# **BFKL NLL phenomenology : forward jets and Mueller Navelet jets**

Christophe Royon IRFU-SPP, CEA Saclay

## Low x 2008, 6-10 July 2008, Kolimbari, Crete

Contents:

- BFKL-NLL formalism
- Fit to H1  $d\sigma/dx$  data
- Prediction for the H1 triple differential cross section
- Prediction for Mueller Navelet jets at the Tevatron/LHC

Work done in collaboration with O. Kepka, C. Marquet, R. Peschanski

Phys. Lett. B 655 (2007) 236; Eur. Phys. J. C55 (2008) 259, arXiv:0704.3409



- Typical kinematical domain where BFKL effects are supposed to appear with respect to DGLAP:  $k_T^2 \sim Q^2$ , and  $Q^2$  not too large
- LO BFKL forward jet cross section: 2 parameters  $\alpha_S$ , normalisation
- NLL BFKL cross section: one single parameter: normalisation ( $\alpha_S$  running via RGE)

## **BFKL NLL and resummation schemes**

- NLO BFKL: Corrections were found to be large with respect to LO, and lead to unphysical results
- NLO BFKL kernels need resummation: to remove additional spurious singularities in  $\gamma$  and  $(1-\gamma)$
- NLO BFKL kernel: ( $\gamma$  and  $\omega$  associated to  $\log Q^2$  and rapidity after Mellin transform)

$$\chi_{NLO}(\gamma,\omega) = \chi^{(0)}(\gamma,\omega) + \alpha(\chi_1(\gamma) - \chi_1^{(0)}(\gamma))$$

- $\chi_1(\gamma)$ : calculated, NLO BFKL eigenvalues (Lipatov, Fadin, Camici, Ciafaloni)
- χ<sup>(0)</sup> and χ<sub>1</sub>(0): ambiguity of resummation at higher order than NLO, different ways to remove these singularities, not imposed by BFKL equation, Salam, Ciafaloni, Colferai
- Transformation of the energy scale: γ → γ − ω/2 (Salam) needed for F<sub>2</sub> but not for forward jet cross sections (the problem is symmetric contrary to F<sub>2</sub>)
- BFKL NLL full calculation available (no saddle point approximation): resolution of implicit equation performed by numerical methods

## **BFKL NLL calculation**

- Full BFKL NLL calculation available in S3 and S4 schemes for forward jet production (modulo the impact factors taken at LL)
- Equation:

$$\frac{d\sigma_{T,L}^{\gamma^* p \to JX}}{dx_J dk_T^2} = \frac{\alpha_s(k_T^2)\alpha_s(Q^2)}{k_T^2 Q^2} f_{eff}(x_J, k_T^2)$$
$$\int \frac{d\gamma}{2i\pi} \left(\frac{Q^2}{k_T^2}\right)^{\gamma} \phi_{T,L}^{\gamma}(\gamma) \ e^{\bar{\alpha}(k_T Q)\chi_{eff}[\gamma, \bar{\alpha}(k_T Q)]Y}$$

- $\chi_{eff}$  computed using BFKL NLL formalism in the S3 and S4 schemes
- Implicit equation:  $\chi_{eff}(\gamma, \alpha) = \chi_{NLL}(\gamma, \alpha, \chi_{eff}(\gamma, \alpha))$  solved numerically

## **Fit results**

- Fit of NLL BFKL calculation to the H1  $d\sigma/dx$  data: one single parameter, normalisation of cross section
- $\chi^2$  for S3: 29.5 (1.15), S4: 10.0 (0.48)
- Good description of H1 data using BFKL LO and BFKL NLL formalism, DGLAP-NLO fails to describe the data
- BFKL higher corrections found to be small (We are in the BFKL-LO region, cut on  $0.5 < k_T^2/Q^2 < 5$ )



## Scale variation - Resummation model variation

- Scale dependence: variation of the scale between  $2Qk_T$ ,  $Qk_T/2$ ,  $Q^2$ ,  $k_T^2$ : ~ 20% difference
- Resummation scheme dependence: Use S3 and S4, S4 is slightly better



