DPE $H \rightarrow b\bar{b}$ studies

Vojtěch Juránek

Institute of Physics, Prague

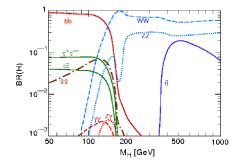
9. 7. 2008, Low X meeting, Kolimpari

Exclusive DPE Higgs boson production

2 Backgrounds

- Studies about $H \rightarrow b\bar{b}$ so far:
 - A. Pilkington (Manchester): estimates based on counting probabilities + MC simulations at generator level + smearing (JHEP0710:090,2007),
 - M. Taševský (Prague): MC simulations at detector level fast CMS simulation (CERN-LHC 2006-039/G-124),
 - V. Juránek (Prague): MC simulations at detector level fast Atlas simulation, acceptance RP220 + FP420,

Double pomeron exchange

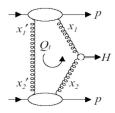

- pp→p+gap+X+gap+p (at higher luminosities there will be no rapidity gaps because of pile-up).
- Both protons remain intact, momentum loss of protons during interaction used to create central object/system.
- Proton energy lost can be measured:

$$\xi = 1 - \frac{p_z'}{p_z}.$$

 If both protons are detected in forward proton detectors (FPDs), we have a constraint on central object mass and rapidity:

$H ightarrow bar{b}$

- $H \rightarrow b\bar{b}$ channel is very interesting for Higgs mass around 120GeV.
- H decay mostly (68%) into $b\bar{b}$ for $M_H = 120 GeV$.
- "Standard" $H \rightarrow b\bar{b}$ is not possible to detect due to very huge $b\bar{b}$ background.
- For $M_H = 120 GeV$ the possible "standard" channels such as $\tau^+ \tau^-$ or $\gamma \gamma$ are difficult other channels (like this diffractive one) are welcome.


Exclusive DPE Higgs boson production

Advantages:

- Precise measurement of Higgs mass ($M_H \simeq \sqrt{\xi_1 \xi_2 s}$).
- Good signal background ratio $(\frac{H \rightarrow b\overline{b}}{gg \rightarrow b\overline{b}}$ better in diffractive processes than in non-diffractive).

Disadvantages:

- Small cross section (units of fb).
- Sensitive to pile-up (more hits in FPDs) from other soft diffractive events.

Exclusive and Inclusive DPE Background

Exclusive:

- $gg \rightarrow b\bar{b}$
 - The same behavior as signal.
 - $J_Z = 0$ selection rule (suppressed by factor $\frac{m_b^2}{M^2}$).
- gg → gg
 - Due to mis-tagging gluon jets as *b*-jets.
 - Expected mis-tag of gluon jet as *b*-jet is (at Atlas) of 1.3% for a 60% *b*-jet efficiency.

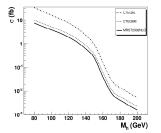
Inclusive:

- $pp \rightarrow p + A + X + p$
 - X is *b*b dijet, A pomeron remnants.
 - Strongly suppressed by new PDF from Hera.
 - Could be suppressed by exclusivity cuts.

Cross sections

- Two MC generators were used: Exhume and Dpemc.
- For KMR model Exhume implementation was used.
- In Dpemc, Bialas-Landshoff model was used.

 $H
ightarrow b ar{b}$


- There are uncertainties in this cross section 1-10fb.
- Exhume $\sigma^{(NLO)}_{H \rightarrow b\bar{b}}$ = 1.9 fb (Dpemc σ = 2.0 fb).

CEP $b\bar{b}, p_T^{min} = 30 GeV$

• Exhume $\sigma_{b\bar{b}}^{(LO)}$ = 269 fb (Dpemc σ = 520 fb).

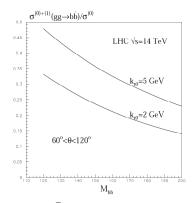
CEP $gg, p_T^{min} = 30 GeV$

• Exhume $\sigma_{gg}^{(LO)} = 714 \cdot 10^3 fb$ (probability to identify gluon jet as *b*-jet in Atlas is $\simeq 0.013$ $\Rightarrow \sigma_{ag}(misstag) \simeq 120 fb$).

A.Pilkington [1]

8/20

Inclusive DPE $q\bar{q}$. • Dpemc $\sigma = 5.5 \cdot 10^4 pb$.


