Gluon Correlations in small-*x* **Evolution**

Emil Avsar

In Collaboration with Yoshitaka Hatta

arXiv:0805.0710 [hep-ph]

Institut de Physique Théorique de Saclay France

Outline

- Evolution equations and correlations
- Calculating the correlations:
 - Analytical approach
 - Numerical approach
- Summary and Outlook

Evolution towards smaller x

Hadron contracted to a "pancake" consisiting of gluons at different transverse positions.

High Energy Evolution Equations

Start with dipole (x, y). The evolution of T with $Y \equiv \ln 1/x$ is given by

$$\partial_Y T_{xy} = \int d^2 z \frac{d\mathcal{P}}{dY \, d^2 z} \{ -T_{xy} + T_{xz} + T_{zy} - T_{xz;zy}^{(2)} \}$$

- No correlations: $T^{(2)} = T \cdot T \Rightarrow$ Hierarchy closes down to single equation; BK-eq.
- Important to know value of $R \equiv T^{(2)}/T^2$.

Dipole Densities

- To estimate R analytically one needs to evaluate the double dipole density $n^{(2)}$.
- Image of the second system of the second system
- To make quantitative predicitions for R however, numerical approach needed.
- In numerical approach, Hadron wavefunction explicitly constructed: One has knowledge of all n^(k) on an event-by-event basis.

Analytic Results

• For $x_{01} >> b, r \ (\gamma \approx 0.82 \text{ always})$:

$$R \sim \left(\frac{x_{01}}{r}\right)^{2(2\tilde{\gamma}-\gamma)} e^{2(\chi(1/2)-\chi(\tilde{\gamma}))Y}, \quad \chi'(\tilde{\gamma})Y = \ln\frac{x_{01}^2}{r^2}$$

• For $r \sim b >> x_{01}$:

$$R \sim \left(\frac{r}{x_{01}}\right)^{2(2\tilde{\gamma}-\gamma)} e^{2(\chi(1/2)-\chi(\tilde{\gamma}))Y}, \quad \chi'(\tilde{\gamma})Y = \ln\frac{r^2}{x_{01}^2}$$

• For $b >> x_{01}, r$:

$$R \sim \left(\frac{b^2}{x_{01}r}\right)^{2(2\tilde{\gamma}-\gamma)} e^{2(\chi(1/2)-\chi(\tilde{\gamma}))Y}, \quad \chi'(\tilde{\gamma})Y = \ln\frac{b^4}{x_{01}^2r^2}$$

Results for b = 0, Y = 6, 8

• Power-like behaviour consistent with analytic estimates. At Y = 8 and $x_{01}/r = 5$ and 20, analytic result: $\omega = 0.52$ and 0.76 while numerical result gives 0.60 and 0.80.

Results for b = 0, Y = 10

- Y dependence consistent with analytic estimates. For asymmetric configurations R decreases faster. We note that $R \gtrsim 1.5$ always.
- Beyond Y = 10, $T^{(2)} > 1$ so we cannot go any further.

b Dependence

• Results for $x_{01} = 10 r$ and $x_{01} = 20 r$ at Y = 10. R constant as long as $b < x_{01}$, but it increases fast as $b \gtrsim x_{01}$.

Running Coupling

- In nature the coupling is running so important to include running α_s .
- The avaliable NLL studies suggest that $\bar{\alpha}_s(\min(r, r_1, r_2))$ should be used in the splitting $r \to r_1, r_2$.
- The inclusion of the running α_s is straightforward. In practice, however, simulations are very time consuming and we have not been able to perform as detailed analysis.
- Analytic calculations not easy, postponed for a future study.

Results for Running α_s

■ Results for b = 0 and b = 5r at Y = 6. At Y = 8, $R : 1.6 \rightarrow 1.5$ at $x_{01} = 2r$ and b = 0, and $R : 11.6 \rightarrow 9.4$ at b = 5r.

Summary and Outlook

- We find power-like correlations which lead to a strong violation of the factorization assumption $T^{(2)} = T \cdot T$.
- Analytic estimates confirmed by numerical analysis, and we have been able to quantitatively study the value of R.
- Physical consequences of the large correlations should be explored.
- More results for running α_s desirable.
- Studies of higher order correlations, calculation of $T^{(p)}$ for p > 2. Few analytical results. Numerics straightforward but can be time consuming.