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i Goal

= The formulation of (1+1)
hydrodynamics in terms of suitable

= The extraction of general and exact
for the entropy flows



‘_L Talk Plan

= 1) Introduction (why hydrodynamics?)

= 2) Perfect fluid relativistic hydrodynamics (potential formulation)
= 3) Entropy flow: An exact formula

= 4) General properties of the entropy flow

= 5) Physics of (1+1) hydrodynamics: comparison with
experimental data

= 6) Conclusions-Prospects
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1) Introduction

= Accumulating evidence that hydrodynamics may be
relevant for the description of medium created in
heavy-ion collisions

s Perfect fluid
(low viscosity)

hadronic gas

mixed phase > described )
by hydrodynamics itudi
QOGP m Longitudinal

pre-equilibrium stage motion
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* 2) Perfect Fluid relativistic hydrodynamics

p+e=1s

de =Tds

4y

de

_ ol
Tds
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2) Perfect Fluid (1+1) relativistic hydrodynamics:
Formulation

Use light-cone variables: 7, = { t 7 = Tei”
Where: 7=+/7'7 the proper time and - the space-time rapidity

Solutions: For c¢” =const=1/g .

Inthe y=1 case (boost invariant: FRTRENE) FEEIEIEE] 1.50kcr s

s Landau asymptotic flow [Landau '55]

The generalization of both (harmonic rows:-) [A.Bialas,R.Janik,R.Peschanski ‘07]
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2) Perfect Fluid (1+1) relativistic hydrodynamics:
Existence of a potential

N -
Making life simpler! @ = In 2=

= 2) _ Entropy flow conservation

= 3) Going from (2 -z ) to (@, y)-base: Legendre transform:

= Thus:

Khalatnikov equation [Khalatnikov ‘54, Landau ‘55]
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2) Perfect Fluid (1+1) relativistic hydrodynamics:
Solution

= Solution for |c* =const=1/g|:

the function K carries the information of initial/boundary conditions
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3) Entropy flow derivation:

ds
= Interested in 5@) at fixed temperature 7; :

dA :infinitesimal length element along hyper-surface
n* 1 normal to the hyper-surface

ds
dy

dA

—(y) = Spuﬂ”ﬂg

In (6.y )-base, the proper time 7 and the space-time rapidity r write:

7 (y) =7(0p, )

ne(y)=n(0;,y)
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3) Entropy flow derivation:

Int ted i d—S(Y) t fixed t ture T By = s P
= Interested in *p; at fixed temperature Ty @ | =) = spun, "

dA :infinitesimal length element along hyper-surface

n* 1 normal to the hyper-surface
= In (6.y)-base, the proper time 7 and the space-time rapidity r write:
T () =70, )| |17 (y)=1(0,,y)

= Defining first the tangent vector, and then the normal we finally obtain:

Zl’_im = 5[ ()77 () cosh(z () = ) + 7, (3)sinh(@ () - y)]
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4) General properties of the entropy flow

= Finally:

[G.Beuf, R.Peschanski, E.N.S ‘08]

Allows for investigation of the general features of the entropy flow of (1+1)
hydrodynamic evolution, in terms of temperature and rapidity.
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4) Properties of the entropy flow :
Total Entropy- Universal flow properties

= Self consistency test: Total Entropy:

Y /2
ds

A |9=9F= 2 (y) |9=0F
{ dy

T 8
- 917 —
since |Sr = SO(?FJ = spe 8 =35,

0

= Entropy conservation
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4) Properties of the entropy flow:

For flows dominated by hydrodynamic evolution:

= So:
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5) Physics of (1+1) hydrodynamics:
comparison with experimental data (fixed energy Ws=200 GeV)

s Data: at fixed €Nergy [BRAHMS Collaboration ‘04]
= (1+1) assumptions: i) - ii) The observed distribution is at fixed .
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5) Physics of (1+1) hydrodynamics:
comparison with experimental data (fixed energy s =200 GeV)

Data:

at fixed energy [BRAHMS Collaboration '04]

= (1+1) assumptions: i) - ii) The observed distribution is at fixed .

/‘-ﬁ“\ﬂ#
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g=3, 6.=-0.45
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5) Physics of (1+1) hydrodynamics:
comparison with experimental data (fixed energy /s =200 GeV)

s Data: at fixed €Nergy [BRAHMS Collaboration ‘04]
= (1+1) assumptions: i) - ii) The observed distribution is at fixed .

g=3,0.=-0.45 =5, 0.=-1.7

300+
300+

>
8
9]
e

200+ 200

100+

300+
Gaussian fit: - [P. Carruthers M.Van ‘72]

200+

100+
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5) Physics of (1+1) hydrodynamics:
comparison with experimental data (energy dependence)

= Energy (Y) dependence of multiplicity distribution

= For a given pair of [9-:8 : -

= Foragiven g the 6, -Y relation is clearly linear: 6, =—a(Y - X))
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5) Physics of (1+1) hydrodynamics:
comparison with experimental data (energy dependence)

=  Energy (Y) dependence of multiplicity distribution
= For a given pair of ;¢

= Foragiven & the 9, -Y relation is clearly linear: 9, =—a(Y -Y,)

0.=-0.21*%(Y-10) 0.=-0.21*(Y-5.2) 6.=-0.22*(Y-3.4) i , )
il " Bl o] . = Experimental data better fitted with
| \ ) . smaller sound speed (larger &)
2] 2 2 s I PN R U (YN
3 3 3 T,
g=3 g=4 g=5
fTE T s 2 v 5 1@ 9 5 15 20 More energy available (Iarger Y) =

6.=-0.23*(Y-0.8) more hydrodynamic evolution

At smaller sound speed,the evolution
has to occur in a wider temperature
interval, to describe the same .
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5) Physics of (1+1) hydrodynamics

= Linearity between 6, and C.0.M energy:

. ds . . .
= Allows for comparison between %~ and 1-particle inclusive cross-

section, for [A¥A=h+X , and thus to the appropriate scattering
amplitudes (not easy to formulate in hydrodynamic formalism).

