Leading Baryons at HERA

Graziano Bruni
INFN - Bologna
On behalf of H1 and ZEUS Collaborations

Outline

- Physics case
- Recent and new results on:
- Leading protons (new)
- Leading neutrons
- Comparison with models
- Leading neutron +2 jets in γp
- Summary

Semi-inclusive reaction

$$
e D \rightarrow e \cap X \quad \begin{aligned}
& h=\mathrm{LB}=\mathrm{p}, \mathrm{n} \\
& x=\text { hadronic state }
\end{aligned}
$$

DIS regime

Scale for secondary particle production
 decreases from Q ${ }^{2}$ (current region) to a soft hadronic scale (proton fragmentation region)

Photoproduction (yp) regime

Hadronic component of the photon.
Can re-introduce hard scale (e.g. requiring high- p_{T} jets)

Some approaches

\square Fracture Functions (L.Tenenadue, G.Venerzeno Phys. Lett. Be3z, 201 (1994))

- Not discussed here
\square MC fragmentation models
\square Dynamical particle-exchange models

Production models

- Hadronisation of proton remnant

- Herwig (cluster model)
- MEPS (parton shower,SCI)
- Ariadne (CDM)
- Exchange of virtual particles
- leading protons: π^{0}, IR, IP (isoscalar + isovector)
- leading neutrons: $\pi^{+}, \rho^{+}, \ldots$ (isovector)

Rescattering and absorption

e.g. LN production via π-exchange

Neutron absorption through rescattering D'Alesio and Pirner
(EPJ A7(2000) 109)
\square Neutron rescatters on γ hadronic component.
Absorption enhanced when π-n system size $r_{\pi n}$ small w.r.to the γ : $r_{m n} \sim 1 / p_{T}$.

Dependence on the pion-flux from $x_{L:}<r_{r n}>$ increases with $\mathrm{X}_{\mathrm{L}} \rightarrow$ more absorption at low X_{L}.

- n kicked to lower x_{L} \& higer p_{T} (migration)
- may escape detection (absorption loss)
\square more absorption in photoproduction than DIS (γ "size" larger)

Nikolaev, Speth and Zakharov (NSZ) (hep-ph/9708290)
Re-scattering processes via additional pomeron exchanges + Optical Theorem

(\rightarrow Uncertainties in π structure function extraction)
(Kaidalov, Khoze, Martin, Ryskin (KKMR) (hep-ph/0602215, hep-ph/0606213)
Enhanced absorptive corrections, calculation of migrations, include also ρ and a_{2} exchange
(different $\mathrm{x}_{\mathrm{L}} \& \mathrm{p}_{\mathrm{T}}$ dependences)

$>$ Measure x_{L} and $\mathrm{p}_{\mathrm{T}}{ }^{2}$ distributions
$>$ Study dependence on Q 2
> Compare γp and DIS
$>$ Look for effects due to absorption

Experimental tools

ZEUS Leading Proton Spectrometer (LPS)

- 6 stations each made by 6 Silicon-detector planes
- Stations inserted at $10 \sigma_{\text {beam }}$ from the proton beam during data taking
- $\sigma_{\mathrm{X}_{\mathrm{L}}}<1 \%, \sigma_{\mathrm{p}_{\mathrm{T}}{ }^{2}} \sim$ few MeV^{2} (better than p-beam spread $\sim 50-100 \mathrm{MeV}$)

ZEUS Forward Neutron Calorimeter (FNC) + Forward Neutron Tracker (FNT)

- 10λ lead-scintillator sandwich
- $\sigma / E=0.65 / \sqrt{ } E$, Energy scale 2\%
- Acceptance $\theta_{\mathrm{n}}<0.8 \mathrm{mrad}$, azimuthal coverage 30%
- FNT: Scint. hodoscope @ $1 \lambda_{\text {int }}, \sigma_{\mathrm{x}, \mathrm{y}}=0.23 \mathrm{~cm}, \sigma_{\theta}=22 \mu \mathrm{rad}$

H1 Forward Proton Spectrometer (FPS)

- 2 stations each made by 4 planes of sci-fiber hodoscopes + trigger scintillators
- $\sigma_{x}=\sigma_{y}=100 \mu \mathrm{~m}, \sigma(E)<8 \mathrm{GeV},\left|E_{\text {scale }}\right|=10 \mathrm{GeV},<\varepsilon_{\text {track }}>\sim 50 \%$

H1 Forward Neutron Calorimeter (FNC)

- Lead-scintillator calorimeter @ 107m from I.P. + veto hodoscopes
- $\sigma(E) / E \approx 20 \%$, neutron detection eff. $93 \pm 5 \%$

