ENTROPY FLOWS OF A PERFECT FLUID IN (1+1) HYDRODYNAMICS

Emmanuel N. Saridakis

Nuclear and Particle Physics Section
Physics Department
University of Athens

In collaboration with Robi Peschanski and Guillaume Beuf

Institut de Physique Théorique, CEA, IPhT

Goal

The formulation of (1+1)
 hydrodynamics in terms of suitable potentials

 The extraction of general and exact relations for the entropy flows

Talk Plan

- 1) Introduction (why hydrodynamics?)
- 2) Perfect fluid relativistic hydrodynamics (potential formulation)
- 3) Entropy flow: An exact formula
- 4) General properties of the entropy flow
- 5) Physics of (1+1) hydrodynamics: comparison with experimental data
- 6) Conclusions-Prospects

1) Introduction

 Accumulating evidence that hydrodynamics may be relevant for the description of medium created in heavy-ion collisions

2) Perfect Fluid relativistic hydrodynamics

$$T^{\mu\nu} = (\varepsilon + p)u^{\mu}u^{\nu} - p\eta^{\mu\nu}, \qquad \partial_{\mu}T^{\mu\nu} = 0$$

$$\partial_{\mu}T^{\mu\nu}=0$$

$$p + \varepsilon = Ts$$
 $d\varepsilon = Tds$

$$d\varepsilon = Tds$$

$$dp = sdT$$

$$\frac{dp}{d\varepsilon} = \frac{sdT}{Tds} = c^2(\varepsilon)$$

2) Perfect Fluid (1+1) relativistic hydrodynamics: **Formulation**

Use light-cone variables:
$$z_{\pm} = t \pm z = \tau e^{\pm \eta}$$

• Where: $\tau = \sqrt{z^+ z^-}$ the proper time and $\eta = \frac{1}{2} \ln \frac{z^+}{z^-}$ the space-time rapidity

$$\eta = \frac{1}{2} \ln \frac{z^+}{z^-}$$

$$u^{\pm} = u^0 \pm u^1 = e^{\pm y} \Longrightarrow y = \ln u^+$$

- Solutions: For $c^2 = const = 1/g$.
- In the $y=\eta$ case (boost invariant): $T=T_0\tau^{-1/g}$ $\varepsilon=\varepsilon_0\tau^{-(g+1)/g}$ [J.Bjorken '83]
- Landau asymptotic flow [Landau '55]
- The generalization of both (harmonic flows: $\partial_+\partial_-y=0$) [A.Bialas,R.Janik,R.Peschanski '07]

2) Perfect Fluid (1+1) relativistic hydrodynamics: Existence of a potential

• Making life simpler! $\frac{\theta}{\theta} = \ln \frac{T}{T_0}$

1)
$$\partial_+(e^{\theta+y}) = \partial_+(e^{\theta-y}) \implies \partial_\pm\Phi = e^{\theta\pm y}$$
 Existence of a potential

• 3) Going from (z^+, z^-) to (θ, y) -base: Legendre transform:

$$\chi \equiv \Phi - z^{-}(e^{\theta+y}) - z^{+}(e^{\theta-y})$$

Thus:

$$c_s^2 \partial_{\theta}^2 \chi(\theta, y) + [1 - c_s^2] \partial_{\theta} \chi(\theta, y) - \partial_{y}^2 \chi(\theta, y) = 0$$
Very Good!

