Geometric scaling from DGLAP evolution

Fabrizio Caola

Università degli Studi di Milano

Low x 2008, Kolimbari, Crete, 7 July 2008

Outline

Geometric scaling from DGLAP evolution: theory

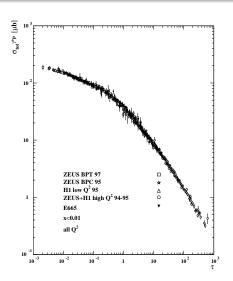
- Geometric scaling, saturation and DGLAP evolution
- Can geometric scaling be produced by DGLAP evolution?
- A simple fixed coupling analysis
- Introducing running coupling
- G.S. can in fact be produced by DGLAP evolution

Phenomenology: is the HERA scaling a DGLAP-based scaling?

- The geometric scaling kinematic window
- Theoretical vs. phenomenological scaling

[Based on Stefano Forte & F.C., $0802.1878~(\mbox{HEP-PH})$, accepted by Phys. Rev. Lett.]

Geometric scaling



Geometric scaling

$$\sigma\left(x,Q^2\right)=F_2/Q^2=\sigma(au),$$
 with $au=Q^2x^\lambda$ or

$$au = Q^2 \exp\left[-\lambda \sqrt{\log(1/x)}
ight]$$

STASTO, GOLEC-BIERNAT, KWIECINSKI, hep-ph/0007192

How can we explain geometric scaling?

Three possible scenarios:

- Geometric scaling is a saturation-based phenomenon. What we are seeing at HERA are saturation effects. If so, big problems with our PDFs!
- ② Geometric scaling is generated by saturation physics at some low scale and then it is preserved by DGLAP evolution [see e.g. KWIECINSKI, STASTO, PRD 66:014013,2002]
- Geometric scaling is generated by DGLAP evolution. There exists a region where geometric scaling can be explained by pure DGLAP evolution, without need of saturation

A toy model without saturation: the LO DGLAP evolution at small \boldsymbol{x}

- At small x the evolution is dominated by the large eigenvalue of the a.d. matrix in the singlet sector
- Consider only the singlet parton density

$$G(x,t) = x \left[g(x,Q^2) + k_q \otimes q(x,Q^2) \right]$$

with as usual $t \equiv \log Q^2/Q_0^2$

The LO DGLAP equation for G in Mellin space

$$\frac{d}{dt}G(N,t) = \alpha_s \gamma_0(N)G(N,t)$$

GS from DGLAP evolution: the fixed coupling case

The DGLAP solution

$$G(\xi, t) = \int \frac{dN}{2\pi i} G_0(N) \exp\left[\alpha_s \gamma_0(N) \ t + N \log(1/x)\right]$$

In the saddle point approximation

 $G \approx e^{\alpha_s \gamma_0(N_s)} t + N_s \log(1/x)$, leading to the double log result

$$\sigma = \exp\left[2\sqrt{\overline{\alpha}_s t \log(1/x)} - (1+\overline{\alpha}_s)t\right],$$

with $\overline{\alpha}_s \equiv N_c/\pi \ \alpha_s$ and $t \equiv \log Q^2/Q_0^2$

Apparently no geometric scaling!

A closer look at the saddle point approximation

The saddle condition reads

$$\left. \alpha_s \left. \frac{d}{dN} \gamma_0(N) \right|_{N=N_s} = -\frac{\xi}{t} \longrightarrow N_s(t,\xi) = N_s(\xi/t),$$

where $\xi \equiv \log(1/x)$

Hence

$$\sigma \sim \exp\left[\alpha_s \gamma_0(N_s) \ t + N_s \xi - t\right] = \exp\left[f(t/\xi)\xi\right],$$
 with

$$f(z) = (\alpha_s \gamma_0(N_s) - 1) z + N_s.$$

Geometric scaling from the saddle point approximation

Now expand f(z) around $t/\xi = z_0 = \lambda$ such that $f(z_0) = 0$:

$$\sigma \sim \exp\left[f'(\lambda)(z-z_0)\xi + O\left((z-z_0)^2\right)\right]$$

As long as we can neglect higher terms in this expansion

$$\sigma \sim \exp\left[f'(\lambda)\left(rac{t}{\xi}-\lambda
ight)\xi
ight] = \exp\left[f'(\lambda)(t-\lambda\xi)
ight]$$