Leading Protons (DIS-regime)

$$
\frac{d^{2} \sigma}{d x d Q^{2}} \square K\left(x, Q^{2}\right) \times F_{2}\left(x, Q^{2}\right)
$$

$$
\text { Fully inclusive: ep } \rightarrow \text { eX }
$$

$$
\frac{d^{4} \sigma}{d x d Q^{2} d x_{L} d p_{T}^{2}} \square K\left(x, Q^{2}\right) \times F_{2}^{L P(4)}\left(x, Q^{2}, x_{L}, p_{T}^{2}\right)
$$

$$
\text { Semi-inclusive: ep } \rightarrow \text { epX }
$$

$$
\longrightarrow F_{2}^{L P(3)}\left(x, Q^{2}, x_{L}\right), \quad F_{2}^{L P(2)}\left(x, Q^{2}\right)
$$

X_{L} cross-section

NEW ZEUS Results

$12.8 \mathrm{pb}^{-1}$

$\mathrm{P}_{\mathrm{T}}{ }^{2}$ cross-section in bins of X_{L}

Exponential behaviour

Fit to $\sim \exp \left(-b p_{T}{ }^{2}\right)$
No strong dependence of b on x_{L}

Rates to inclusive DIS

Structure function ratio
$r^{L P(3)}\left(x, Q^{2}, x_{L}\right)=\frac{F_{2}^{L P(3)}\left(x, Q^{2}, x_{L}\right)}{F_{2}\left(x, Q^{2}\right)}$

Measurement for $0.32<x_{L}<0.92$ (diffractive peak excluded)
$\mathrm{r}^{\mathrm{LP}(3)}$ almost independent of x and Q^{2} with average value ~ 0.4

Leading neutrons

\square One Pion Exchange is the leading contribution at large X_{L}
\square (Regge)-factorization of the cross section $\gamma^{*} \mathrm{p} \rightarrow \mathrm{nX}$
$\frac{d \sigma}{d x_{L} d t}=f_{\pi / p}\left(x_{L}, t\right) \cdot \sigma_{\gamma^{*} \pi}\left(\left(1-x_{L}\right) W^{2}, Q^{2}\right)$
Flux-factor

Elementary cross-section (notice X_{L} dependence)

Limiting Fragmentation (in the proton target region the production of particles is independent on the incident particle) \rightarrow Vertex Factorization

$$
\frac{d \sigma}{d x_{L} d p_{T}^{2}}=g\left(x_{L}, p_{T}^{2}\right) \cdot G\left(W^{2}, Q^{2}\right)
$$

x spectrum

- LN yield decreases for $\mathrm{x}_{\mathrm{L}} \rightarrow 1$ due to kinematic limit
- Below $X_{L} \sim 0.7$ the yield drops due to decreasing $\mathrm{p}_{\mathrm{T}}{ }^{2}$ range: $\mathrm{p}_{\mathrm{T}}{ }^{2}<0.476 \mathrm{X}_{\mathrm{L}}{ }^{2}$

DIS cross section vs $\mathrm{p}_{\mathrm{T}}{ }^{2}$ in bins of X_{L}

Good description through a single exponential in each
x_{L} bin
$\frac{1}{\sigma_{\text {inc }}} \frac{d^{2} \sigma_{L N}}{d x_{L} d p_{T}^{2}}=a\left(x_{L}\right) \cdot e^{-b\left(x_{L}\right) p_{T}^{2}}$

Q² - dependence: x_{L} spectra

> Yield increases with Q^{2} : large increase from γp to DIS
> Smaller Q^{2} dependence at intermediate values
$>$ Violation of vertex factorization

Q2 - dependence: x_{L} spectra Comparison γ p vs DIS

$>$ Ratio $\gamma \mathrm{p} /$ DIS
$>\sim 70 \%$ intermediate x_{L}
$>$ Rises above 1 as $x_{L} \rightarrow 1$
$>$ Consistent with absorption:

- separation π-n decreases at low X_{L}
- smaller separation \rightarrow more absorption at low X_{L}

Q^{2} - dependence: p^{2} slopes

ZEUS

> DIS - slopes:
~ no Q² dependence
> γp - slopes:
higher in $0.6<x_{L}<0.9$

Q^{2} - dependence: p^{2} slopes. Comparison $\gamma \mathrm{p}$ vs DIS

$\mathrm{b}_{\gamma \mathrm{p}}>\mathrm{b}_{\text {DIS }}$ for $0.6<\mathrm{x}_{\mathrm{L}}<0.9$

Depletion at large p_{T}

Consistent with vertex factorization violation from absorption:

- more absorption at small $r_{\pi n} \rightarrow$ large p_{T}
- loss of LN at high $\mathrm{p}_{\mathrm{T}} \rightarrow$ larger slope

Comparison LP - LN

Pure isovector exchange: LP = $1 / 2 \mathrm{LN}$
\Rightarrow Other IR contributions in LP

