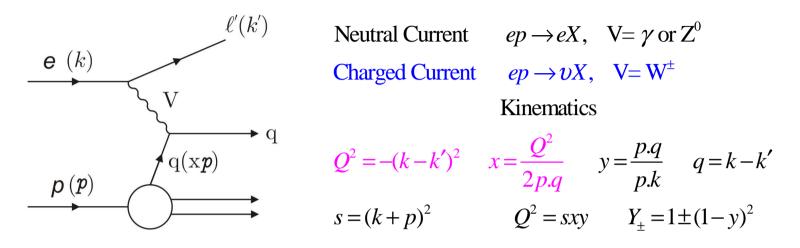
Combined H1 & ZEUS data and HERAPDF0.1


Robin Devenish (Oxford) On behalf of the HERA Structure Function Working Group

- Combined deep inelastic data
- NLO QCD fit to the combined data
- Outlook

Deep Inelastic Scattering at HERA

$$\frac{d^{2}\sigma^{NC}(e^{\pm}p)}{dxdQ^{2}} = \frac{2\pi\alpha^{2}}{xQ^{4}} \Big[Y_{+}F_{2}^{NC}(x,Q^{2}) \mp Y_{-}xF_{3}^{NC}(x,Q^{2}) \Big]^{\dagger}$$
$$\frac{d^{2}\sigma^{CC}(e^{\pm}p)}{dxdQ^{2}} = \frac{G_{F}^{2}}{4\pi x} \frac{M_{W}^{4}}{(Q^{2} + M_{W}^{2})^{2}} \Big[Y_{+}F_{2}^{CC}(x,Q^{2}) \mp Y_{-}xF_{3}^{CC}(x,Q^{2}) \Big]^{\dagger}$$

$$F_2^{NC} \simeq \sum_i e_i^2 x(q_i + \overline{q_i}) \quad (\gamma \text{ only}); \quad F_2^{CC} = \sum_i x(q_i + \overline{q_i}); \quad xF_3^{CC} = \sum_i x(q_i - \overline{q_i})$$
$$q_i(x, Q^2) \text{ - momentum density of quark flavour } i \text{ in proton}$$

 $\dagger F_{L}$ has been ignored

R Devenish Low x 2008

Combined deep inelastic data

- Scope of the project
- Data
- ✤ Method
- Results

Scope of the project

- Combination of HERA-I (1994-2000) inclusive DIS cross-sections
 - more precisely reduced cross-sections (the terms in [] on slide 2)
- Exploit the different technology of the H1 and ZEUS detectors to 'cross-calibrate', and hence reduce the systematic uncertainties
- * The basic assumption is that the two experiments are measuring the same cross-sections at the same (x, Q^2) point.
- The method (developed by A. Glazov) uses an iterative $χ^2$ minimisation which takes full account of error correlations
 - first discussed at DIS2005 and then at the HERA-LHC Workshop
- Preliminary results for the combined data as submitted to LP2007 and presented at DIS2008 (Feltesse)

Input NC & CC data sets: $1.5 < Q^2 < 30000 \text{ GeV}^2$, 240 pb⁻¹

data set		x range		Q^2 range		\mathcal{L}	comment	
				(G	$eV^2)$	pb^{-1}		
H1 NC min. bias	97	0.00008	0.02	1.5	12	1.8	$e^+p\sqrt{s} = 301 \mathrm{GeV}$	
H1 NC low Q^2	96 - 97	0.000161	0.20	12	150	17.9	$e^+p\sqrt{s} = 301 \mathrm{GeV}$	
H1 NC	94 - 97	0.0032	0.65	150	30000	35.6	$e^+p\sqrt{s} = 301 \mathrm{GeV}$	
H1 CC	94 - 97	0.013	0.40	300	15000	35.6	$e^+p\sqrt{s} = 301 \mathrm{GeV}$	
H1 NC	98 - 99	0.0032	0.65	150	30000	16.4	$e^- p \sqrt{s} = 319 \text{ GeV}$	
H1 CC	98 - 99	0.013	0.40	300	15000	16.4	$e^- p \sqrt{s} = 319 \text{ GeV}$	
H1 NC	99 - 00	0.00131	0.65	100	30000	65.2	$e^+p\sqrt{s} = 319 \mathrm{GeV}$	
H1 CC	99 - 00	0.013	0.40	300	15000	65.2	$e^+p\sqrt{s} = 319 \mathrm{GeV}$	
ZEUS NC	96 - 97	0.00006	0.65	2.7	30000	30.0	$e^+p\sqrt{s} = 301 \mathrm{GeV}$	
ZEUS CC	94 - 97	0.015	0.42	280	17000	47.7	$e^+ p \sqrt{s} = 301 \text{GeV}$	
ZEUS NC	98 - 99	0.005	0.65	200	30000	15.9	$e^- p \sqrt{s} = 319 \text{ GeV}$	
ZEUS CC	98 - 99	0.015	0.42	280	30000	16.4	$e^- p \sqrt{s} = 319 \text{ GeV}$	
ZEUS NC	99 - 00	0.005	0.65	200	30000	63.2	$e^+p\sqrt{s} = 319 \mathrm{GeV}$	
ZEUS CC	99 - 00	0.008	0.42	280	17000	60.9	$e^+p\sqrt{s} = 319 \text{ GeV}$	

NB: H1 NC min. bias (Q² < 12 GeV²) moved up by 3.4 % after re-analysis of luminosity