= Useful to compare with various non-hydrodynamic theories and
models applied to high-energy collisions.
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Conclusions

= i) Khalatnikov potential ¥ allows to bypass the difficulties due to non-linearity
of the equations [Landau, Khalatnikov ‘55]. Reformulation in light-cone variables.

= i) It allows to provide a non-boost-invariant, solution for the entropy
flow - of an expanding perfect fluid in (1+1)d [G. Beuf, R. Peschanski, E.N.S 08]

= i) - factorizes the contributions of the hydrodynamic evolution and of
= initial conditions.

TO
For sufficiently long evolution (large |7, |) it displays an explicit universal

T 0
behavior (depending on |7, |and | § |)

= V) - is in agreement with experimental - ,

TO
with a relation h{T—j =aY -Y)

F
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Open questions

= i) What about entropy flow through other super-surfaces (e.g

)?
= ii) What about viscosity and/or varying sound-speed?
= iii) Can we go beyond motion?
= iv) Is there a “transition” in hydrodynamics?

= Vi) AdS/CFT correspondence of the expanding plasma is for the moment
restricted to boost invariance (Bjorken flow).

Can we introduce the obtained hydrodynamic rapidity dependence in the
related Einstein equations?
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Appendix1: General solution of Khalatnikov equation

x(0.y)=e

g-1
7(7)92(9, y) =

Laplace transforms: ., .\, fuoeoz0.00 zi0.y - 22

—L_ e "7 N
Ve (7. y)

2
a§Z—gafZ—(gT_l) zZ=0

= gaz)Z = |:}/2 _(g__l

2

/)

General solution: Zw.y -« &V = K@

. (g -1’
4

e

Vo +in

ho)= | Lo Riy)=0(-0)K(0)
i 270

N B o e P {f } Y S NN TR =N e S
TN T
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Appendix2: General solution of Khalatnikov equation

= 6a652(a,ﬂ)—(gT_l) Z(a.p)=0

Green

functions: 6a6ﬁ(?(a,ﬂ)—(gT_l) Ga,p)=5(a)d(p)

= G(a.p) - ®(0t)®(,b’)10(g2_11/_aﬂ ]

Using:

Thus, we construct the general solution inserting distribution of sources:|F (0,5)]:

1 — 1 y y g-1 / , Y
G(G’,}’)=—G(a,ﬂ)=—®(—6’+—)®(—6’——)10[— 0" ——
6((1)6(ﬂ)=6(—0+ﬁ)6(—0—ﬁ)=\/;6(0)5@) 4\/; 4\/2 \/E \/; 2 8

Evolution dominated solutions: |F (4, y)=4\/§1<(§)®(—§)5(y)
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Appendix3: Entropy flow derivation:
fixed-temperature surface

. . |ds dA
= Fixed temperature T, : E(y)stu”nﬂE (1)
di - along hyper-surface
U

n to the hyper-surface [A.Bialas,R.Janik,R.Peschanski ‘07]

- ;i g ; z;((ZZ f} ; }Fixed temperature surface

. {v+<y>sz;'<y>=(rF'+nF'rF)e"F
"Wz =g e

n(ye’™ (UF‘ Tp— TF') =n (y)e" (UF‘ Tyt TF‘)

U

: { nt(yn () =1

S v e o nl-o

U

)
W difdA, = —difdi, = -G -l Nay ¥ = di=AJring —cidy (3)
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Appendix4:

s Use light-cone variables: 7, = { t 7 = Tei”
- 1.z
= Where: 7=v7 7z the proper time and 77=§ In— the space-time rapidity
Z

1—e2

2y
[e 1j5+(8+p)+€2y(8+p)a+y+(

5 J@_(8+p)+e'2y(8+p)@_y+5+p—5_p=0

1+e%

2y
(e +1j5+(8+ p)+e’(e+ p)d,y +(

5 j@_(8+p)—e'zy(8+p)8_y—5+p+8_p=0

= Solutions: Only for ¢* =const=1/ g in the boost invariant case: y=n7 :

T =T,z "% &=g,r ¥V'¢ [1.Bjorken'83] or in the harmonic flow
[A.Bialas,R.Janik,R.Peschanski ‘07]




Appendix5:
General properties of the entropy flow

= Using the general solution for x(6,y) our formula gives:

y 2 (g-1)°

- V4
/ 4
e 8

Q(7’y): ( 1)2
2 g -
N

= Kernel: (entropy flow due to hydrodynamic evolution)

= Coefficient function: [( y+g/12)° — 1/4J1?(7/) (initial conditions of the entropy flow)

Allows for investigation of the general features of the entropy flow of any
(1+1) hydrodynamic evolution, in terms of temperature and rapidity.
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Appendix6:

z+=%ey“9(5yz—3ez) z‘=—%e‘y“9(6yz+6gz) Good!
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