#### **Dependence on impact factor**

- Impact factor not yet fully known at NLL
- Variation of impact factor, 3 studies: h<sub>T</sub>, h<sub>L</sub>(γ) at LO; h<sub>T</sub>, h<sub>L</sub>(1/2) constant; implement the higher-order corrections in the impact factor due to exact gluon kinematics in the γ<sup>\*</sup> → qq̄ transition (see C.D. White, R. Peschanski, R.S. Thorne, Phys. Lett. B 639 (2006) 652)



- Triple differential cross section: Keep the normalisation from the fit to  $d\sigma/dx$  and predict the triple differential cross section
- Good description over the full range



#### d $\sigma/dx dp_T^2 d Q^2$ - H1 DATA

Study of scale variation: 20% at low  $p_T^2, > 70\%$  at higher  $p_T^2$  as for DGLAP

d  $\sigma/dx dp_T^2 d Q^2$  - H1 DATA



Study of dependence on impact factor

d  $\sigma/dx dp_T^2 d Q^2$  - H1 DATA



DGLAP study: large scale dependence



 $d_{\rm O}/dx \ dk_{\rm T}^2 \ dQ^2$  - H1 DATA

## **Mueller Navelet jets**

Same kind of processes at the Tevatron and the LHC



- Same kind of processes at the Tevatron and the LHC: Mueller Navelet jets
- Study the  $\Delta \Phi$  between jets dependence of the cross section:

## Mueller Navelet jets: $\Delta\Phi$ dependence

- Study the  $\Delta \Phi$  dependence of the relative cross section
- Relevant variables:

$$\Delta \eta = y_1 - y_2$$
  

$$y = (y_1 + y_2)/2$$
  

$$Q = \sqrt{k_1 k_2}$$
  

$$R = k_2/k_1$$

• Azimuthal correlation of dijets:

$$\frac{2\pi \frac{d\sigma}{d\Delta\eta dR d\Delta\Phi}}{\frac{2}{\sigma_0(\Delta\eta,R)}} \sum_{p=1}^{\infty} \sigma_p(\Delta\eta,R) \cos(p\Delta\Phi)$$

where

$$\sigma_p = \int_{E_T}^{\infty} \frac{dQ}{Q^3} \alpha_s (Q^2/R) \alpha_s (Q^2R)$$
$$\left(\int_{y_<}^{y_>} dy x_1 f_{eff}(x_1, Q^2/R) x_2 f_{eff}(x_2, Q^2R)\right)$$
$$\int_{1/2-\infty}^{1/2+\infty} \frac{d\gamma}{2i\pi} R^{-2\gamma} e^{\bar{\alpha}(Q^2)\chi_{eff}(p)\Delta\eta}$$

## Mueller Navelet jets: $\Delta \Phi$ dependence

- $1/\sigma d\sigma/d\Delta \Phi$  spectrum for BFKL LL and BFKL NLL as a function of  $\Delta \Phi$  for different values of  $\Delta \eta$
- Measurement to be performed at the Tevatron/LHC



### **Mueller Navelet jets in CDF**

Possibility to measure  $\Delta \Phi$  distribution in CDF for large  $\Delta \eta$ and low jet  $p_T$  ( $p_T > 5$  GeV) using the CDF miniPLUG calorimeter



## **Conclusion**

- DGLAP NLO fails to describe forward jet data
- BFKL NLL description of H1 and ZEUS forward jet data: very good description using full BFKL-NLL kernel and LO impact factors
- Study scale dependence and also dependence on assumption of impact factor: typically  $\sim 20\%$  uncertainty, larger at high  $p_T$
- Mueller Navelet jets: Full calculation available using S3 and S4 schemes
- Mueller Navelet jets  $\Delta\Phi$  dependence: weak dependence even after NLL corrections, little sensitivity to chosen scale
- Mueller Navelet jets: Very nice measurement to be performed at the Tevatron/LHC, special use of CDF forward miniPLUG calorimeter which gives a good acceptance at large  $\eta$  and small  $p_T$  for jets