High Energy Behavior in $N=4$ SYM and the BDS formula

J.Bartels
II.Inst.f.Theor.Physik, Univ.Hamburg
Low-x meeting, $K o \lambda v \mu \pi \alpha \rho i$, July 2008

- Introduction
- High Energy Behavior in Yang Mills Theories
- Comparison with the BDS formula (Bern, Dixon, Smirnov, Phys.Rev.D 72, 085001 (2005))
- Outlook: tasks

Based upon:
JB, Lev Lipatov, Agustin Sabio Vera, arXiv:0802.2065[hep-th]; 0807.0894[hep-th]

Introduction

MSYM Yang Mills ($\mathrm{N}=4, S U\left(N_{c}\right)$: dual to AdS_{5} String theory
proposal for n point amplitude, leading order N_{c}, all-order coupling constant, maximal helicity violating
Bern, Dixon, Kosover, Phys.Rev.D 72, 085001 (2005)

If correct: major breakthrough in QFT, even if not valid for QCD. Could help, e.g., to compute NLLO correction to BFKL kernel.

Proposal of BDS:

Large- N_{c} (planar), MHV amplitudes.
Remove color factors

$$
\operatorname{tr}\left(T^{a_{1}} \ldots T^{a_{n}}\right)+\text { noncycl.perm }
$$

factor out tree amplitude:

$$
\begin{gathered}
A_{n}=A_{n}^{\text {tree }} \cdot M_{n}(\epsilon) \\
\ln M_{n}=\sum_{l} a^{l}\left[\left(f^{(l)}(\epsilon) I_{n}(l \epsilon)+F_{n}(0)\right)+C^{(l)}+E_{n}^{(l)}[\epsilon]\right] \\
a=\frac{N_{c} \alpha}{2 \pi}\left(4 \pi e^{-\gamma}\right)^{\epsilon}, d=4-2 \epsilon
\end{gathered}
$$

(based upon universality of IR singularities (=poles in ϵ) and 1-loop calculation).
On-shell amlitudes, infrared singular.

Goal: comparison of (known) high energy behavior of SYM with BDS formula:
discrepancy for $n>5$, beyond one loop (also: Alday,Maldacena...)
related to imaginary parts

Restrict to leading logarithmic approximation: no distinction between (pure) $S U\left(N_{c}\right)$ and SYM Yang Mills ($\mathrm{N}=4, S U\left(N_{c}\right)$, dual to AdS_{5} String theory).

Simplest high energy limits: multiregge limit (\rightarrow total cross section).

Simple ordering in rapidity. Analytic structure relatively simple.
This talk: high energy behavior in Yang-Mills, then few remarks on comparison with BDS.
Deeper into the theory: see Lev Lipatov's talk.

High energy behavior

Leading logarithmic approximation is real, e.g.:

Simple factorization (exponentiation):

$$
\ln M_{7}=\ln \Gamma\left(t_{1}\right)+\omega\left(t_{1}\right) \ln s_{12}+\ln \Gamma\left(t_{1}, t_{2}, \eta\right)+\omega\left(t_{2}\right) \ln s_{23}+\ldots \ln \Gamma\left(t_{4}\right)
$$

Problem of BDS resides in the imaginary parts - energy discontinuities: independent energy variables.

Steinmann relations: 'no simultaneous discontinuities in overlapping channels' Example: $2 \rightarrow 4$, physical region (all energies positive)

Amplitude $=$ sum of different triple discontinuties .
Analytic representation: all phases are in energy and signature factors.
Similarly $3 \rightarrow 3: 5$ terms.

Number of terms grows: $2 \rightarrow 5: 14$ terms etc.

Analytic representation can be used to compute all terms from (multiple) discontinuities. (JB, Nucl.Phys.B 151 and B 175; Fadin,Lipatov, Nucl.Phys.406). Example:

Bootstrap relations: known from BFKL. Hold for inelastic amplitudes.

Bootstrap relations are valid beyond leading order.

High degree of selfconsistency.