Similar slopes in $0.7<x_{\mathrm{L}}<0.85$

Comparison to models

Leading Protons

Reasonable description by π, IR, IP exchange model

Standard fragmentation MC models fail to describe the data

DJANGOH+SCI+MEPS ~ ok b(x_{L}) shape

Leading neutrons

MC models generally fail to fully reproduce the data
\square Shapes ~ ok by RAPGAP with standard fragmentation $+\pi$-exch.
\square LEPTO+SCI: $x_{\text {L }}$ shapes \sim ok, not slopes

One-Pion Exchange Models

ZEUS

Slopes - DIS

KKMR model

Absorption \& migration included in the predictions: not sufficient to describe the slopes

Good description of data

 when additional IR included$$
X_{L}-\gamma p
$$

Pure π-xch. + inclusion migrations in X_{L} and $p^{2}{ }_{T}$ after rescattering

Reasonable description of shape and normaliz.

Add (ρ, a_{2})-xch: again reasonable agreement in γp

Comparison DIS - γ p

ZEUS

Models: OPE + absorption

$$
\begin{gathered}
\sigma_{\gamma \pi} \propto{S_{\gamma \pi}}^{\lambda}=\left[\left(1-\boldsymbol{x}_{L}\right) \times W_{\gamma p}{ }^{2}\right]^{\lambda} \\
\frac{\sigma_{\gamma \pi}}{\sigma_{\gamma^{*} \pi}}=\left(1-\boldsymbol{x}_{L}\right)^{\Delta \lambda}=\left(1-\boldsymbol{x}_{L}\right)^{-0.13} \\
\quad \text { different cms energy dependence) }
\end{gathered}
$$

Good agreement with the data

Leading n in $\gamma \mathrm{p}+$ dijets

Absorption effects seen going
 from hard \rightarrow soft scale

High $\mathrm{Q}^{2} \rightarrow$ Low $\mathrm{Q}^{2} \rightarrow \gamma \mathrm{p}$
Photon momentum fraction that enters in the hard scattering
$\mathrm{x}_{\mathrm{y}}=1$ direct PHP, DIS $x_{\gamma}<1$ resolved PHP (hadron-like photon)

$$
x_{\gamma}^{o b s}=\frac{\sum_{j e 11,2} E_{T} e^{-\eta}}{\left(E-p_{z}\right)_{h a d}}
$$

Factorization tests
 $\sigma_{2 j+n}$

H1-DATA - (Eur. Phys. J. C41 (2005) 273-286)

RAPGAP/PYTHIA-M
ZEUS-DATA - Nucl.Phys.B596,3(2001)

RAPGAP / HERWIG MI

> Ratio almost independent on E_{T} jet: factorization
$>$ Strong dependence on x_{r} : breaking of factorization
$>$ Fewer neutrons in the resolved region
Not yet conclusions on factorization breaking in resolved $\gamma p\left(x_{V}<1\right)$

LN +jj ($\gamma \mathrm{p}$) vs LN (DIS)

b-slopes similar in magnitude and shape in DIS and $\gamma p+d i j e t$
\rightarrow Same production mechanism

$\square \gamma \mathrm{w}$ without jets: suppression at low X_{L}
$\square \gamma p$ with jets: suppression at high X_{L}
Not yet firm conclusions on absorption

Summary

- New data from HERA on LB production and properties, new ZEUS LP results
- Observation of factorization breaking effects going from hard to soft scales, mostly in LN
- γp + hard jets: more work needed
- LP needs isoscalar-IR contributions to explain the data
- Standard fragmentation MC-models fail to describe the data
- Improvement in MC models with particle-exchange implemented
- LN: pure π exchange not sufficient (slopes not described)
- Recent calculations with π exchange and absorption/migration effects improve the agreement in magnitude and shape of the x_{L} spectra
- Additional exchanges $\left(\rho, a_{2}\right)$ improve further

Additional slides

Fracture Functions approach

L.Trentadue, G.Veneziano

Phys. Lett. B323, 201 (1994)
Current jet

Dynamical models allow to link them to concepts like structurefunctions of exchanged objects (e.g. IR trajectories)

Production in the current region
$\sigma_{\text {current }} \sum_{q} C_{q} f_{q / p}(X) D_{h / q}\left(X_{L}\right)$
Production in the target region: F.F.

$$
\begin{gathered}
\sigma_{\text {target }} \square \sum_{q} c_{q}(1-x) M_{q, h / p}\left[x,(1-x) x_{L}\right] \\
\left.\sigma=\sigma_{\text {Fracture function }}\right] \\
+\sigma_{\text {target }}
\end{gathered}
$$

- F.F. are non-perturbative universal functions
- Q ${ }^{2}$ dependence governed by evolution equations