Some details

- Common (x, Q^2) bins: H1 x; ZEUS Q^2
- Shift measured data by simple interpolation using H1PDF2k
 - checked using ZEUS-Jets, NC shift factors agree within a few permille, some CC < 2%. - differences much less than statistical errors.
- * Move data to 920 GeV E_p beam energy
 - simple interpolation for CC
 - additive for NC
 - systematic uncertainty from F_L : compare $F_L = 0$ and $F_L = F_L$ (H1PDF2k), up to 5% at high y.
 - treat as a correlated 'procedural' systematic uncertainty

 χ^2 for a single data set

$$\chi^{2}_{\exp}(M^{i,true},\Delta\alpha_{j}) = \sum_{i} \frac{\left[M^{i,true} - \left(M^{i} + \sum_{j} \frac{\partial M^{i}}{\partial \alpha_{j}} \Delta\alpha_{j}\right)\right]^{2}}{\sigma_{i}^{2}} + \sum_{j} \frac{(\Delta\alpha_{j})^{2}}{\sigma_{\alpha_{j}}^{2}}$$

- M^{i} measured central values
- σ_i statistical and uncorrelated systematic uncertainties

$$\sigma_{\alpha_j}$$
 correlated systematic uncertainties

- $\frac{\partial M^{i}}{\partial \alpha_{j}}$ sensitivity of datum *i* to systematic *j*
- $M^{i,true}$ fitted combined H1 ZEUS data
- $\Delta \alpha_i$ fitted shifts of correlated uncertainties

By definition
$$\chi^2 = 0$$
 for $M^{i,true}$ and $\Delta \alpha_j = 0$;

 $Cov(M^{i,true}, M^{j,true})$ gives the error matrix for the combined data

Caveat

- In principle a nice simple χ^2 which allows minimisation by linear equations
- Unbiased for uncertainties independent of the central value (additive)
- However, for cross-sections, many uncertainties are proportional to the central value (multiplicative)
- This introduces a bias, as a smaller M^i will have a smaller relative error and hence give a smaller overall χ^2
- Modify χ^2 translate multiplicative to additive uncertainty using $M^{i,true}$, common to all measurements

Revised χ^2 for a single data set

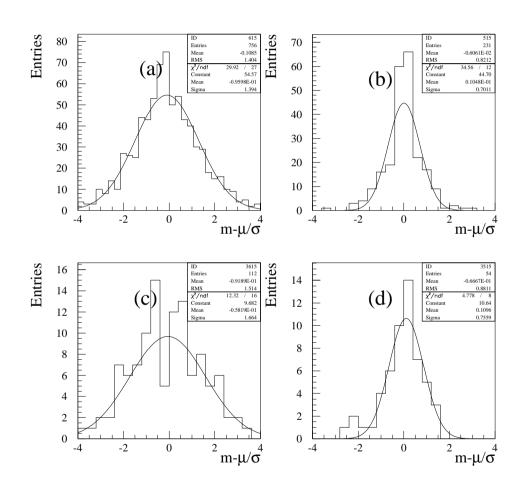
$$\chi^{2}_{\exp}(M^{i,true},\Delta\alpha_{j}) = \sum_{i} \frac{\left[M^{i,true} - \left(M^{i} + \sum_{j} \frac{\partial M^{i}}{\partial \alpha_{j}} \frac{M^{i,true}}{M^{i}} \Delta\alpha_{j}\right)\right]^{2}}{\left(\sigma_{i} \frac{M^{i,true}}{M^{i}}\right)^{2}} + \sum_{j} \frac{\left(\Delta\alpha_{j}\right)^{2}}{\sigma_{\alpha_{j}}^{2}}$$

Minimisation is now non - linear, use an iterative procedure

1. Minimise original χ^2 to find an initial approximation to $\{M^{i,true}\}$

2. Scale errors
$$\sigma_i \rightarrow \sigma_i \frac{M^{i,true}}{M^i}$$

3. Repeat step 1


Convergence is usually after two iterations

Full χ^2 is the sum over all χ^2_{exp} .

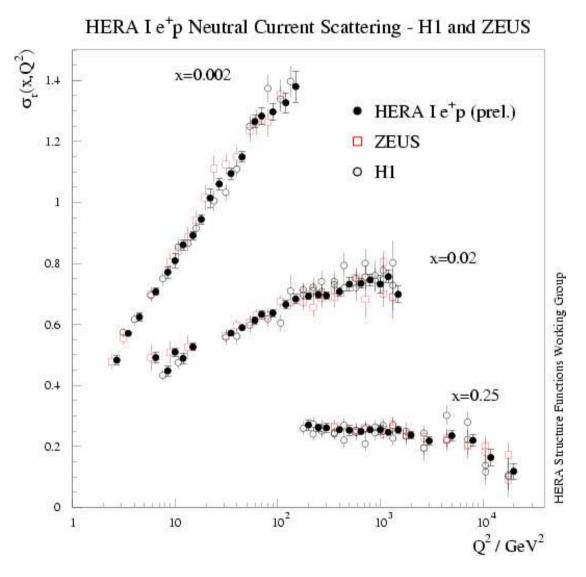
Uncertainties

- Statistical uncertainties are uncorrelated
- Systematic uncertainties:
 - point-to-point uncorrelated, added in quadrature to statistical giving a total point-to-point uncorrelated uncertainty
 - point-to-point correlated errors, (e.g. energy scales), often common for CC and NC measurements for a given experiment and run period
 - multiplicative or additive? Try both gives additional uncertainty < 1% for low Q² rising to 1.5% at large Q^2
 - overall normalisation uncertainty, similarly common for a given experiment and run period (clearly multiplicative)
- Correlations between H1 and ZEUS, (e.g. MC simulations, calibration methods..), 12 possible sources identified
 - compare 2¹²-1 averages taking all pairs as correlated or uncorrelated in turn to give deviation from central values
 - largest (~1%) from photoproduction MC and hadronic energy scales
 - treat these as procedural uncertainties