Results for QCD: five partial waves, e.g. the first term

$$
\begin{aligned}
& \frac{g^{2} s}{t_{1} t_{2} t_{3}}\left[\left(\frac{s_{12}}{\mu^{2}}\right)^{\omega\left(t_{1}\right)-\omega\left(t_{2}\right)}\left(\frac{s_{123}}{\mu^{2}}\right)^{\omega\left(t_{2}\right)-\omega\left(t_{3}\right)}\left(\frac{s}{\mu^{2}}\right)^{\omega\left(t_{3}\right)} \xi\left(t_{1}, t_{2}\right) \xi\left(t_{2}, t_{3}\right) \xi\left(t_{3}\right)\right. \\
& \left.\frac{\omega\left(t_{3}\right)}{4}\left(\frac{a}{\epsilon}+\omega\left(t_{1}\right)-\omega\left(t_{2}\right)-a \ln \frac{\kappa_{12}}{\mu^{2}}\right) \cdot\left(\frac{a}{\epsilon}+\omega\left(t_{2}\right)-\omega\left(t_{3}\right)-a \ln \frac{\kappa_{23}}{\mu^{2}}\right)\right]
\end{aligned}
$$

Belongs to Regge pole picture:

New feature appears for terms 3 and 4:
contains not only gluon Regge pole but also Regge cut:

$$
\begin{aligned}
& \text { Vole } \\
& V_{c u t}
\end{aligned}
$$

Combine the two contributions:

$$
\begin{gathered}
d i s c_{s_{2}} A_{6} \sim s_{2}^{\omega\left(t_{2}\right)} \int_{\sigma-i \infty}^{\sigma+i \infty} \frac{d \omega}{2 \pi i}\left(\frac{s_{2}}{\mu^{2}}\right)^{\omega} \widetilde{f}_{2}(\omega), \\
\widetilde{f}_{2}(\omega)=\hat{\alpha}_{\epsilon} \boldsymbol{q}_{2}^{2} \int d^{2-2 \epsilon_{k}} k d^{2-2 \epsilon \epsilon_{k^{\prime}}^{\prime} \Phi_{1}\left(\boldsymbol{k}, \boldsymbol{q}_{2}, \boldsymbol{q}_{1}\right) \widetilde{G}_{\omega}\left(\boldsymbol{k}, \boldsymbol{k}^{\prime}, \boldsymbol{q}_{2}\right) \Phi_{3}\left(\boldsymbol{k}^{\prime}, \boldsymbol{q}_{2}, \boldsymbol{q}_{3}\right) .}
\end{gathered}
$$

- Regge cut piece violates factorization
- Regge cut piece is present in several discontinuities, e.g. in total energy s, but not in all discontinuities.
- Regge cut piece present in all A_{n} with $n>5$, e.g. $3 \rightarrow 3$.

Sum the 5 different pieces and obtain the full scattering amplitudes A_{n} :
Leading order: many cancellations, real-valued expression factorizes (see above).

Sum of all imaginary parts (= sum of discontinuities in different variables): again substantial cancellations:

- in physical region (where all energies are positive), the Regge cut piece cancels, simple factorizing structure is valid.
- But: in another physical region $s>0, s_{2}>0, s_{123}<0, s_{234}<0$ the cancellation of all imaginary parts is incomplete, Regge cut piece appears, factorization is violated.

Planar approximation: has only right hand cuts.
But still allows different physical regions:

all s positive

$s>0, s_{2}>0, s_{123}<0, s_{234} O$

Comparison with BDS formula

General strategy:
our analysis has been done for $\ln M$, discarding terms which vanish as $\epsilon \rightarrow 0$.
Start from region where all invariants are negative, take multiregge limit.
Then, by analytic continuation, compare with previous result in different physical regions (all at large- N_{c}, MHV).

The four point amplitude:

$$
\begin{gathered}
\ln M_{4}=2 \ln \Gamma(t)+\omega(t) \ln (-s) / \mu^{2} \\
M_{4}=\Gamma(t)\left(\frac{-s}{\mu^{2}}\right)^{\omega(t)} \Gamma(t)
\end{gathered}
$$

- No squares of $\ln s$
- one loop expression for Γ
and two-loop expression for $\omega(t)$ agree with explicit calculations
- exact: can also be written in 'dual' t-channel form (no high energy approximation).

