 \pm 0.2 \pm 0.8$
D^+	206.2	205.8 ± 8.9
D_s^+	273.7	273 ± 10
B^-	216.4	216 ± 22
B_s^0	250.2	$253\pm8\pm7$
B_c	485.2	$489 \pm 5 \pm 3$ [23]
ρ^+	209.3	210.5 ± 0.6 [15]
D^{*+}	187.0	$245 \pm 20^{+3}_{-2}$ [24]
${D_s^*}^+$	213	$272 \pm 16^{+3}_{-20}$ [25]
B^{*+}	210.6	$196 \pm 24^{+39}_{-2}$ [24]
B_s^{*0}	264.6	$229 \pm 20^{+41}_{-16}$ [24]

Electromagnetic leptonic decay constants f_V

Meson	Our	Data [15]
ρ^0	148.0	154.7 ± 0.7
ω	51.7	45.8 ± 0.8
ϕ	76.3	76 ± 1.2
J/ψ	277.4	277.6 ± 4
$\Upsilon(1s)$	238.4	238.5 ± 5.5

in MeV.

TABLE IV. Elect	romagnetic and lepton	ic decay widths in keV.		
Process	Ours	Data [15]	C	1
$\pi^0 ightarrow \gamma \gamma$	5.40×10^{-3}	$(7.7 \pm 0.6) \times 10^{-3}$	further pr	edictions
$\eta \rightarrow \gamma \gamma$	0.51	0.510 ± 0.026	in the mes	on soctor
$\eta' \rightarrow \gamma \gamma$	4.27	4.28 ± 0.19	III IIIe IIIes	UII SECIUI
$\eta_c \rightarrow \gamma \gamma$	4.55	$7.2 \pm 0.7 \pm 2.0$		
$\eta_b \rightarrow \gamma \gamma$	0.43			
$\rho^0 \rightarrow e^+ e^-$	6.33	7.04 ± 0.06		
$\omega \rightarrow e^+ e^-$	0.76	0.60 ± 0.02		
$\phi \rightarrow e^+ e^-$	1.27	1.27 ± 0.04		
$J/\psi \rightarrow e^+e^-$	5.54	$5.55 \pm 0.14 \pm 0.02$		
$\Upsilon \rightarrow e^+ e^-$	1.34	1.34 ± 0.018		
		$\rho^{\pm} \rightarrow \pi^{\pm} \gamma$	72.42	68 ± 7
		$\rho^0 \rightarrow \eta \gamma$	63.25	62 ± 17
		$\omega ightarrow \pi^0 \gamma$	682.71	703 ± 25
		$\omega ightarrow \eta \gamma$	7.63	6.1 ± 2.5
		$\eta' \rightarrow \omega \gamma$	12.44	9.06 ± 2.87
		$\phi ightarrow \eta \gamma$	51.72	$58.9 \pm 0.5 \pm 2.4$
		$\phi ightarrow \eta' \gamma$	0.41	0.27 ± 0.01
		$K^{*\pm} \to K^{\pm} \gamma$	40.86	50 ± 5
		$K^{*0} \to K^0 \gamma$	122.04	116 ± 10
		$D^{*\pm} \rightarrow D^{\pm} \gamma$	0.62	1.5 ± 0.8
		$D^{*0} \rightarrow D^0 \gamma$	20.27	$< 0.9 \times 10^{3}$
		$D_s^{*\pm} \rightarrow D_s^{\pm} \gamma$	0.30	$< 1.8 \times 10^{3}$
		$B^{*\pm} \rightarrow B^{\pm} \gamma$	0.36	
		$B^{*0} \rightarrow B^0 \gamma$	0.12	
		$B_s^{*0} \rightarrow B_s^0 \gamma$	0.12	
		$J/\psi ightarrow \eta_c \gamma$	1.89	1.58 ± 0.37
		$\Upsilon \rightarrow \eta_b \gamma$	0.02	

physics of heavy baryons: motivation

- origin of flavor and CP violations
- determination of CKM matrix elements
- weak decays of heavy hadrons containing a b- or cquark
- experimental possibilities at LHCb
- signals for new physics beyond the Standard Model
- models of heavy flavor decays (nonperturbative hadronic effects)
- new exotic states

recent work on heavy baryons:

TG, M. Ivanov, J. Körner, V. Lyubovitskij, P. Santorelli and N.Habyl:

PRD 91, 074001 (2015) $\Lambda_{\rm b} \to \Lambda_{\rm c} + \tau^- + \bar{\nu}_{\tau}$

PRD 90, 114033 (2014) $\Lambda_{b} \rightarrow p + \ell^{-} + \bar{\nu}_{\ell} \text{ and } \Lambda_{c} \rightarrow n + \ell^{+} + \nu_{\ell}$