Khalatnikov equation [Khalatnikov '54, Landau '55]

2) Perfect Fluid (1+1) relativistic hydrodynamics: Solution

Solution for $c^2 = const = 1/g$:

$$\chi(\theta,y) = e^{-\left(\frac{g-1}{2}\right)\theta} \int_{\theta}^{-\frac{y}{\sqrt{g}}} I_0\left(\frac{g-1}{2}\sqrt{\theta'^2 - y^2/g}\right) K(\theta-\theta') d\theta'$$

the function **K** carries the information of initial/boundary conditions

3) Entropy flow derivation:

fixed-temperature surface

• Interested in $\frac{dS}{dy}(y)$ at fixed temperature T_F : $\frac{dS}{dy}(y) = s_F u^\mu n_\mu \frac{d\lambda}{dy}$

 $d\lambda$: infinitesimal length element along hyper-surface

 n^{μ} : normal to the hyper-surface

In (θ, y) -base, the proper time τ and the space-time rapidity η write:

$$\boxed{\tau_F(y) = \tau(\theta_F, y) \mid \eta_F(y) = \eta(\theta_F, y)}$$

3) Entropy flow derivation:

fixed-temperature surface

Interested in $\frac{dS}{dy}(y)$ at fixed temperature T_F : $\frac{dS}{dy}(y) = s_F u^\mu n_\mu \frac{d\lambda}{dy}$

 $d\lambda$: infinitesimal length element along hyper-surface

 n^{μ} : normal to the hyper-surface

In (θ, y) -base, the proper time τ and the space-time rapidity η write: $\tau_F(y) = \tau(\theta_F, y)$ $\eta_F(y) = \eta(\theta_F, y)$

Defining first the tangent vector, and then the normal we finally obtain:

$$\frac{dS}{dy}(y) = s_F \left[\tau_F(y) \eta_F'(y) \cosh(\eta_F(y) - y) + \tau_F'(y) \sinh(\eta_F(y) - y) \right]$$

4) General properties of the entropy flow

Finally:

$$\frac{dS}{dy}(y) = \frac{s_F c^2}{2} e^{-\theta_F} \left[\partial_{\theta}^2 \chi(\theta, y) - \partial_{\theta} \chi(\theta, y) \right] |_{\theta = \theta_F}$$

[G.Beuf, R.Peschanski, E.N.S '08]

Allows for investigation of the general features of the entropy flow of (1+1) hydrodynamic evolution, in terms of temperature and rapidity.

4) Properties of the entropy flow: Total Entropy- Universal flow properties

Self consistency test: Total Entropy:

$$S_{tot}$$
 $I_{\theta = \theta_F} = 2 \int_0^Y \int_0^2 \frac{dS}{dy} (y) I_{\theta = \theta_F}$

$$\Rightarrow S_{tot} \mid_{\theta=\theta_F} \approx S_F \sqrt{g} e^{-g\theta_F} \widetilde{K} \left(\frac{g-1}{2} \right) = S_0 \sqrt{g} \widetilde{K} \left(\frac{g-1}{2} \right)$$

since
$$s_F = s_0 \left(\frac{T_F}{T_0}\right)^g \Rightarrow s_F e^{-g\theta_F} = s_0$$

⇒ Entropy conservation

4) Properties of the entropy flow:

For flows dominated by hydrodynamic evolution:

$$\Rightarrow \chi(\theta, y) = \frac{\sqrt{g}}{T_0} \int_{\theta}^{-\frac{y}{\sqrt{g}}} I_0\left(\frac{g-1}{2}\sqrt{\theta'^2 - y^2/g}\right) e^{\theta-\left(\frac{g+1}{2}\right)\theta'} d\theta'$$

So:

$$\frac{dS}{dy}(y) = S_{tot} \frac{g-1}{2(g+1)\sqrt{g}} e^{\left(\frac{g-1}{2}\right)\theta_F} \left[I_0 \left(\frac{g-1}{2} \sqrt{\theta_F^2 - y^2 / g}\right) - I_1 \left(\frac{g-1}{2} \sqrt{\theta_F^2 - y^2 / g}\right) \frac{\theta_F}{\sqrt{\theta_F^2 - y^2 / g}} \right]$$

5) Physics of (1+1) hydrodynamics: comparison with experimental data (fixed energy $\sqrt{s} = 200$ GeV)