The five point amplitude:
$\ln \ln M_{5}$: terms with squares of logarithms cancel. New production vertex:

$$
M_{2 \rightarrow 3}=\Gamma\left(t_{1}\right)\left(\frac{-s_{1}}{\mu^{2}}\right)^{\omega\left(t_{1}\right)} \Gamma\left(t_{2}, t_{1}, \ln -\kappa\right)\left(\frac{-s_{2}}{\mu^{2}}\right)^{\omega\left(t_{2}\right)} \Gamma\left(t_{2}\right)
$$

with

$$
-\kappa=\frac{\left(-s_{1}\right)\left(-s_{2}\right)}{(-s)}
$$

Representation is exact.
Analytic continuation to positive energies:

$$
-s \rightarrow e^{-i \pi} s, \quad \ln (-\kappa) \rightarrow \ln \kappa-i \pi, \quad \kappa=\boldsymbol{k}^{2}
$$

Amplitude can be written in the analytic form:
$\frac{M_{2 \rightarrow 3}}{\Gamma\left(t_{1}\right) \Gamma\left(t_{2}\right)}=\left(\frac{-s_{1}}{\mu^{2}}\right)^{\omega\left(t_{1}\right)-\omega\left(t_{2}\right)}\left(\frac{-s}{\mu^{2}}\right)^{\omega\left(t_{2}\right)} c_{1}+\left(\frac{-s_{2}}{\mu^{2}}\right)^{\omega\left(t_{2}\right)-\omega\left(t_{1}\right)}\left(\frac{-s}{\mu^{2}}\right)^{\omega\left(t_{1}\right)} c_{2}$,
with real-valued functions c_{1}, c_{2}. Consistency check: the region $s_{12}, s_{23}<0$.

The six point amplitude: $T_{2 \rightarrow 4}$
In the unphysical region (all energies negative):
$\frac{M_{2 \rightarrow 4}}{\Gamma\left(t_{1}\right) \Gamma\left(t_{3}\right)}=\left(\frac{-s_{1}}{\mu^{2}}\right)^{\omega\left(t_{1}\right)} \Gamma\left(t_{2}, t_{1}, \ln -\kappa_{12}\right)\left(\frac{-s_{2}}{\mu^{2}}\right)^{\omega\left(t_{2}\right)} \Gamma\left(t_{3}, t_{2}, \ln -\kappa_{23}\right)\left(\frac{-s_{3}}{\mu^{2}}\right)^{\omega\left(t_{3}\right)}$
with

$$
-\kappa_{12}=\frac{\left(-s_{1}\right)\left(-s_{2}\right)}{-s_{012}}, \quad-\kappa_{23}=\frac{\left(-s_{2}\right)\left(-s_{3}\right)}{-s_{123}}
$$

The same functions $\Gamma(t)$ and $\Gamma\left(t_{1}, t_{2}, \kappa\right)$ as before.

Analytic continuation: inconsistency appears .
Can be seen in several different ways:
(a) attempt to write as a sum of five terms with real-valued functions c_{i} (use also the other physical region: $\left.s>0, s_{2}>0, s_{123}<0, s_{234}<0\right)$: no solution for the c_{i}.
(b) comparison with the earlier QCD results: in the region $s>0, s_{2}>0, s_{123}<$ $0, s_{234}<0$, one should see the Regge cut piece. The BDS formula yields:

$$
\begin{aligned}
C= & \exp \left[\frac{\gamma_{K}(a)}{4} i \pi\left(\ln \frac{\left(-t_{1}\right)\left(-t_{3}\right)}{\left(\vec{k}_{1}+\vec{k}_{2}\right)^{2} \mu^{2}}-\frac{1}{\epsilon}\right)\right] \\
& \approx 1+i \pi a\left(\ln \frac{\left(-t_{1}\right)\left(-t_{3}\right)}{\left(\vec{k}_{1}+\vec{k}_{2}\right)^{2} \mu^{2}}-\frac{1}{\epsilon}\right)
\end{aligned}
$$

agrees with the one loop approximation to the Regge cut piece, but BDS cannot reproduce the full Regge cut structure

Outlook: results and tasks

What has been achieved, by comparison with explicit QCD calculations:

- BDS ok for 4 and 5 point amplitude. Regge limit is even exact.
- subtle disagreement for M_{n} for $n \geq 6$ beyond one loop.
- in general, expect no simple exponential form. What instead?