Geometric scaling!

$$\sigma(t,\xi) = \sigma(t-\lambda\xi) = \sigma\left(Q^2x^{\lambda}\right)$$

A few comments

- Analitically, this is the same argument proposed by lancu et al. in a BFKL context, $[NPA\ 708:327-352,2002]$
- However: lancu et al. impose the condition $\sigma(t=\lambda\xi)=const$ as a consequence of parton saturation. At the DGLAP level, this condition is automatically fulfilled with the LO anomalous dimension γ_0 (and more in general with any reasonable anomalous dimension)
- Note that G_0 does not enter in our equations. We have implicitly assumed that the boundary condition is washed out by the perturbative evolution

Running coupling

DGLAP-BFKL duality in the leading twist sector

Write the DGLAP solution in the "dual" form

$$G(\xi,t)pprox \int rac{dM}{2\pi i} \exp\left(Mt + \sqrt{\xirac{-2\int_{M_0}^M\chi(lpha_s,M')dM'}{eta_0lpha_s}}
ight)$$

where χ is a suitable kernel "dual" to γ .

We can repeat the previous saddle point argument, with the only replacement

$$\xi \to \sqrt{\xi}$$

A new scaling variable!

$$\log \tau = t - \lambda \sqrt{\xi} \rightarrow \tau = \mathit{Q}^2 \exp \left[-\lambda \sqrt{1/x} \right]$$

Summarizing our results so far...

G.S. is an approximation to the full DGLAP solution!

- Fixed coupling G.S. variable: $\log \tau = t \lambda \log(1/x)$
- Running coupling G.S. variable: $\log \tau = t \lambda \sqrt{\log(1/x)}$

The third scenario is possible!

Geometric scaling can be generated by perturbative DGLAP evolution

How good our approximations are?

The arguments so far involved several approximations:

- Saddle point evaluation of the integral
- Truncated Taylor expansion
- Fixed coupling analysis

To assess their accuracy:

- **1** Introduce the variable $\zeta = t + \lambda \xi$
- 2 Search for $\lambda = \lambda(t, \xi)$ such that

$$\frac{d\sigma}{d\zeta} = 0$$

3 If $\lambda(t,\xi) = const$, then we have exact geometric scaling

An analytical argument: running coupling scaling

The derivative argument

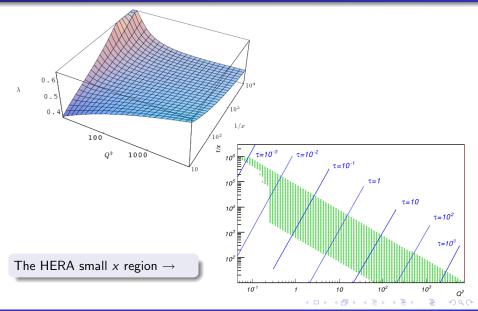
Determine λ from the condition $\frac{d}{d\zeta}\sigma=0$. The leading term:

$$\lambda = \frac{2\gamma t \log(t/t_0)}{(t+\gamma^2)\sqrt{\log(t/t_0)} - \gamma\sqrt{\xi}}$$

- If $(t + \gamma^2)^2 \log(t/t_0) \gg \gamma^2 \xi$, then λ does not depend on x
- ullet As t increases λ becomes more and more a constant

This geometric scaling is a large Q^2 – "large" x phenomenon!

A numerical argument, fixed coupling scaling



How to extract λ : the quality factor method

[Gelis et al., PLB 647:376-379,2007]

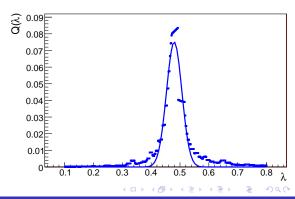
How can we extract the best value for λ ?

