AFP - ATLAS Forward Physics project

Low x workshop - Kolimbari, Crete 09/07 2008
Forward and diffraction physics FP420 project

RP220 project

Energy flow and acceptance

> Energy flows forwards and undetected by central calorimeters

Lots of interesting physics would remain undiscovered

Equip the forward region by detectors

Physics program with proton taggers

Diffraction

CDF Run II Preliminary

5σ-contours, $\mathrm{H} \rightarrow \mathrm{bb}$, mhmax, $\mu=200 \mathrm{GeV}$

Two-photon interactions

- Absolute lumi calibration, calibration of FPS
- Factorization breaking in hard diffemetion

Underlying event/Multiple interactions

Long dist. Correl. in rap. (need to cover fwd region)

Huge differences for diff. generators and diff. tunes

Average mult. transv. to
leading jet at LHC [C.Buttar et al., HERA-LHC proc.] 3

Central Exclusive Diffraction: Higgs production

Pile-up is issue for Diffraction at LHC!
[CMS-Totem : Prospects for Diffractive and Fwd physics at LHC]

But can be kept under control !

1) Protons remain undestroyed and can be detected in forward detectors
2) Rapidity gaps between leading protons and Higgs decay products

Advantages:

I) Roman Pots give much better mass resolution than central detector
II) $J_{Z}=0, C P-e v e n ~ s e l e c t i o n ~ r u l e: ~$

- strong suppression of QCD bg
- produced central system is 0^{++}
III) Access to main Higgs decay modes: bb, WW, tautau \rightarrow information about Yukawa coupling

Disadvantages: Large Pile-up + Irreducible BG, Low signal x-section

SM Higgs discovery challenging: low signal yield \longrightarrow try MSSM

Stat. significance for $H \rightarrow b b$: from 5 to 3

Rich $\mathrm{Y} Y$ and Yp physics via forward proton tagging

Forward detectors at LHC

Proton taggers for high luminosity

> TOTEM-RP FP420

- Spokes : Brian Cox (Manchester, ATLAS) and Albert DeRoeck (CERN,CMS)
- Technical Co-ordinator : Cinzia DaVia (Manchester)

Collaboration : FNAL, The University of Manchester, University of Eastern Piedmont, Novara and INFN-Turin, The Cockcroft Institute, University of Antwerpen, University of Texas at Arlington, The University of Glasgow, University of Calabria and INFN-Cosenza, CERN, Lawrence Livermore National Laboratory, University of Turin and INFN-Turin, University of Lund, Rutherford Appleton Laboratory, Molecular Biology Consortium, Institute for Particle Physics Phenomenology, Durham University, DESY, Helsinki Institute of Physics and University of Helsinki, UC Louvain, University of Hawaii, LAL Orsay, University of Alberta, Stony Brook University, Boston University, University of Nebraska, Institute of Physics, Academy of Sciences of the Czech Republic, Brookhaven National Laboratory, University College London, Cambridge University

R\&D phase has just ended. R\&D report published, hep-ex/0806.0302

Roman pot upgrade at 220 m with additional horizontal pots

France : Saclay, Paris 6
Czech Republic : Prague
US : Stony Brook
Poland: Cracow
Germany : Giessen

How to measure the protons

Acceptance for RP220 and FP420 at ATLAS

[W.Plano and P.Bussey, FP420 TDR]

420+420 acceptance

 vanishes at 180 GeV . By adding the 220 system, we increase acceptance and reach higher central masses

Acceptances at 220 m and 420 m at ATLAS

220 m :
Detector $2 \mathrm{~cm} \times 2 \mathrm{~cm}$
Thin window $200 \mu \mathrm{~m}$
Dead zone $50 \mu \mathrm{~m}$
10σ to beam:
Beam 1: $0.010<\xi<0.15$
Beam 2: $0.012<\xi<0.14$
15σ to beam:
Beam 1: $0.014<\xi<0.15$
Beam 2: $0.016<\xi<0.1412$