Can we correct the formula? Reasons for being optimistic:

- many features of the BDS formula seem already to be correct (infrared and beyond)
- structure seen in the Regge limit may not be too far from general kinematics
- experience from analyzing QCD in Regge limit: structures seen in leading log (bootstrap, unitarity properties) may survive in higher order
$\epsilon \nu \alpha \rho \chi \grave{\eta} \tilde{\eta} \nu$ o $\lambda o ́ \gamma o \sigma: \mathrm{BDS}$
- Introduction
- High Energy Behavior in Yang Mills Theories
- Comparison with the BDS formula (Bern, Dixon, Smirnov, Phys.Rev.D 72, 085001 (2005))
- Outlook: tasks

Based upon:
JB, Lev Lipatov, Agustin Sabio Vera, arXiv:0802.2065[hep-th]; 0807.XXXX[hep-th]

Introduction

Goal: comparison of (known) high energy behavior of SYM with BDS formula: discrepancy

Restrict to leading logarithmic approximation: no distinction between (pure) $S U\left(N_{c}\right)$ and SYM Yang Mills ($\mathrm{N}=4, S U\left(N_{c}\right)$, dual to AdS_{5} String theory).

Simplest high energy limits: multiregge limit (\rightarrow total cross section).

Simple ordering in rapidity. Analytic structure relatively simple. Also: triple Regge limit. This talk: first high energy behavior in Yang-Mills, then comparison with BDS. Notation: scattering amplitude A_{n}, after removal of Born approximation M_{n}.

High energy behavior

Leading logarithmic approximation is real, e.g.:

Simple factorization (exponentiation):

$$
\ln M_{7}=\ln \Gamma\left(t_{1}\right)+\omega\left(t_{1}\right) \ln s_{12}+\ln \Gamma\left(t_{1}, t_{2}, \eta\right)+\omega\left(t_{2}\right) \ln s_{23}+\ldots \ln \Gamma\left(t_{4}\right)
$$

What about imaginary parts - energy discontinuities (belong still to leading log): independent energy variables?

Steinmann relations: 'no simultaneous discontinuities in overlapping channels'
Example:
$2 \rightarrow 3$, in double Regge limit, in physical region $s \gg s_{12}, s_{23}>0$, color octet exchange:

Singularities decouple at high energies.

History:
Axiomatic field theory; B_{5} Veneziano amplitudes, scalar field theory, proper partial wave decomposition
(Steinmann; Brower et al, Gribov, W.Zakrzewski et al, A.White,....).

Analytic representation for positive energies:

$$
\begin{gathered}
A_{5}=2 \operatorname{sg} \beta\left(t_{1}\right) \delta_{\lambda \lambda^{\prime}}\left(\frac{s_{12}^{\omega\left(t_{1}\right)-\omega\left(t_{2}\right)}{ }_{s} \omega\left(t_{2}\right)_{\xi\left(t_{1}, t_{2}\right) \xi\left(t_{2}\right)}}{t_{2}} V_{R}\left(t_{1}, t_{2}, \kappa\right)+\frac{\left.s_{23}^{\omega\left(t_{2}\right)-\omega\left(t_{1}\right)}{ }_{s} \omega\left(t_{1}\right)_{\xi\left(t_{2}, t_{1}\right) \xi\left(t_{1}\right)}^{t_{1}} V_{L}\left(t_{1}, t_{2}, \kappa\right)\right) g_{1}\left(t_{2}\right) \delta_{\lambda}}{\xi(t)=1+e^{-i \pi \omega(t)}, \xi\left(t_{1}, t_{2}\right)=\frac{1+e^{-i \pi\left(\omega\left(t_{1}\right)-\omega\left(t_{2}\right)\right)}}{\left(\omega\left(t_{1}\right)-\omega\left(t_{2}\right)\right)}} .\right.
\end{gathered}
$$

Decomposition into sum of double discontinuties. All vertex functions are real-valued.
Can also be written in a factorized form:

$$
A_{5}=2 \operatorname{sg} \beta\left(t_{1}\right) \delta_{\lambda \lambda^{\prime}}\left(\frac{\left|s_{1}\right|}{\mu^{2}}\right)^{\alpha\left(t_{1}\right)} \xi\left(t_{1}\right) V\left(t_{1}, t_{2}, \kappa\right)\left(\frac{\left|s_{2}\right|}{\mu^{2}}\right)^{\alpha\left(t_{2}\right)} \xi\left(t_{2}\right) \beta\left(t_{2}\right) \delta_{\lambda \lambda^{\prime}}
$$

In this representation there are phases inside the production vertex function V.