Quality of the fit

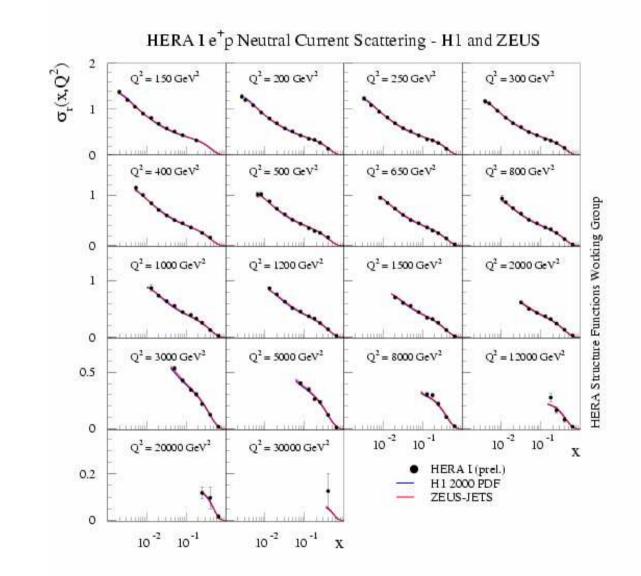
1153 individual NC, CC data averaged to 573 points

$$\chi^2 = 510$$

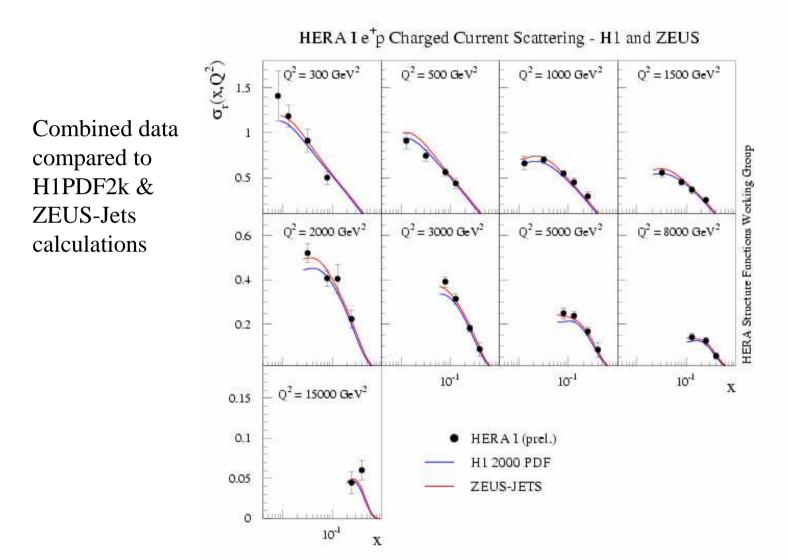

	Pulls		
	Mean	Sigma	
(a) NC e+p	-0.09	1.4	
(b) NC e-p	0.01	0.7	
(c) CC e+p	-0.05	1.7	
(c) CC e-p	0.1	0.8	

A total of 43 systematic uncertainties from the data and 4 from the averaging procedure R Devenish Low x 2008

Comments on the results


- * All uncertainties lie within 1σ of the central value of published data
 - except the normalisation of H1 NC low Q^2 (1996-7), up by 1.6 σ
- Almost all systematic uncertainties reduced, eg
 - H1 rear calorimeter energy scale by a factor of 3
 - ZEUS forward energy flow modelling by a factor of 4
- Overall precision improved
 - $Q^2 < 12 \text{ GeV}^2$, separately 2-3%, combined better than 2%
 - medium Q^2 , 1.5% achieved
 - highest Q^2 , 10% achieved, increased statistics now important
- Both H1PDF2k and ZEUS-Jets PDFs describe the combined data well

Examples (I): NC e^+p , at fixed x


Combined data is smoother than that of either H1 or ZEUS – with significantly smaller uncertainties

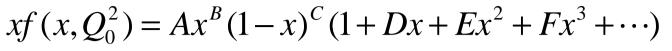
Examples (II): NC e^+p , high Q^2

Combined data compared to H1PDF2k & ZEUS-Jets calculations

Examples (III): CC e⁺p

Combined data – summary & outlook

- A robust procedure has been developed for combining the H1 and ZEUS NC and CC reduced cross-section data
- The experiments cross calibrate each other, leading to a significant reduction in systematic uncertainties across the kinematic plane, in addition at large Q² there is a reduction in statistical error
- It is hoped to publish the combined data later this year (H1 has a couple of HERA-I NC data sets still to be published)
- HERA-II data on NC and CC cross-sections with polarised e+ and ebeams are being extracted by H1 and ZEUS
- Once the individual results are published, the combined HERA-II data will be produced


NLO QCD fit to the combined HERA data

- Context & Scope
- Form of the PDF parameterisation
- Error/uncertainty treatment
- Model assumptions
- ✤ HERAPDF0.1
- Comparisons
- ✤ LHAPDF
- Summary

Context & Scope

- ✤ H1PDF2k and ZEUS-Jets, most recent PDF sets from H1 and ZEUS
 - differ in many details (parameterisation and choice of partons, uncertainty treatment, input data)
 - results broadly compatible, but the gluon PDFs in particular are different
- Goal is an NLO PDF fit to the combined HERA-I data alone
- A lot of preliminary and ongoing work undertaken by the H1-ZEUS team, e.g.
 - try each other's approaches on own data and combined data
 - try both hessian and offset methods for uncertainty estimates
 - try different flavour break-ups and heavy flavour schemes
 - etc
- The outcome (HERAPDF0.1) should be viewed as work in progress