Integration into LHC structure

Detector location and placement

220 m : Position and timing detectors in horizontally moving beam pipe and Vertical Roman Pots for alignment and calibration of position detectors in horizontal movable beam pipe, http://cern.ch/projects-rp220

420 m : Position and timing detectors in horizontally moving beam pipe placed in a new connection cryostat. R\&D phase just ended with a complete cryostat design and a prototyped, tested concept for high precision and high radiation resistive detectors. R\&D report: hep-ex/0806.0302, http://www.fp420.com

Movable beam pipes at 220 and 420 m

- Movable beam pipe (Hamburg beam pipe) technique used to move the detectors to and from the beam - in horizontal direction.
- First used at PETRA collider, then proven to be viable at ZEUS (for e-tagger)
- Takes less space than Roman Pots
- It will host position as well as timing detectors at 220 and 420 m .

Current design for the 420 m region:

Position detectors

The same requirements for 220 and 420 m regions:
Close to the beam => edgeless detectors
High lumi operation => very radiation hard
Mass resolution of 2-3\% => 10-15 $\mu \mathrm{m}$ precision

3D Silicon

Suppress pile-up => add fast timing det.
ATLAS, 1.5 mm (220) and 5 mm (420) from beam

Reconstruct the central mass from from the two tagged protons (from their trajectories and incorporating experim. uncertainties):

Beam en.smearing $\sigma_{E}=0.77 \mathrm{GeV}$
Beam spot smearing $\sigma_{x, y}=10 \mu \mathrm{~m}$
Detector x-position resol. $\sigma_{x}=10 \mu \mathrm{~m}$
Detector angular resolution $=1,2 \mu \mathrm{rad}$
[P.Bussey, FP420 TDR]

3D Silicon Detector Development

3D versus planar

Manchester/Stanford/MBC
3DC Collaboration
Transfer to Industry in
progress - SINTEF
Also support from Bonn/LBL/Prague
Note: 3D ATLAS R\&D Collaboration forming

	$3 D$	planar
$V_{\text {dep }}$	$<5-10 \mathrm{~V}$	$50-70 \mathrm{~V}$
$Q_{1 \text { mip }}$	$24000 e^{-}$	$24000 e^{-}$
C	$40-80 \mathrm{fF}$	$50-200 \mathrm{fF}$

FP420 Silicon Detector Stations

3D Si detector layout for 220 m region

3D Si detectors in horizontal section at 220 m

Existing FP 420 modules
No dead zone with
$100 \mu \mathrm{~m}$ Y , and 3 mm X overlaps

Integration:
Expertise at Manchester FP420: Scott Kolya Ray Thompson

Fast timing detectors

Diffraction makes up 20-30\% of $\sigma_{\text {тот }}$: diffractive p's from pile-up fake signal diffr. p's Example of H->bb: overlay of 3 events ($2 \mathrm{SD}+$ non-diffr. dijets) fakes signal perfectly and with prob. $10^{10} \mathrm{x}$ higher than signal. Can be reduced by fast timing det.

CED $\mathrm{H} \rightarrow$ bb using Forward Proton Tagging

$\mathrm{h} \rightarrow \mathrm{bb}$, mhmax scenario, standard ATLAS L1 triggers, 420 m only, 5 mm from beam
Huge Pile-up bg for diffractive processes: overlap of three events (2* SD + non-diffr. Dijets). Can be reduced by Fast Timing detectors: t-resol. required: 2 ps for high lumi!