9. 7. 2008, Low X meeting, Kolimpari

DPE $H \rightarrow b\bar{b}$ studies

$b\bar{b}$ background cross section

• Recent study by A. Shuvaev and KMR group about one loop $gg \rightarrow b\bar{b}$ effects, arXiv:0806.1447 [hep-ph]

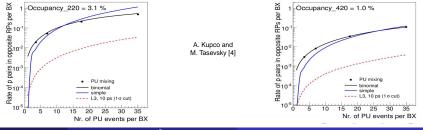
• Recommend choice of IR cutoff $k_{t0} = 5$ GeV (for smaller value of cutoff the suppression is stronger, but signal is also suppressed in the same way).

• For this choice of the cutoff, cross section for $b\bar{b}$ around $M_{bb} = 120$ GeV is two times smaller (with comparison to Born level approximation).

- Overlap of three events: non-diffractive QCD di-jet production and two single diffraction events (which cause hit on both sides of FPDs).
- In general three types:
 - [*p*][*X*][*p*]: hard event + two soft diffractions,
 - [*pX*][*p*]: one hard diffraction + one soft diffraction,
 - [*pp*][X]: double diffraction + hard event.
- At high luminosities the most dangerous background is [p][X][p]:
 - [p][X][p] grows quadratically with luminosity,
 - [pp][X] grows linearly with luminosity,
 - [pX][p] is suppressed by gap survival probability (with comparison to [p][X][p]).

Timing Detector

 Number of fake proton pairs seen on opposite FPDs per bunch crossing can be expressed as:


$$N^{RP}(simple) = N^{PU} \cdot (N^{PU} - 1) \cdot Acc^2$$
(1)

or more precisely (A. Kupčo):

$$N^{RP}(binomial) = 2e^{-\mu}(\cosh\mu - 1) + 1 - e^{-\mu_{LR}},$$
 (2)

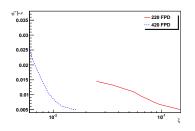
where

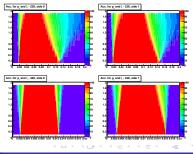
•
$$\mu = Acc \cdot N^{PU}$$
, $Acc(220) \approx 3.1\%$, $Acc(420) \approx 1.0\%$,
• $\mu_{LR} = Acc_{LR} \cdot N^{PU}$, $Acc_{LR}(220) \approx 0.3\%$, $Acc_{LR}(420) \approx 0.05\%$

DPE $H \rightarrow b\bar{b}$ studies

Timing Detector

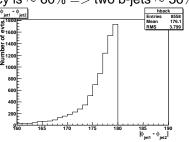
- Hits in both sides of FPDs.
- Z coordinate of vertex position can be computed as


$$\mathsf{z}_{pp} = c \frac{t_L - t_R}{2},\tag{3}$$


where t_L resp. t_R is time of flight to left resp. right FPD.

- By matching of this z_{pp} position with z_{hard} position of hard vertex the pile-up background can be significantly suppressed.
- The event is rejected if z_{ρp} is outside z_{hard} ± 2σ, where σ is resolution in z direction of timing detector.
- Considered pile-up suppression factor for this study was 40, which corresponds to \simeq 5ps resolution.
- Suppression factor depends on time resolution of the detector but not so much on luminosity.

Simulation of diffractive protons


- Based on simulation done by Peter Bussey using FPTrack.
- Considered configuration for forward proton detectors (FPD): 220 FPD 20σ (2mm) far from beam, 420 FPD 16σ (4mm) far from beam.
- The resolution of the fractional momentum loss ξ, of protons tagged in the FPDs on Fig. on the left.
- Acceptances for FPDs at 220m and 420m from IP in ξ, t plane on Fig. on the right.

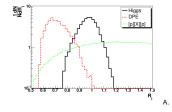
- RP acceptances for protons: previous slide.
- Detector acceptance cuts for jets:
 - Two jets, $p_T^{bjet1} > 45 GeV$, $p_T^{bjet2} > 30 GeV$.
 - Jets must be central ($|\eta| < 2.5$).
- Both jets are b-jets (b-tagging efficiency is \sim 60% => two b-jets \sim 36%).

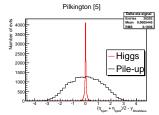
• Jets are back-to-back (170 $< \phi_{bjet1,bjet2} <$ 180).

Exclusivity Cuts

R_j and R_{jj} cuts:

• $M_X \simeq \sqrt{\xi_1 \xi_2 s}$ mass of central object.

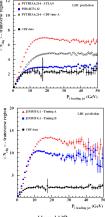

•
$$R_{jj} = \frac{M_{dijet}}{M_X}$$


•
$$R_j = rac{2E_T^{jet1}}{M_X} cosh(\eta^{jet1} - y_X), \, y_X \simeq rac{1}{2} \ln rac{\xi_1}{\xi_2}$$

- *R_j* has very similar rejection factor as *R_{jj}* 0.75 < *R_j* < 1.2
 0.8 < *R_{ij}* < 1.2
- *R_j* is not so sensitive on QCD bremsstrahlung, hadronization effect etc.