Define
$$Q(\lambda)^{-1} \equiv \sum_{i} \left[\left([\sigma_{tot}^{\gamma^* p}]_{i+1} - [\sigma_{tot}^{\gamma^* p}]_{i} \right)^2 \middle/ \left((\tau_{i+1} - \tau_i)^2 + \epsilon \right) \right]$$

From a gaussian fit:

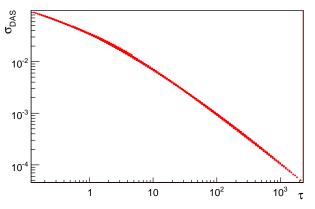
$$\lambda_{fix} = 0.48 \pm 0.02$$

$$\lambda_{run} = 2.18 \pm 0.22$$



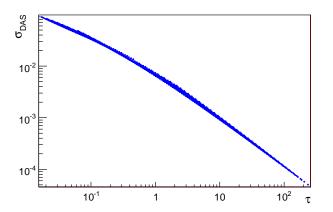
Scaling plot – fixed coupling scaling

The LO DGLAP form for σ in the HERA region, $x < 0.1, \ Q^2 > 10 \ \text{GeV}^2$ and $\log \tau = t - \lambda \xi, \ \lambda = 0.48$



Scaling plot – running coupling scaling

Same as before, but with $\log \tau = t - \lambda \sqrt{\xi}$, $\lambda = 2.18$



The DGLAP solution exhibits geometric scaling!

What we have seen so far

The LO DGLAP solution exhibits geometric scaling

- Spectacular scaling behaviour both in the fixed and in the running coupling variables
- This scaling is generated by the DGLAP evolution
- The scaling behaviour persists in a wide kinematic window
- In particular GS persists at large Q^2 and "large" $x \longrightarrow$

Different from saturation-based scaling!

What about the real world?

Can we use our theoretical results to explain the phenomenological geometric scaling observation?

Yes, as long as the DGLAP evolution is a good approximation to the full QCD evolution. This is true if

- x should be small, but not so small √
- ullet Q² should be large enough to justify a f.o. calculation \checkmark
- Boundary condition effects should be small enough
- The "small" eigenvector of the a.d. matrix should be really suppressed X
 - ✓: OK in the small x HERA region for $Q^2 > 10 \text{ GeV}^2$

DGLAP evolution at the quark-gluon coupled level

Only the largest eigenvector:

$$F_2 = \frac{\gamma}{\rho}G$$

Only a trivial overall constant K must be fitted to the data

Both the contributions:

$$F_2 = \frac{\gamma}{\rho}G + \bar{G}$$

with

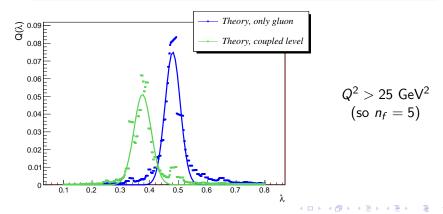
$$ar{G} = k \exp\left[-16rac{n_f}{27eta_0}\log(t/t_0)
ight]$$

k must be fitted to the data. From a global fit we obtain k=0.18 (only large Q^2 – "large" x data fitted)

The small eigenvector and geometric scaling

The new term \bar{G} violates G.S., hence we expect that the scaling behaviour of the full solution deteriorates slightly.

Indeed, this is just the case:



The effects of the small eigenvector

 \bar{G} deteriorates slightly geometric scaling, but we are forced to consider it if we want to explain data!