HERA PDF parameterisation at Q_0^2

	А	В	С	D	
gluon	sum rule				
u _v	sum rule				
d _v	sum rule	$=B(u_{r})$			
Ubar	$\lim_{x\to 0} U/D \to 1$				
Dbar		$= B(\overline{U})$			

Optimisation and constraints on parameters

Partons fitted : $xg, xu_v, xd_v, x\overline{U} = x\overline{u} + x\overline{c}, x\overline{D} = x\overline{d} + x\overline{s} + x\overline{b}$ Sea flavour break - up at Q_0 : $s = f_s D, c = f_c U, A_{\overline{U}} = (1 - f_s)A_{\overline{D}}/(1 - f_c)$ with $f_s = 0.33, f_c = 0.15$

Parameter optimisation: start with A, B, C (BLUE) add D, E ,F... until no χ^2 advantage – find only D & E (red) non zero for xu_v

This form is derived from the H1 and ZEUS parameterisations less model dependence for B parameters than H1 form no additional x(ubar-dbar) input as used in the ZEUS form

More details

- * NLO DGLAP framework for evolving PDFs to arbitrary Q^2
- Zero-mass variable-number heavy flavour scheme
- * Renormalisation and factorisation scales: Q^2
- Fit 573 combined HERA-I NC & CC data
- ✤ A total of 11 free parameters

Further fixed parameters :

$$Q_0^2 = 4 \text{ GeV}^2 \text{ (input scale)}$$

$$Q_{\min}^2 = 3.5 \text{ GeV}^2 \text{ (minimum for data)}$$

$$m_c = 1.4 \text{ GeV}(\text{charm mass}), \ m_b = 4.75 \text{ GeV}(\text{beauty mass})$$

$$\alpha_{\text{S}}(M_Z) = 0.1176 \text{ (PDG 2006 value)}$$

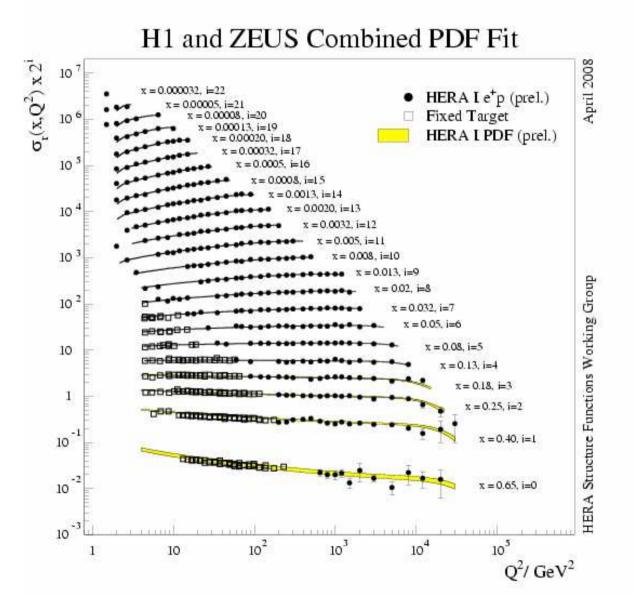
Error/uncertainty treatment

- Combined data have much reduced errors, systematic uncertainties smaller than statistical across most of (x, Q^2) plane
- ✤ Combine 43 systematic uncertainties of the data with their statistical uncertainties in quadrature, then offset the 4 combination systematic uncertainties. Gives $\chi^2/dof = 476.7/562$
- Checks:
 - taking 47 systematics in quadrature gives $\chi^2/dof = 428/562$
 - taking all systematics as correlated gives $\chi^2/dof = 553.1/562$
 - all three methods give very similar PDF central values and uncertainties
- ★ The self consistency and small systematics of the combined data allows the use of $\Delta \chi^2 = 1$ to calculate PDF parameter uncertainties

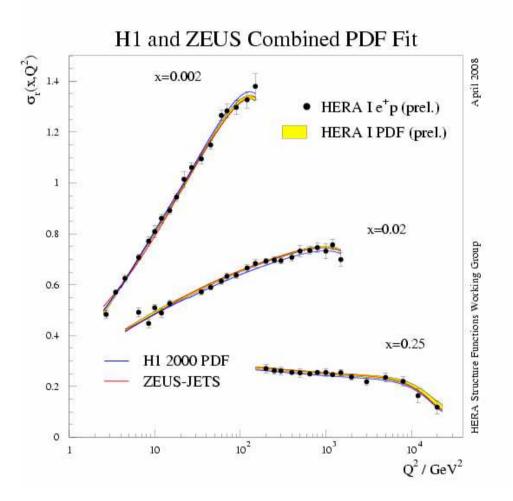
Model uncertainties

★ To be added to total PDF uncertainty $m_{c} (1.45): 1.3 \rightarrow 1.55 \text{ GeV}$ $m_{b} (4.75): 4.3 \rightarrow 5.0 \text{ GeV}$ $f_{s} (0.33): 0.25 \rightarrow 0.40$ $f_{c} (0.15): 0.10 \rightarrow 0.20$ $Q_{0}^{2} (4.0): 2.0 \rightarrow 6.0 \text{ GeV}^{2}$ $Q_{\min}^{2} (3.5): 2.5 \rightarrow 5.0 \text{ GeV}^{2}$

✤ To be compared with the results


Vary $\alpha_s(M_z)$ (0.1176): 0.1156 \rightarrow 1196 Vary PDF parameterisation (HERA): H1 \rightarrow ZEUS