Second example: $2 \rightarrow 4$, physical region (all energies positive)

Again: sum of double discontinuties .
Analytic representation: all phases are in energy and signature factors.
Similarly $3 \rightarrow 3: 5$ terms.

Number of terms grows: $2 \rightarrow 5: 14$ terms etc.

Systematics: hexagraphs (A.White).

Analytic representation can be used to compute all terms from (multiple) discontinuities. (JB, Nucl.Phys.B 151 and B 175; Fadin,Lipatov, Nucl.Phys.406). Example:

Bootstrap relations: known from BFKL. Hold for inelastic amplitudes.

Bootstrap relations are valid beyond leading order.
High degree of selfconsistency.

Results for QCD: five partial waves, e.g. the first term

$$
\begin{aligned}
& \frac{g^{2} s}{t_{1} t_{2} t_{3}}\left[\left(\frac{s_{12}}{\mu^{2}}\right)^{\omega\left(t_{1}\right)-\omega\left(t_{2}\right)}\left(\frac{s_{123}}{\mu^{2}}\right)^{\omega\left(t_{2}\right)-\omega\left(t_{3}\right)}\left(\frac{s}{\mu^{2}}\right)^{\omega\left(t_{3}\right)} \xi\left(t_{1}, t_{2}\right) \xi\left(t_{2}, t_{3}\right) \xi\left(t_{3}\right)\right. \\
& \left.\frac{\omega\left(t_{3}\right)}{4}\left(\frac{a}{\epsilon}+\omega\left(t_{1}\right)-\omega\left(t_{2}\right)-a \ln \frac{\kappa_{12}}{\mu^{2}}\right) \cdot\left(\frac{a}{\epsilon}+\omega\left(t_{2}\right)-\omega\left(t_{3}\right)-a \ln \frac{\kappa_{23}}{\mu^{2}}\right)\right]
\end{aligned}
$$

Belongs to Regge pole picture:

New feature appears for terms 3 and 4:
contains not only gluon Regge pole but also Regge cut:

Combine the two contributions:

$$
\begin{gathered}
s_{2}^{\omega\left(t_{2}\right)} \int_{\sigma-i \infty}^{\sigma+i \infty} \frac{d \omega}{2 \pi i}\left(\frac{s_{2}}{\mu^{2}}\right)^{\omega} \widetilde{f}_{2}(\omega), \\
\widetilde{f}_{2}(\omega)=\hat{\alpha}_{\epsilon} \boldsymbol{q}_{2}^{2} \int d^{2-2 \epsilon} k d^{2-2 \epsilon} k^{\prime} \Phi_{1}\left(\boldsymbol{k}, \boldsymbol{q}_{2}, \boldsymbol{q}_{1}\right) \widetilde{G}_{\omega}\left(\boldsymbol{k}, \boldsymbol{k}^{\prime}, \boldsymbol{q}_{2}\right) \Phi_{3}\left(\boldsymbol{k}^{\prime}, \boldsymbol{q}_{2}, \boldsymbol{q}_{3}\right) \\
\widetilde{f}_{2}=\frac{a}{2}\left(\ln \frac{\boldsymbol{k}_{1}^{2} \boldsymbol{k}_{2}^{2}}{\left(\boldsymbol{k}_{1}+\boldsymbol{k}_{2}\right)^{2} \mu^{2}}-\frac{1}{\epsilon}\right)+\frac{a^{2}}{2} \ln s_{2} \ln \frac{\left|q_{1}-q_{3}\right|^{2}\left|q_{2}\right|^{2}}{\left|q_{1}\right|^{2}\left|k_{2}\right|^{2}} \ln \frac{\left|q_{1}-q_{3}\right|^{2}\left|q_{2}\right|^{2}}{\left|q_{3}\right|^{2}\left|k_{1}\right|^{2}}+\ldots
\end{gathered}
$$

Note: only the one-loop approximation is singular (important for comparison with BDS)