 $\frac{dS}{dy}(y) = S_{tot} \frac{g-1}{2(g+1)\sqrt{g}} e^{\left(\frac{g-1}{2}\right)\theta_F} \left[I_0 \left(\frac{g-1}{2} \sqrt{\theta_F^2 - y^2 / g} \right) - I_1 \left(\frac{g-1}{2} \sqrt{\theta_F^2 - y^2 / g} \right) \frac{\theta_F}{\sqrt{\theta_F^2 - y^2 / g}} \right]$

two-parameters: θ_F , g

- Data: Multiplicity distribution at fixed energy [BRAHMS Collaboration '04]
- (1+1) assumptions: i) $\frac{dN}{dv} \propto \frac{dS}{dv}$ ii) The observed distribution is at fixed θ_F

5) Physics of (1+1) hydrodynamics:

comparison with experimental data (fixed energy $\sqrt{s} = 200$ GeV)

$$\frac{dS}{dy}(y) = S_{tot} \frac{g-1}{2(g+1)\sqrt{g}} e^{\left(\frac{g-1}{2}\right)\theta_F} \left[I_0 \left(\frac{g-1}{2} \sqrt{\theta_F^2 - y^2 / g}\right) - I_1 \left(\frac{g-1}{2} \sqrt{\theta_F^2 - y^2 / g}\right) \frac{\theta_F}{\sqrt{\theta_F^2 - y^2 / g}} \right] \frac{\theta_F}{\sqrt{\theta_F^2 - y^2 / g}} dy$$

two-parameters: θ_F , g

- Data: Multiplicity distribution at fixed energy [BRAHMS Collaboration '04]
- (1+1) assumptions: i) $\frac{dN}{dy} \propto \frac{dS}{dy}$ ii) The observed distribution is at fixed θ_F

5) Physics of (1+1) hydrodynamics:

comparison with experimental data (fixed energy $\sqrt{s} = 200$ GeV)

$$\frac{dS}{dy}(y) = S_{tot} \frac{g-1}{2(g+1)\sqrt{g}} e^{\left(\frac{g-1}{2}\right)\theta_F} \left[I_0\left(\frac{g-1}{2}\sqrt{\theta_F^2 - y^2/g}\right) - I_1\left(\frac{g-1}{2}\sqrt{\theta_F^2 - y^2/g}\right) \frac{\theta_F}{\sqrt{\theta_F^2 - y^2/g}} \right] \frac{\theta_F}{\sqrt{\theta_F^2 - y^2/g}} dy$$

two-parameters: θ_F , g

- Data: Multiplicity distribution at fixed energy [BRAHMS Collaboration '04]
- (1+1) assumptions: i) $\frac{dN}{dy} \propto \frac{dS}{dy}$ ii) The observed distribution is at fixed θ_F

Gaussian fit:

$$\frac{dS}{dy}(y) \approx A\bar{e}^{y^2/Y}$$

[P. Carruthers M.Van '72]

5) Physics of (1+1) hydrodynamics: comparison with experimental data (energy dependence)

- Energy (Y) dependence of multiplicity distribution
- For a given pair of θ_F, g : $\frac{dS}{dy}(y) \approx Ae^{-y^2/Y}$
- For a given g the $\theta_F Y$ relation is clearly linear: $\frac{\theta_F = -\alpha(Y Y_0)}{\theta_F}$

5) Physics of (1+1) hydrodynamics: comparison with experimental data (energy dependence)

- Energy (Y) dependence of multiplicity distribution
- For a given pair of θ_F, g : $\frac{dS}{dy}(y) \approx Ae^{-y^2/Y}$
- For a given g the $\theta_F Y$ relation is clearly linear: $\theta_F = -\alpha(Y Y_0)$

 Experimental data better fitted with smaller sound speed (larger g)

$$\frac{T_0}{T_F} = e^{-\theta_F} = e^{0.22 (Y - Y_0)} \implies$$

More energy available (larger Y) ⇒ more hydrodynamic evolution

At smaller sound speed, the evolution has to occur in a wider temperature interval, to describe the same ds dy

5) Physics of (1+1) hydrodynamics

- Linearity between $|\theta_F|$ and C.o.M energy:
- Allows for comparison between $\frac{ds}{dy}$ and 1-particle inclusive cross-section, for $A+A\rightarrow h+X$, and thus to the appropriate scattering amplitudes (not easy to formulate in hydrodynamic formalism).