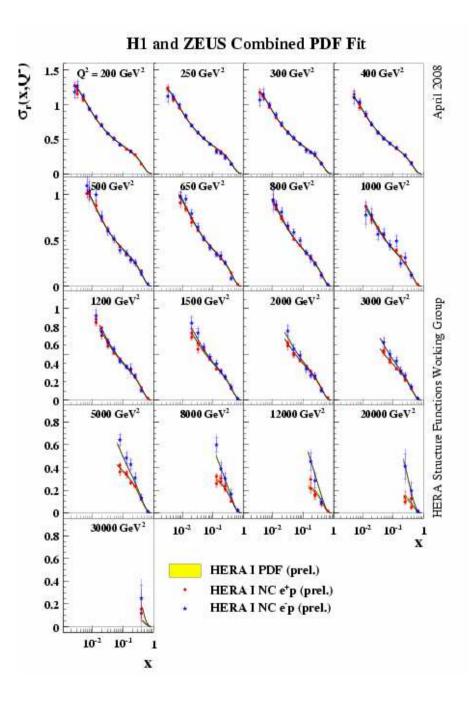
R Devenish Low x 2008


PDF fit results I

HERAPDF0.1 fit quality to the combined HERA-I data for NC e+p

uncertainties on both data and fit are included

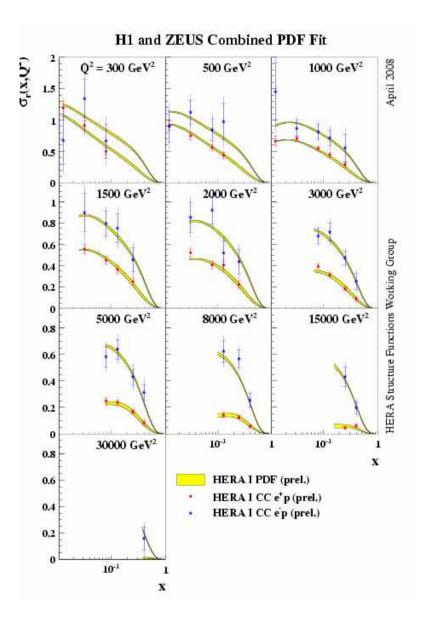
PDF fit results II

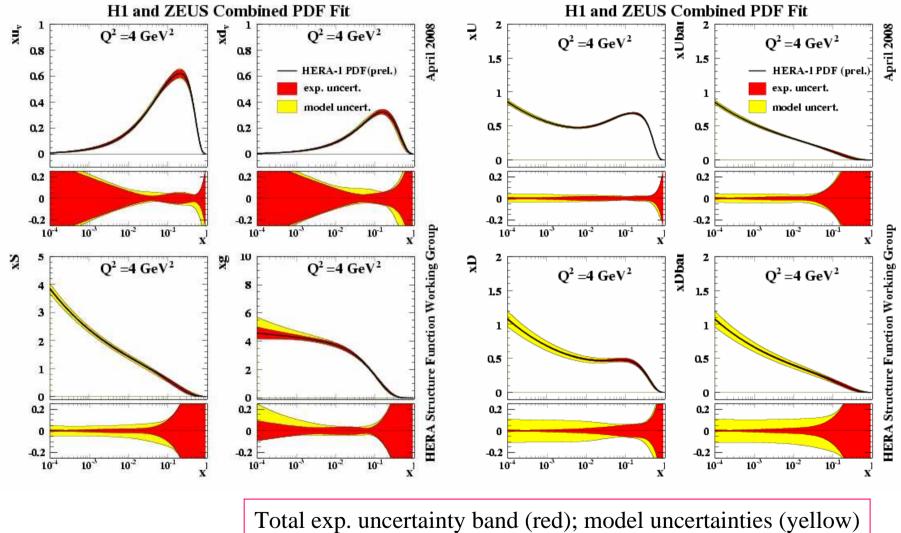

In more detail, for the three *x* values shown on p 13

scaling violation thru' DGLAP eqns gives tight constraint on gluon

PDF fit results III

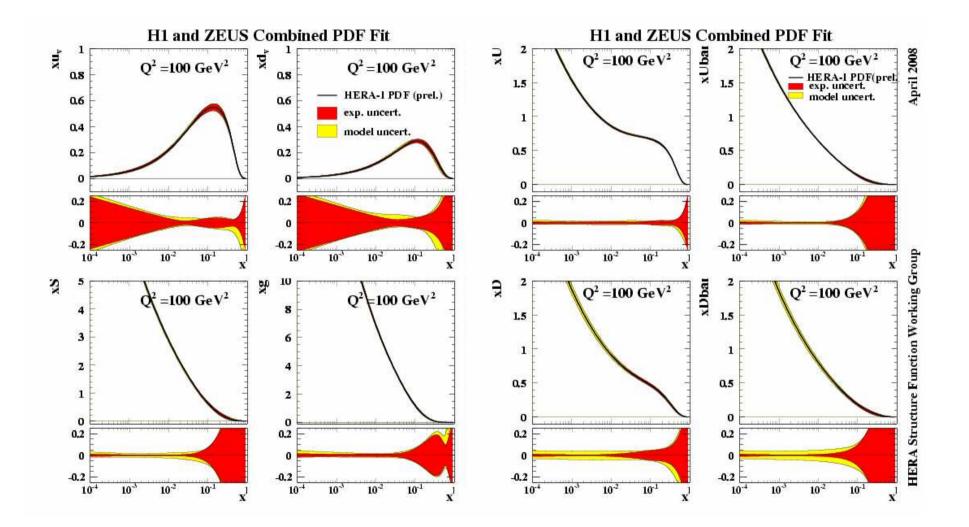
High Q^2 NC


Precision is crucial for the extraction and exploitation of xF_3 and its valence quark dependence