 $\Delta\eta$ cut:

- y_X is rapidity of central object, $y_X \simeq \frac{1}{2} \ln \frac{\xi_1}{\xi_2}$
- Cut on $\Delta\eta = (\eta_{\textit{bjet1}} + \eta_{\textit{bjet2}})/2 y_X pprox 0$
 - Cut |Δη| < 0.06 (1σ cut for Exhume, for Dpemc 1σ cut is 0.1).

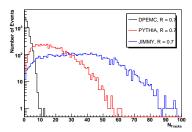


Other 2 exclusivity cuts (on p_x and p_y) weren't used because the background has very similar distributions of these quantities.

9. 7. 2008, Low X meeting, Kolimpari 15 / 20

N_C and N_C^{\perp} Cuts

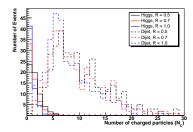
- Cut on number of charged particles (tracks) coming from primary vertex (requirement of rapidity gap).
- N_C is number of charged particles outside dijet (outside cone with some radius around dijet axis).
- N[⊥]_C is number of charged particles outside of dijet but transverse to the leading jet.
- Transverse mean $\frac{\pi}{3} < |\phi_{track} \phi_{jet1}| < \frac{2\pi}{3}$ or $\frac{4\pi}{3} < |\phi_{track} - \phi_{jet1}| < \frac{5\pi}{3}$.
- Only tracks from primary vertex considered.
- Then rejection factor is almost independent of number of interaction in bunch crossing (M. Taševský, V.J.)
- Very important to tune MC completely different results for various Monte Carlos.



N_C and N_C^{\perp} , no pile-up

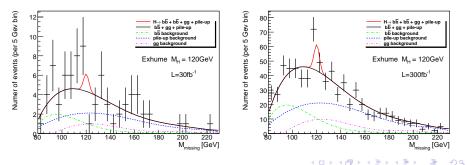
Cuts:

- $N_C \leq 3 \wedge N_C^{\perp} \leq 1$.
- $N_C < 4 \wedge N_C^{\perp} < 3.$
- $p_T^{Track} > 0.5 \text{GeV}$ (for Atlas).


Number of events outside dijet:

Choice of R:

- Cone radius R = 0.7.
- However cut is not very sensitive to choice of R.


Number of events outside dijet for various R:

$b\bar{b}$, gg and pile-up background (Pythia DWT)

- Number of events for signal and $b\bar{b} + gg + overlap$ background after all cuts above for $30fb^{-1}$ in 2σ mass window.
- Mass window for 220-420 is $M_H \pm 2.6$ GeV.
- Mass window for 420-420 is $M_H \pm 1.1$ Gev.

$\mathcal{L}[\mathrm{cm}^{-2}\mathrm{s}^{-1}]$	#bb	#gg	#pile-up ([p][X][p])	#All bkg.	$#H \rightarrow b\bar{b}.$
$1 \cdot 10^{33}$	1.2	1.6	3.3 (?)	6.1	2.0

- Results are in agreement with studies by A. Pilkington and M. Tasevsky.
- It is expected about 2 events of signal and 6 events of background for low luminosity $(1 \cdot 10^{33} cm^{-2} s^{-1})$, integrated luminosity of $30 fb^{-1}$ (3 years of data taking at low luminosity) and 1 2% resolution of the detector in mass (and gap survival prob. = 0.03, ...).
- Physical cuts (exclusivity, N_C) kill only small amount of signal.
- Signal is mostly killed due to detector acceptance and b-tagging efficiency.
- Huge differences between generators in case of pile-up simulation (Pythia, Jimmy).
- The generators must be tuned first data from LHC are needed.

- B. Cox, K. Loebinger, A. Piklington; JHEP0710:090,2007
- A. G. Shuvaev, V. A. Khoze, A. D. Martin, M. G. Riskin; arXiv:0806.1447 [hep-ph]
- CMS/Totem Note; CERN-LHC 2006-039/G-124
- M. Taševský; presentation at Hera-LHC workshop 2007 (http://indico.cern.ch/conferenceDisplay.py?confId=11784)
- A. Pilkington; presentation at Hera-LHC workshop 2007 (http://indico.cern.ch/conferenceDisplay.py?confld=11784)
- V. Juránek; presentation at Diffraction at LHC, Krakow (http://indico.cern.ch/conferenceTimeTable.py?confId=22401)