 Useful to compare with various non-hydrodynamic theories and models applied to high-energy collisions.

Conclusions

- i) Khalatnikov potential χ allows to bypass the difficulties due to non-linearity of the equations [Landau, Khalatnikov '55]. Reformulation in light-cone variables.
- ii) It allows to provide a general, non-boost-invariant, solution for the entropy flow $\frac{dS}{dy}(y,T)$ of an expanding perfect fluid in (1+1)d [G. Beuf, R. Peschanski, E.N.S '08]
- iii) $\frac{dS}{dy}(y,T)$ factorizes the contributions of the hydrodynamic evolution and of
- initial conditions.

For sufficiently long evolution (large $\frac{T_0}{T_F}$) it displays an explicit universal behavior (depending on $\frac{T_0}{T_F}$ and g)

• iv) $\frac{dS}{dy}(y,T)$ is in agreement with experimental $\frac{dN}{dy}(y,T)$,

with a relation $\ln \left(\frac{T_0}{T_F} \right) = \alpha (Y - Y_0)$

Open questions

- i) What about entropy flow through other super-surfaces (e.g fixed proper time)?
- ii) What about viscosity and/or varying sound-speed?
- iii) Can we go beyond longitudinal motion?
- iv) Is there a "transition" in hydrodynamics?
- vi) AdS/CFT correspondence of the expanding plasma is for the moment restricted to boost invariance (Bjorken flow).
 - Can we introduce the obtained hydrodynamic rapidity dependence in the related Einstein equations?

Appendix1: General solution of Khalatnikov equation

Laplace transforms:
$$\tilde{Z}(\gamma, y) = \int_{-\infty}^{0} d\theta \ e^{\gamma\theta} Z(\theta, y)$$
 $Z(\theta, y) = \int_{\gamma_{0}-i\pi}^{\gamma_{0}+i\pi} \frac{d\gamma}{2\pi i} e^{-\gamma\theta} \tilde{Z}(\gamma, y)$

$$\Rightarrow g \, \hat{\sigma}_{y}^{2} \tilde{Z} = \left[\gamma^{2} - \left(\frac{g-1}{2} \right)^{2} \right] \tilde{Z}$$

• General solution:
$$\tilde{Z}(\gamma, y) = e^{-\frac{y}{\sqrt{g}}\sqrt{\gamma^2 - \frac{(g-1)^2}{4}}} \frac{\tilde{K}(\gamma)}{\sqrt{\gamma^2 - \frac{(g-1)^2}{4}}}$$

$$\Rightarrow \chi(\theta, y) = \int_{\gamma_0 - i\infty}^{\gamma_0 + i\infty} \frac{d\gamma}{2\pi i} \left[e^{-\left(\gamma + \frac{g-1}{2}\right)\theta - \frac{y}{\sqrt{g}}\sqrt{\gamma^2 - \frac{(g-1)^2}{4}}} \right] \frac{\tilde{K}(\gamma)}{\sqrt{\gamma^2 - \frac{(g-1)^2}{4}}} \Rightarrow$$

$$h_{1}(\theta) = \int_{\gamma_{0}-i\infty}^{\gamma_{0}+i\infty} \frac{d\gamma}{2\pi i} e^{-\gamma\theta} \widetilde{K}(\gamma) = \Theta(-\theta)K(\theta)$$

$$h_{2}\left(\theta\right) = \int_{\gamma_{0}-i\sigma}^{\gamma_{0}+i\sigma} \frac{d\gamma}{2\pi i} \frac{1}{\sqrt{\gamma^{2} - \frac{(g-1)^{2}}{4}}} \left[e^{-j\theta - \frac{\gamma}{\sqrt{g}}\sqrt{\gamma^{2} - \frac{(g-1)^{2}}{4}}}\right] = \Theta\left(-\theta - |y|/\sqrt{g}\right) I_{0}\left(\frac{g-1}{2}\sqrt{\theta^{2} - y^{2}/g}\right)$$

$$\chi(\theta, y) = e^{-\left(\frac{g-1}{2}\right)\theta} \int_{\theta}^{-\frac{y}{\sqrt{g}}} I_0\left(\frac{g-1}{2}\sqrt{\theta'^2-y^2/g}\right) K(\theta-\theta')d\theta'$$