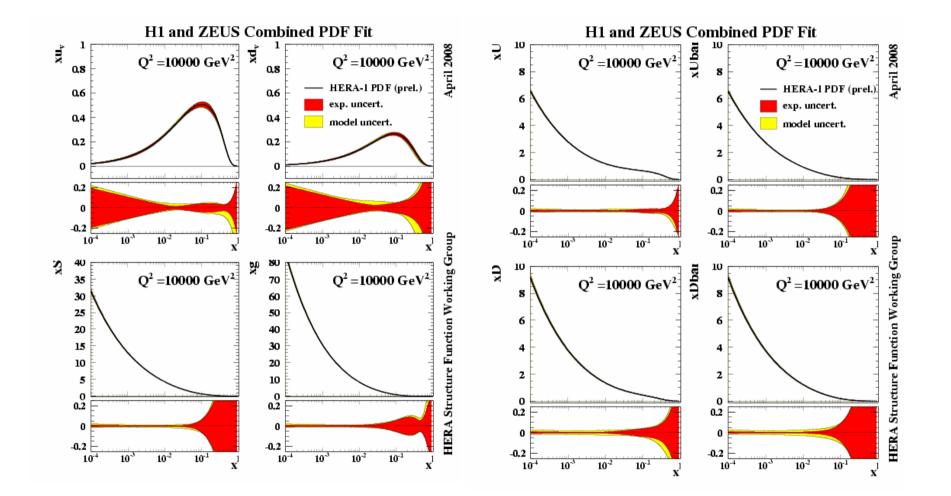

PDF fit results IV

High Q^2 CC

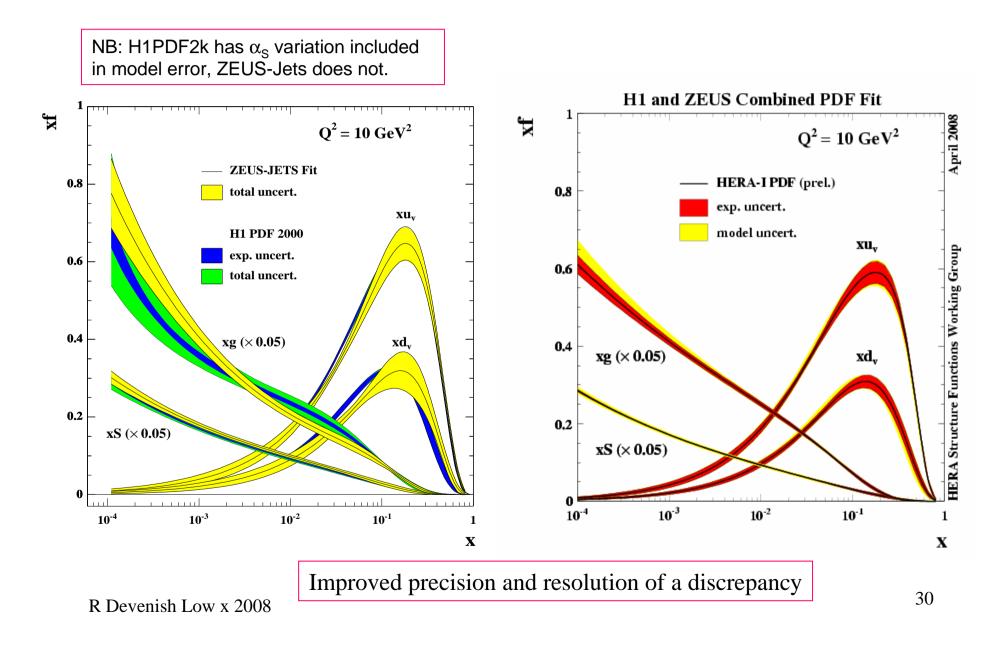
Precision needed to exploit the different flavour dependence of the e+ and ecross-sections



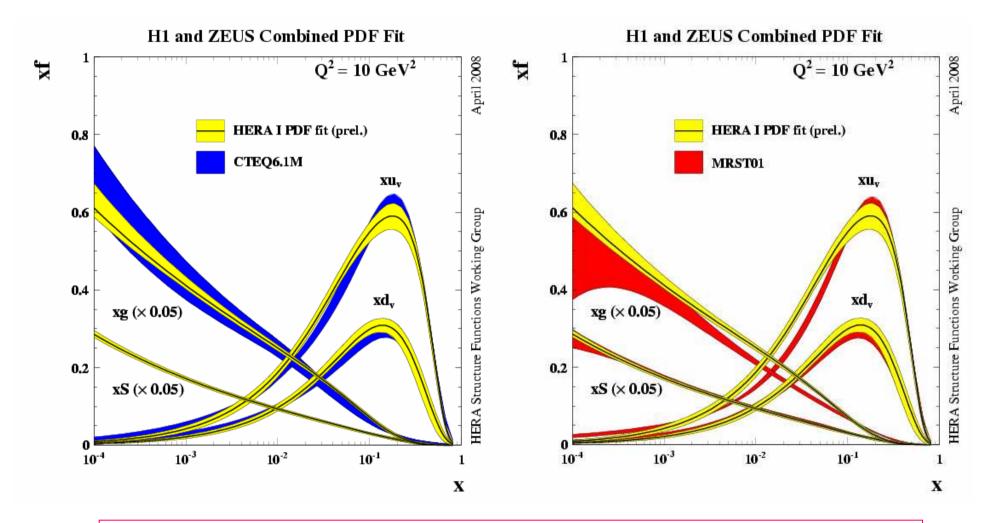
PDFs at the starting scale $Q_0^2 = 4 \text{ GeV}^2$