Level 1 Trigger

FP420: cannot be put directly into L1 - only in special runs with larger L1 latency available triggers: $2 \mathrm{j}, \mu$ (L1 threshold for 2μ is 6 GeV), e, j+lepton

- μ-triggers can save up to 20% of bb signal
- WW signal saved by lepton triggers

Luminosity $\left(\times 10^{33}\right)$	Non-diffractive reduction by FP420 without QUARTIC	
1	with QUARTIC	
3	2.7×10^{-4}	6.8×10^{-6}
	5.8×10^{-3}	1.5×10^{-4}
[A.Pilkington,		
5	1.8×10^{-2}	$4.6 \times 10^{-4} \quad$ FP420]
10	8.1×10^{-2}	2×10^{-3}

RP220: Can be put into L1!
Double-sided RP220: retains events with $\mathrm{M}_{\mathrm{h}}>160-200 \mathrm{GeV}$ Single-sided RP220: allows asymmetric 420+220 events

RP220 L1 trigger study

L1 trigger for CED H->bb, $\mathbf{M}_{\mathrm{h}} \sim 120 \mathrm{GeV}$:

1) Single-sided RP220 and. 2 jets $E_{T}>40 \mathrm{GeV}$
2) Exclusivity: $\left(\mathrm{E}_{\mathrm{Tjet} 1}+\mathrm{E}_{\mathrm{Tjet} 2}\right) / \mathrm{E}_{\mathrm{TOT}}>0.9$
3) Mom.conservation: $\left(\eta_{\text {jet1 }}+\eta_{\text {jet2 }}\right)^{*} \eta_{\text {RP220 }}>0$
4) $\boldsymbol{\xi}_{1}<0.05$.or. $\boldsymbol{\xi}_{2}<0.05$

Output rate of this trigger $\sim 1 \mathrm{kHz}$ up to $2^{*} 10^{33} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$
L2, L3: add info from FP420 and fast timing det.

FP420 Alignment

CLIC BPMs + wire positioning system : aim for 10 microns relative to beam

@ $10^{33} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$ with standard ATLAS triggers, have ~ 30 di-muon events / fill in FP420 acceptance
See also P. Bussey Talk - Manchester Dec 06

Thanks to Lars Soby, Rhodri Jones, Helene Mainaud-Durand,
Andreas Herty and Robert Boudot

Mass reconstruction

At IP5 (CMS)
Misalignment impact on Higgs mass reconstruction

Louvain
Photon
Group (CMS)

Alignment/Calibration at 220 m

Alignment/Calibration must be done store-by store. Try elastic events:

Summary and Timetable

- AFP = 220 m: horizontal movable beam pipe for position and timing detectors plus vertical Roman Pots for alignment/calibration
420 m : movable beam pipe for position and timing detectors inside a new connection cryostat
- Position detectors at 220 and 420 m : 3D Silicon
- Timing detectors: a few ps needed to reject pile-up bg at high lumi
- Time scale:
- Brian's introductory talk today at ATLAS week in Bern
- Lol ready to be distributed to ATLAS immediately
- If accepted by ATLAS, Lol will be submitted to LHCC
- If accepted by LHCC, this would lead to TDR from ATLAS to LHCC in Winter 2008
- Test beams at Fermilab (June), at CERN (June, September)
- Developments in 3D Silicon and fast timing detectors very useful for other projects in particle physics and medical applications

220 m and 420 m tagging detectors have the potential to add significantly to the discovery reach of ATLAS for modest cost, particularly in certain regions of MSSM. Besides the discovery physics, there is a rich QCD and EW physics program

BACKUP SLIDES

Radiation Hardness

Cinzia DaVia - Hiroshima Conf. 2006

RP220 in L1

Machine induced background

- 20000 momentum cleaning events at IR3 collimators
- Track emerging off-momentum halo protons
- Count hits at FP420 location in $x, x^{\prime}, y, y^{\prime}, d p / p$ until when all protons are absorbed at collimators or other aperture limits (NOT FP420)
- I'll show plots for FP420 IP5

RP220: SIGNAL/Background ~ 10

RATE EVOLUTION WITH CUTS [MD2005]

Horizontal beam profiles for nominal beam optics and momentum spread