PRD 88, 114018 (2013) $\Lambda_{\mathbf{b}} \rightarrow \Lambda(\rightarrow \mathbf{p}\pi^{-}) + \mathbf{J}/\Psi(\rightarrow \ell^{+}\ell^{-})$

PRD 87, 074031 (2013) $\Lambda_{b} \rightarrow \Lambda \ell^{+} \ell^{-}$ $(\ell = e, \mu, \tau)$ and $\Lambda_{b} \rightarrow \Lambda \gamma$

PRD 86, 074013 (2012) el.magn. structure of light baryons

Rare baryon decays:

$$\Lambda_{\mathbf{b}} \rightarrow \Lambda \ell^+ \ell^- \ (\ell = \mathbf{e}, \mu, \tau) \text{ and } \Lambda_{\mathbf{b}} \rightarrow \Lambda \gamma$$

TG, M. Ivanov, J. Körner, V. Lyubovitskij, P. Santorelli, PRD 87, 074031 (2013)

flavor-changing neutral currents - FCNC, like

(forbidden at tree level, =0 for degenerate up-type masses)

- loop induced processes: sensitivity to "new physics"
- extraction of CKM matrix elements
- exclusive and inclusive decays of the form

 $\mathbf{b} \rightarrow \mathbf{s}\gamma \text{ and } \mathbf{b} \rightarrow \mathbf{s}\ell^+\ell^-$

 \bullet rare baryon decays complementary to $\mathbf{B} \to \mathbf{K}^{(*)} \ell^+ \ell^-$

Rare baryon decays: $\Lambda_{\mathbf{b}} \rightarrow \Lambda \ell^+ \ell^- \ (\ell = \mathbf{e}, \mu, \tau) \text{ and } \Lambda_{\mathbf{b}} \rightarrow \Lambda \gamma$

- naive factorization, based on OPE in local operators
 separation of short-distance SM dynamics from longdistance hadronic effects
- nonperturbative determination of hadronic matrix elements ----> form factors
- $\mathbf{b} \to \mathbf{s} \ell^+ \ell^-$ contains lots of information through
 - lepton invariant mass
 - lepton energy spectra
 - forward-backward asymmetries

• data	$\Gamma(\Lambda \mu^+ \mu^-)/\Gamma_{total}$			
	VALUE (units 10^{-7})	DOCUMENT ID	TECN	COMMENT
	10.8±2.8 OUR AVERAGE			
	$9.6 \pm 1.6 \pm 2.5$	⁴⁰ AAIJ	13AJ LHCB	pp at 7 TeV
	$17.3 \pm 4.2 \pm 5.5$	AALTONEN	11AI CDF	pp at 1.96 TeV

Lagrangian and 3-quark current

$$\mathcal{L}_{int}^{\Lambda}(x) = g_{\Lambda} \bar{\Lambda}(x) \cdot J_{\Lambda}(x) + g_{\Lambda} \bar{J}_{\Lambda}(x) \cdot \Lambda(x)$$

$$J_{\Lambda}(x) = \int dx_{1} \int dx_{2} \int dx_{3} F_{\Lambda}(x; x_{1}, x_{2}, x_{3}) J_{3q}^{(\Lambda)}(x_{1}, x_{2}, x_{3})$$

$$J_{3q}^{(\Lambda)}(x_{1}, x_{2}, x_{3}) = \epsilon^{a_{1}a_{2}a_{3}} Q^{a_{1}}(x_{1}) u^{a_{2}}(x_{2}) C \gamma^{5} d^{a_{3}}(x_{3})$$

$$Q = s, c, b \qquad (ud)_{1}S_{0}$$

Vertex function of the form

$$F_{\Lambda}(x;x_1,x_2,x_3) = \delta^{(4)}(x - \sum_{i=1}^3 w_i x_i) \Phi_{\Lambda}\left(\sum_{i < j} (x_i - x_j)^2\right)$$

with $w_i = m_i/(m_1 + m_2 + m_3)$

Effective Hamiltonian for the quark amplitudes

see Buchalla, Buras, Lautenbacher, Rev. Mod. Phys. 68 (1996)

$$\mathbf{b} \to \mathbf{s}\ell^{+}\ell^{-}$$

$$M(b \to s\ell^{+}\ell^{-}) = \frac{G_{F}}{\sqrt{2}} \frac{\alpha\lambda_{t}}{2\pi} \Big\{ C_{9}^{\text{eff}}(\bar{s}O^{\mu}b)(\bar{\ell}\gamma_{\mu}\ell) + C_{10}(\bar{s}O^{\mu}b)(\bar{\ell}\gamma_{\mu}\gamma_{5}\ell) - \frac{2}{q^{2}}C_{7}^{\text{eff}}[m_{b}(\bar{s}i\sigma^{\mu q}(1+\gamma^{5})b) + m_{s}(\bar{s}i\sigma^{\mu q}(1-\gamma^{5})b)](\bar{\ell}\gamma_{\mu}\ell) \Big\}.$$