- f_s dominates model uncert. on sea; $Q_0^2 \& Q_{min}^2$ dominate $xg \& xq_v$

PDFs at $Q^2 = 100 \text{ GeV}^2$


Uncertainties decrease as Q^2 increases

PDFs at $Q^2 = 10000 \text{ GeV}^2$



Scale relevant for the LHC – impressively small uncertainties see Cooper-Sarkar & Perez (talk at HERA-LHC May 08 w/shop, Indico confId = 27458)

Comparisons I: with H1 & ZEUS fits

Comparisons II: with CTEQ & MRST

Difference between HERAPDF0.1 and MRST01 *xg* at low *x* is due in part to parameterisation

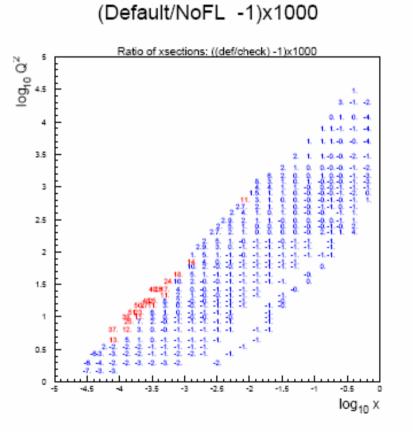
LHAPDF

- Results shown here are those released at DIS08
- The intention is to release HERAPDF0.1 to LHAPDF 'soon'
- Quite a few details are being checked and refined, e.g.
 - more work on flavour break-up of the sea
 - ditto on varying Q_0^2 and m_c
 - studies of xg at low and high x wrt other PDFs and other data
- None of the above have produced any significant differences from the results shown here
- There are also technical choices to be made, e.g.
 - input parameters plus evolution code?
 - or PDF values on (x, Q^2) grid?

Summary (PDF fit)

- The improved precision of the combined HERA-I is reflected in the improved precision of the HERAPDF0.1 fit
- Experimental and fit-model uncertainties have been studied and allowed for
- Differences between H1PDF2k and ZEUS-Jets understood and resolved
- Note that the HERA fit parameterisation is 'minimal and optimised' in form and number of parameters
 - does not require target mass corrections
 - does not require heavy target or deuteron corrections

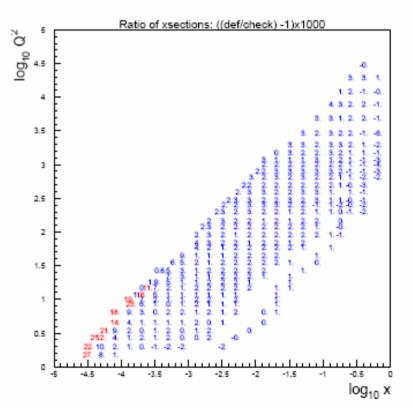
This is the just the start of the 'combined HERA data' programme


EXTRAS

R Devenish Low x 2008

CME corrections: $F_L = 0$

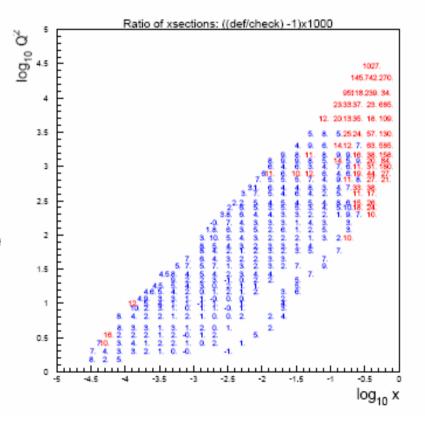
To test model (F_L) dependence at high-y we have repeated the combination (with $F_L=0$)


Almost negligible (but up to 4-5% at high-y)

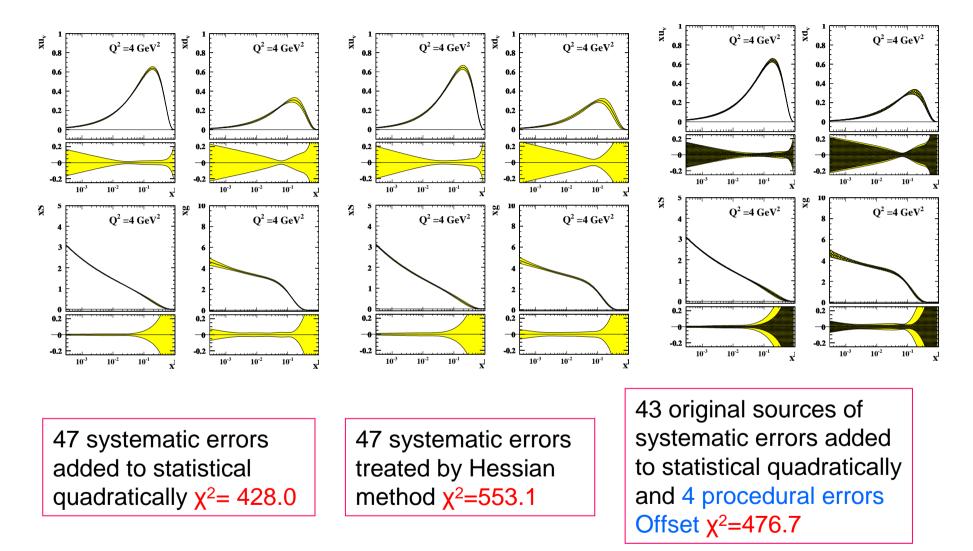
Uncertainty on correlation between data sets