4

Appendix2: General solution of Khalatnikov equation

$$\partial_{\theta}^{2}Z - g\partial_{y}^{2}Z - \left(\frac{g-1}{2}\right)^{2}Z = 0$$

 $\alpha = -\theta + \frac{y}{\sqrt{g}} , \beta = -\theta - \frac{y}{\sqrt{g}}$

$$\Rightarrow \hat{\sigma}_{\alpha} \hat{\sigma}_{\beta} Z(\alpha, \beta) - \left(\frac{g-1}{4}\right)^{2} Z(\alpha, \beta) = 0$$

- Green functions: $\partial_{\alpha}\partial_{\beta}\overline{G}(\alpha,\beta) \left(\frac{g-1}{4}\right)^{2}\overline{G}(\alpha,\beta) = \delta(\alpha)\delta(\beta)$
- $\Rightarrow \overline{G}(\alpha,\beta) = \Theta(\alpha)\Theta(\beta)I_0\left(\frac{g-1}{2}\sqrt{\alpha\beta}\right)$
- Using: $\delta(\alpha)\delta(\beta) = \delta(-\theta + \frac{y}{\sqrt{g}})\delta(-\theta \frac{y}{\sqrt{g}}) = \sqrt{g}\delta(\theta)\delta(y)$

$$G(\theta, y) = \frac{1}{4\sqrt{g}}\overline{G}(\alpha, \beta) = \frac{1}{4\sqrt{g}}\Theta(-\theta + \frac{y}{\sqrt{g}})\Theta(-\theta - \frac{y}{\sqrt{g}})I_0\left(\frac{g-1}{2}\sqrt{\theta^2 - \frac{y^2}{g}}\right)$$

Thus, we construct the general solution inserting distribution of sources: $F(\tilde{\theta}, \tilde{y})$:

- Evolution dominated solutions: $F(\tilde{\theta}, \tilde{y}) = 4\sqrt{g}K(\tilde{\theta})\Theta(-\tilde{\theta})\delta(\tilde{y})$
- $\theta' \equiv \theta \tilde{\theta}$

$$\Rightarrow \chi(\theta, y) = e^{-\left(\frac{g-1}{2}\right)\theta} \int_{\theta}^{-\frac{y}{\sqrt{g}}} I_0\left(\frac{g-1}{2}\sqrt{\theta'^2 - y^2/g}\right) K(\theta - \theta') d\theta'$$

Appendix3: Entropy flow derivation: fixed-temperature surface

Fixed temperature T_F : $\frac{dS}{dy}(y) = s_F u^\mu n_\mu \frac{d\lambda}{dy}$ (1)

 $d\lambda$: infinitesimal length element along hyper-surface

 n^{μ} : normal to the hyper-surface [A.Bialas,R.Janik,R.Peschanski '07]

- $\begin{array}{c} \overline{\tau_{F}(y) = \tau(\theta_{F}, y)} \\ \overline{\eta_{F}(y) = \eta(\theta_{F}, y)} \end{array} \right\} \text{Fixed temperature surface}$ $\begin{array}{c} V^{+}(y) \equiv z_{F}^{+}(y) = \left(\tau_{F}^{+} + \eta_{F}^{+} \tau_{F}^{-}\right) e^{\eta_{F}} \\ V^{-}(y) \equiv z_{F}^{-}(y) = \left(\tau_{F}^{+} \eta_{F}^{+} \tau_{F}^{-}\right) e^{-\eta_{F}} \end{array}$ $\Rightarrow \text{Perpendicular vector:} \quad \begin{cases} n^{+}(y)n^{-}(y) = 1 \\ \frac{1}{2}[n^{+}(y)V^{-}(y) + n^{-}(y)V^{+}(y)] = 0 \end{cases}$