$$\mathbf{b} \to \mathbf{s}\gamma \quad \text{long-distance } c\bar{c} \text{ contributions} \quad \sigma^{\mu q} = \sigma^{\mu\nu}q_{\nu} \quad \lambda_{t} \equiv V_{ts}^{\dagger}V_{tb} \Big]$$

$$M(b \to s\gamma) = -\frac{G_{F}}{\sqrt{2}} \frac{e\lambda_{t}}{4\pi^{2}} C_{7}^{\text{eff}}[m_{b}(\bar{s}i\sigma^{\mu q}(1+\gamma^{5})b) + m_{s}(\bar{s}i\sigma^{\mu q}(1-\gamma^{5})b)]\epsilon_{\mu}$$

$$\Lambda_{Q[ud]} \to \Lambda_{Q'[ud]} + X$$
$$X = \ell^{-} \bar{\nu}_{\ell}, \ell^{+} \ell^{-} \text{ or } \gamma$$

Hadronic matrix elements and form factors

 $\langle B_{2}|\bar{s}\gamma^{\mu}b|B_{1}\rangle = \bar{u}_{2}(p_{2})[f_{1}^{V}(q^{2})\gamma^{\mu} - f_{2}^{V}(q^{2})i\sigma^{\mu q}/M_{1} + f_{3}^{V}(q^{2})q^{\mu}/M_{1}]u_{1}(p_{1}), \\ \langle B_{2}|\bar{s}\gamma^{\mu}\gamma^{5}b|B_{1}\rangle = \bar{u}_{2}(p_{2})[f_{1}^{A}(q^{2})\gamma^{\mu} - f_{2}^{A}(q^{2})i\sigma^{\mu q}/M_{1} + f_{3}^{A}(q^{2})q^{\mu}/M_{1}]\gamma^{5}u_{1}(p_{1}), \\ \langle B_{2}|\bar{s}i\sigma^{\mu q}/M_{1}b|B_{1}\rangle = \bar{u}_{2}(p_{2})[f_{1}^{TV}(q^{2})(\gamma^{\mu}q^{2} - q^{\mu}q)/M_{1}^{2} - f_{2}^{TV}(q^{2})i\sigma^{\mu q}/M_{1}]u_{1}(p_{1}), \\ \langle B_{2}|\bar{s}i\sigma^{\mu q}\gamma^{5}/M_{1}b|B_{1}\rangle = \bar{u}_{2}(p_{2})[f_{1}^{TA}(q^{2})(\gamma^{\mu}q^{2} - q^{\mu}q)/M_{1}^{2} - f_{2}^{TA}(q^{2})i\sigma^{\mu q}/M_{1}]\gamma^{5}u_{1}(p_{1})$

with
$$q = p_1 - p_2$$
 and $q_1 = q/M_1$

Fit parameters

- quark masses and infrared cut-off as in meson sector
- set of size parameters:

 $\Lambda_{\Lambda_s} = 0.490 \text{ GeV}, \Lambda_{\Lambda_c} = 0.864 \text{ GeV} \text{ and } \Lambda_{\Lambda_b} = 0.569 \text{ GeV}$

• fit to magnetic moments of Lambda-hyperon:

and to leading semileptonic decays

TABLE IV. Branching ratios of semileptonic decays of heavy baryons (in %).

Mode	Our results	Data [52]
$\Lambda_c \to \Lambda e^+ \nu_e$	2.0	2.1 ± 0.6
$\Lambda_c \to \Lambda \mu^+ \nu_{\mu}$	2.0	2.0 ± 0.7
$\Lambda_b \to \Lambda_c e^- \bar{\nu}_e$	6.6	$6.5^{+3.2}_{-2.5}$
$\Lambda_b \to \Lambda_c \mu^- \bar{\nu}_\mu$	6.6	2.5
$\Lambda_b \to \Lambda_c \tau^- \bar{\nu}_\tau$	1.8	

TABLE V. Asymmetry parameter α in the semileptonic decays of heavy baryons.