(Uncorrelated/Largest change -1)x1000

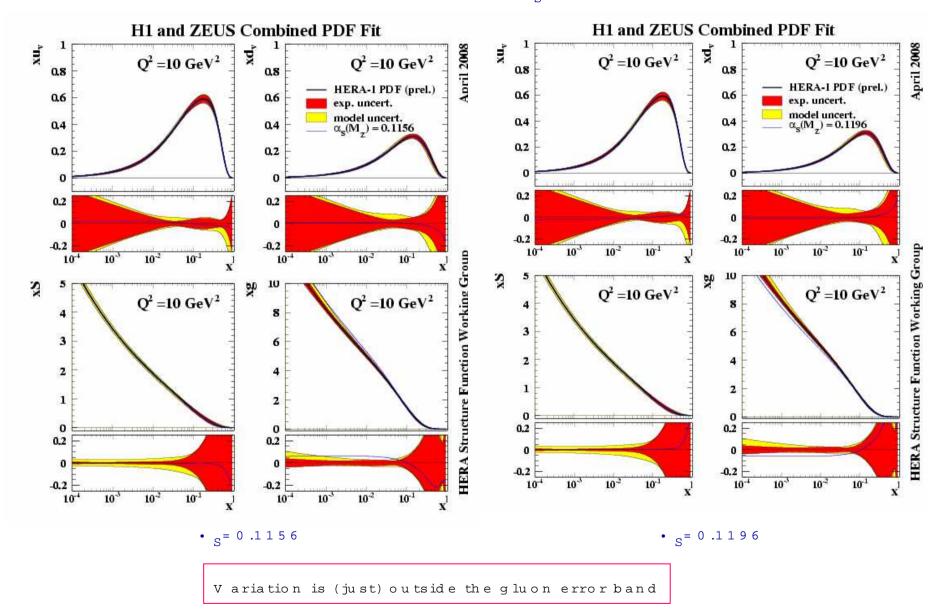
Mostly negligible ~0.2 -0.3 % (but up to 2-3% in particular regions of the phase space)

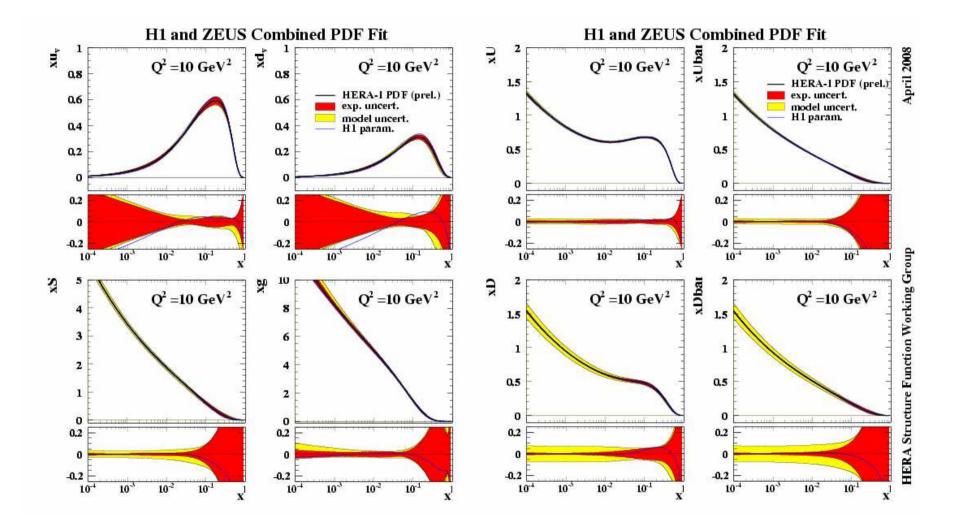


Multiplicative vs Additive


(Uncorrelated/Largest change -1)x1000

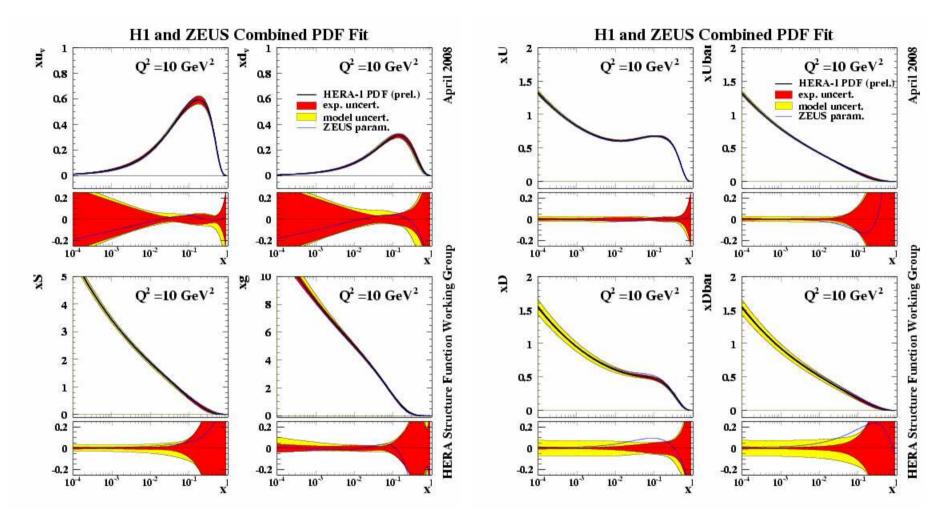
Comparison of the averaged cross sections obtained assuming all syst unc. as multiplicative in nature w.r.t. to a combination were only normalizations were treated as multiplicative


Mostly negligible, except at very large Q² and x where statistical errors and fluctuations are the largest.



Different error treatments

Varying • s



C entral H E R A PD F 0.1 fit com pared to H 1 style param eteristion (optim ised)

M arginally outside error bands for valence quarks at low $\ensuremath{\boldsymbol{x}}$

R Devenish Low x 2008

V ariation: Z E U S style param eterisation

C entral H E R A P D F 0.1 fit com pared to Z E U S style param eteristion (optim ised) just inside error bands if m odel uncertainty included