Exact solution of the octet BFKL equation:

$$
\begin{gathered}
G_{\omega}\left(\vec{k}, \vec{k}^{\prime} ; \vec{q}\right)=\frac{1}{2 \pi^{2}} \frac{|q|^{2}}{|k|^{2}| | q-\left.k\right|^{2}} \sum_{n=-\infty}^{\infty} \int_{-\infty}^{\infty} d \nu \frac{f_{\nu n}^{*}\left(\vec{k}^{\prime}, \vec{q}^{\prime}\right) f_{\nu n}(\vec{k}, \vec{q})}{\omega-\omega(\nu, n)}, \\
\omega_{n}(\nu, n)=\frac{g^{2} N_{c}}{2 \pi^{2}}\left(2 \psi(1)-\Re \psi\left(1+i \nu+\frac{n}{2}\right)+\Re \psi\left(1+i \nu-\frac{n}{2}\right)\right) .
\end{gathered}
$$

Leading eigenvalue (at $\nu=0): \omega(0, n=1)=4 \ln 2-2>0(\rightarrow$ Odderon).
(Singular term: leading eigenvalue $\omega(0,0)=0$.)
Möbius invariance in dual variables (\rightarrow dual conformal symmetry?).
Comments:

- Regge cut piece violates factorization
- Regge cut piece is present in several discontinuities, e.g. in total energy s, but not in all discontinuities.
- Regge cut piece present in all A_{n} with $n>5$, e.g. $3 \rightarrow 3$.

Sum the 5 different pieces and obtain the full scattering amplitudes A_{n} :
Leading order: many cancellations, real-valued expression factorizes (see above).

Sum of all imaginary parts (= sum of discontinuities in different variables): again substantial cancellations:

- in physical region (where all energies are positive), the Regge cut piece cancels, simple factorizing structure is valid.
- But: in another physical region $s>0, s_{2}>0, s_{123}<0, s_{234}<0$ the cancellation of all imaginary parts is incomplete, Regge cut piece appears, factorization is violated.

Planar approximation: has only right hand cuts.
But still allows different physical regions:

all s positive

$s>0, s_{2}>0, s_{123}<0, s_{234} O$

Comparison with BDS formula

After removal of color factors from the scattering amplitude

$$
\operatorname{tr}\left(T^{a_{1}} \ldots T^{a_{n}}\right) A_{n}+\text { noncycl.perm }
$$

factor out the tree amplitude:

$$
A_{n}=A_{n}^{\text {tree }} \cdot M_{n}(\epsilon)
$$

Conjecture:

$$
\begin{gathered}
\ln M_{n}=\sum_{l} a^{l}\left[\left(f^{(l)}(\epsilon) I_{n}(l \epsilon)+F_{n}(0)\right)+C^{(l)}+E_{n}^{(l)}[\epsilon]\right] \\
a=\frac{N_{c} \alpha}{2 \pi}\left(4 \pi e^{-\gamma}\right)^{\epsilon}, d=4-2 \epsilon
\end{gathered}
$$

(based upon universality of RR singularities (=poles in ϵ) and unitarity, verified in 1-loop).

General strategy:
our analysis has been done for $\ln M$, discarding terms which vanish as $\epsilon \rightarrow 0$.
Start from region where all invariants are negative, take multiregge limit.
Then, by analytic continuation, compare with previous result in different physical regions (all at large- N_{c}, MHV).

All our results for the scattering amplitude M_{n} are valid up to a factor

$$
M_{n}=\ldots . .(1+\mathcal{O}(\epsilon))
$$

(important for comparison with fixed order NLO calculations).

The four point amplitude: (Korchemsky,...)

$$
\begin{gathered}
\ln M_{4}=2 \ln \Gamma(t)+\omega(t) \ln (-s) / \mu^{2} \\
M_{4}=\Gamma(t)\left(\frac{-s}{\mu^{2}}\right)^{\omega(t)} \Gamma(t)
\end{gathered}
$$

- No squares of $\ln s$
- one loop expression for Γ and two-loop expression for $\omega(t)$ agree with explicit calculations
- exact: can also be written in 'dual' t-channel form (no high energy approximation).