Mode	Our results	Data [52]
$\Lambda_c \to \Lambda e^+ \nu_e$	0.828	0.86 ± 0.04
$\Lambda_c \to \Lambda \mu^+ \nu_\mu$	0.825	
$\Lambda_b \to \Lambda_c e^- \bar{\nu}_e$	0.831	
$\Lambda_b \to \Lambda_c \mu^- \bar{\nu}_\mu$	0.831	
$\Lambda_b \to \Lambda_c \tau^- \bar{\nu}_\tau$	0.731	

Rare baryon decays: $\Lambda_{\mathbf{b}} \rightarrow \Lambda \ell^+ \ell^- \ (\ell = \mathbf{e}, \mu, \tau) \text{ and } \Lambda_{\mathbf{b}} \rightarrow \Lambda \gamma$

our result: $BR(\Lambda_b \rightarrow \Lambda \mu^+ \mu^-) = 1.0 \cdot 10^{-6}$

recent LHCb result:

$\Gamma(\Lambda \mu^+ \mu^-)/\Gamma_{total}$			
VALUE (units 10^{-7})	DOCUMENT ID	TECN	COMMENT
10.8±2.8 OUR AVERAGE			
$9.6 \pm 1.6 \pm 2.5$	⁴⁰ AAIJ	13AJ LHCB	pp at 7 TeV
$17.3 \pm 4.2 \pm 5.5$	AALTONEN	11AI CDF	$p\overline{p}$ at 1.96 TeV

and the prediction: ${f BR}(\Lambda_b o \Lambda\gamma) = 0.4 \cdot 10^{-5}$

compared to:

$\Gamma(\Lambda\gamma)/\Gamma_{total}$					
VALUE	CL%	DOCUMENT ID		TECN	COMMENT
<1.3 × 10 ⁻³	90	ACOSTA	02G	CDF	pp at 1.8 TeV

$\begin{array}{l} \mbox{forward-backward} \\ \mbox{asymmetry} \end{array} \quad \mathbf{A_{FB}} = \frac{\int_0^1 \mathbf{d}(\cos\vartheta) - \int_{-1}^0 \mathbf{d}(\cos\vartheta)}{\int_0^1 \mathbf{d}(\cos\vartheta) + \int_{-1}^0 \mathbf{d}(\cos\vartheta)} \end{array}$

Focus on semileptonic decay: $\Lambda_{f b}
ightarrow \Lambda_{f c} + au^- + ar
u_ au$

TG, M. Ivanov, J. Körner, V. Lyubovitskij, P. Santorelli, N. Habyl, PRD 91, 074001 (2015)

- tests of a key property of the SM: lepton flavor universality
- deviations would signal possible NP
- contraints on NP are weaker for the third generation
- discrepancies with SM results in B decays:

$$R(\mathcal{D}) \equiv \frac{\mathrm{Br}(\bar{B} \to \mathcal{D}\tau^- \bar{\nu}_{\tau})}{\mathrm{Br}(\bar{B} \to \mathcal{D}\ell^- \bar{\nu}_{\ell})} \qquad R(D) = \begin{cases} 0.305 \pm 0.012 & \mathrm{SM} \\ 0.421 \pm 0.058 & BABAR \& \mathrm{Belle}, \end{cases}$$
$$(\mathcal{D} = D, D^*; \ell = e, \mu) \qquad R(D^*) = \begin{cases} 0.252 \pm 0.004 & \mathrm{SM} \\ 0.337 \pm 0.025 & BABAR \& \mathrm{Belle}. \end{cases}$$

 0.000 ± 0.021

 $\Lambda_{\rm b}$ with spin 1/2 has a complex angular distribution

Mode	Our results	Data
$\Lambda_c^+ \to \Lambda^0 e^+ \nu_e$	2.72	2.74 ± 0.82
$\Lambda_b^0 \to \Lambda_c^+ e^- \bar{\nu}_e$	6.9	$6.5^{+3.2}_{-2.5}$
$\Lambda_b^0 \to \Lambda_c^+ \tau^- \bar{\nu}_\tau$	2.0	

rates in %

FIG. 9 (color online). The q^2 dependence of the total Λ_c polarization polarization $|\vec{P}^h|(q^2) = \sqrt{(P_x^h)^2 + (P_z^h)^2}$ for the e^- (solid) and τ^{-} (dashed) modes.

FIG. 5 (color online). The q^2 dependence of the lepton-side forward-backward asymmetry $A_{FB}^{\ell}(q^2)$ for the e^- (solid) and τ^- (dashed) modes.

> forward-backward asymmetries

observables

finally

•quark model: "old-fashioned" but reliable tool in describing conventional hadron structure

 here: covariant confined quark model, quantum field theory tool for analyzing hadronic properties

light hadron sector

•heavy hadrons -- lab to constrain SM and BSM physics

looking forward to LHCb among others

•extension to multiquark configurations