$$(2),(3) \to (1) \Rightarrow \frac{dS}{dy}(y) = s_F \left[\tau_F(y) \eta_F'(y) \cosh(\eta_F(y) - y) + \tau_F'(y) \sinh(\eta_F(y) - y) \right]$$

Appendix4:

Non-linear equations of motion

Use light-cone variables:
$$z_{\pm} = t \pm z = \tau e^{\pm \eta}$$

• Where: $\tau = \sqrt{z^+ z^-}$ the proper time and $\eta = \frac{1}{2} \ln \frac{z^+}{z^-}$ the space-time rapidity

 $u^{\pm} = u^0 \pm u^1 = e^{\pm y}$

$$\left(\frac{e^{2y}-1}{2}\right)\partial_{+}(\varepsilon+p)+e^{2y}(\varepsilon+p)\partial_{+}y+\left(\frac{1-e^{-2y}}{2}\right)\partial_{-}(\varepsilon+p)+e^{-2y}(\varepsilon+p)\partial_{-}y+\partial_{+}p-\partial_{-}p=0$$

$$\left(\frac{e^{2y}+1}{2}\right)\partial_{+}(\varepsilon+p)+e^{2y}(\varepsilon+p)\partial_{+}y+\left(\frac{1+e^{-2y}}{2}\right)\partial_{-}(\varepsilon+p)-e^{-2y}(\varepsilon+p)\partial_{-}y-\partial_{+}p+\partial_{-}p=0$$

Solutions: Only for $c^2 = const = 1/g$ in the boost invariant case: $y = \eta$:

$$T = T_0 \tau^{-1/g} \qquad \varepsilon = \varepsilon_0 \tau$$

 $T = T_0 \tau^{-1/g}$ $\varepsilon = \varepsilon_0 \tau^{-(g+1)/g}$ [J.Bjorken '83] or in the harmonic flow [A.Bialas, R.Janik, R.Peschanski '07]

Appendix5: General properties of the entropy flow

• Using the general solution for $\chi(\theta, y)$ our formula gives:

$$\frac{dS}{dy}(y)|_{\theta=\theta_{F}} = \frac{s_{F}}{2g} \int_{\gamma_{0}-i\infty}^{\gamma_{0}+i\infty} \frac{d\gamma}{2\pi i} e^{-\left(\gamma + \frac{g+1}{2}\right)\theta_{F}} \left[(\gamma + g/2)^{2} - 1/4 \right] \tilde{K}(\gamma) \frac{e^{-\frac{y}{\sqrt{g}}\sqrt{\gamma^{2} - \frac{(g-1)^{2}}{4}}}}{\sqrt{\gamma^{2} - \frac{(g-1)^{2}}{4}}}$$

- Kernel: $Q(\gamma, y) = \frac{e^{-\frac{y}{\sqrt{g}}\sqrt{\gamma^2 \frac{(g-1)^2}{4}}}}{\sqrt{\gamma^2 \frac{(g-1)^2}{4}}}$ (entropy flow due to hydrodynamic evolution)
- Coefficient function: $[(\gamma + g/2)^2 1/4]\tilde{K}(\gamma)$ (initial conditions of the entropy flow)

Allows for investigation of the general features of the entropy flow of any (1+1) hydrodynamic evolution, in terms of temperature and rapidity.

Appendix6:

$$z^{+} = \frac{1}{2} e^{y-\theta} \left(\partial_{y} \chi - \partial_{\theta} \chi \right)$$

$$z^{-} = -\frac{1}{2}e^{-y-\theta} \left(\partial_{y}\chi + \partial_{\theta}\chi\right)$$

Good!