The five point amplitude:
$\ln \ln M_{5}$: terms with squares of logarithms cancel. New production vertex:

$$
M_{2 \rightarrow 3}=\Gamma\left(t_{1}\right)\left(\frac{-s_{1}}{\mu^{2}}\right)^{\omega\left(t_{1}\right)} \Gamma\left(t_{2}, t_{1}, \ln -\kappa\right)\left(\frac{-s_{2}}{\mu^{2}}\right)^{\omega\left(t_{2}\right)} \Gamma\left(t_{2}\right)
$$

with

$$
-\kappa=\frac{\left(-s_{1}\right)\left(-s_{2}\right)}{(-s)}
$$

Representation is exact.
Analytic continuation to positive energies:

$$
-s \rightarrow e^{-i \pi} s, \quad \ln (-\kappa) \rightarrow \ln \kappa-i \pi, \quad \kappa=\boldsymbol{k}^{2}
$$

Amplitude can be written in the analytic form:
$\frac{M_{2 \rightarrow 3}}{\Gamma\left(t_{1}\right) \Gamma\left(t_{2}\right)}=\left(\frac{-s_{1}}{\mu^{2}}\right)^{\omega\left(t_{1}\right)-\omega\left(t_{2}\right)}\left(\frac{-s}{\mu^{2}}\right)^{\omega\left(t_{2}\right)} c_{1}+\left(\frac{-s_{2}}{\mu^{2}}\right)^{\omega\left(t_{2}\right)-\omega\left(t_{1}\right)}\left(\frac{-s}{\mu^{2}}\right)^{\omega\left(t_{1}\right)} c_{2}$,
with real-valued functions c_{1}, c_{2}. Consistency check: the region $s_{12}, s_{23}<0$.

The six point amplitude: $T_{2 \rightarrow 4}$
In the unphysical region (all energies negative):
$\frac{M_{2 \rightarrow 4}}{\Gamma\left(t_{1}\right) \Gamma\left(t_{3}\right)}=\left(\frac{-s_{1}}{\mu^{2}}\right)^{\omega\left(t_{1}\right)} \Gamma\left(t_{2}, t_{1}, \ln -\kappa_{12}\right)\left(\frac{-s_{2}}{\mu^{2}}\right)^{\omega\left(t_{2}\right)} \Gamma\left(t_{3}, t_{2}, \ln -\kappa_{23}\right)\left(\frac{-s_{3}}{\mu^{2}}\right)^{\omega\left(t_{3}\right)}$
with

$$
-\kappa_{12}=\frac{\left(-s_{1}\right)\left(-s_{2}\right)}{-s_{012}}, \quad-\kappa_{23}=\frac{\left(-s_{2}\right)\left(-s_{3}\right)}{-s_{123}}
$$

The same functions $\Gamma(t)$ and $\Gamma\left(t_{1}, t_{2}, \kappa\right)$ as before.

Analytic continuation: inconsistency appears .
Can be seen in several different ways:
(a) attempt to write as a sum of five terms with real-valued functions c_{i} (use also the other physical region: $\left.s>0, s_{2}>0, s_{123}<0, s_{234}<0\right)$: no solution for the c_{i}.
(b) comparison with the earlier QCD results: in the region $s>0, s_{2}>0, s_{123}<$ $0, s_{234}<0$, one should see the Regge cut piece. The BDS formula yields:

$$
\begin{aligned}
C= & \exp \left[\frac{\gamma_{K}(a)}{4} i \pi\left(\ln \frac{\left(-t_{1}\right)\left(-t_{3}\right)}{\left(\vec{k}_{1}+\vec{k}_{2}\right)^{2} \mu^{2}}-\frac{1}{\epsilon}\right)\right] \\
& \approx 1+i \pi a\left(\ln \frac{\left(-t_{1}\right)\left(-t_{3}\right)}{\left(\vec{k}_{1}+\vec{k}_{2}\right)^{2} \mu^{2}}-\frac{1}{\epsilon}\right)
\end{aligned}
$$

agrees with the one loop approximation to the Regge cut piece, but BDS cannot reproduce the full Regge cut structure

Important: the higher order terms in the Regge cut are not singular in ϵ and are not in conflict with the infrared structure of the BDS formula.

Outlook: results and tasks

What has been achieved, by comparison with explicit QCD calculations:

- BDS ok for 4 and 5 point amplitude. Regge limit is even exact.
- subtle disagreement for M_{n} for $n \geq 6$ beyond one loop.
- in general, expect no simple exponential form. What instead?

Can we correct the formula? Reasons for being optimistic:

- many features of the BDS formula seem already to be correct (infrared and beyond)
- structure seen in the Regge limit may not be too far from general kinematics
- experience from analyzing QCD in Regge limit: structures seen in leading log (bootstrap, unitarity properties) may survive in higher order