Considering all data with $Q^2 > 10 \text{ GeV}^2$

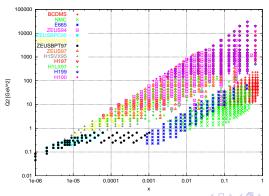
- $\lambda_{fix} = 0.34 \pm 0.02$
- $\lambda_{run} = 1.68 \pm 0.26$

These are our final predictions for λ

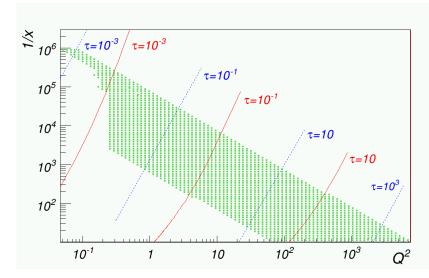
Phenomenology I: The neural network approach

The neural neural network parametrization of F_2 [NNPDF COLLABORATION, JHEP 0503(2005) 080]

- More flexible analysis
- Reliable results as long as we stay in the "populated" region



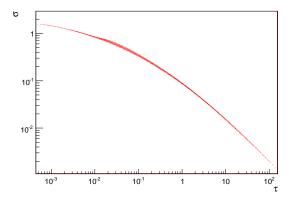
Phenomenology II: Our sample



Geometric scaling in the original kinematic window

- x < 0.01, $Q^2 < 450 \text{ GeV}^2$
- $\lambda = \lambda_{fix} = 0.34$

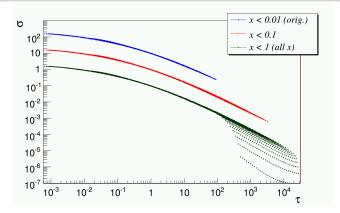
$$\lambda_{exp}=0.32\pm0.06$$



Geometric scaling in an extended window

Is this scaling a DGLAP like scaling?

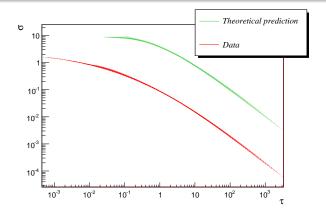
If so, it should be valid in a wider kinematic region, say x < 0.1



Our final results:

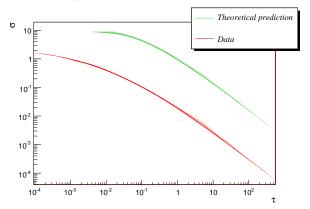
Fixed-coupling scaling

 $\lambda = \lambda_{\it fix} = 0.32, \, x < 0.1, \, Q^2 > 1 \, \, {
m GeV}^2$ for the theoretical curve



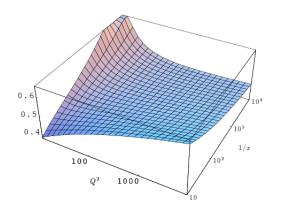
The same with running-coupling scaling

$$\lambda = \lambda_{\textit{run}} = 1.66$$
 $\lambda_{\textit{exp}} = 1.62 \pm 0.25$



The DGLAP evolution can explain GS in a wide kinematic window!

What about the small x region?



At small x

Perturbative resummations!

By far more involved

At HERA: small $x \to \text{small } Q^2$, hence higher order and higher twist effects.

Resummations and geometric scaling

What can we learn from perturbative resummation

- $\alpha_s \log 1/x$ resummation effects are smaller than one could naively expect
- Seizable effects only for $x < 10^{-4}$
- A quadratic expansion of the BFKL kernel near its minimus is a vary good approximation
- The BFKL equation must be considered at the running coupling level

see e.g. Altarelli, Ball, Forte, NPB 742 (2006); Ciafaloni, Colferai, Salam Stasto, JHEP 0708 (2007) and Chris White's talk

Resummations and geometric scaling

Resummation of a quadratic BFKL kernel at running coupling

- First approximation: the a.d. has a simple pole located at $N_0 \sim 0.1-0.3$ leading to a fixed coupling GS with $\lambda=N_0$
- If we consider the leading Q^2 dependence of the pole: approximate running coupling GS with $\lambda \sim 1.2-1.7$ (Airy resummation)
- Running coupling II scaling with $\lambda_{RC_{II}}=\lambda_{RC}^2$

Still compatible with the phenomenological observation!

This way a DGLAP-based GS could extend down to $Q^2 \approx 5 \text{ GeV}^2$

Conclusions and outlook

So...

- In a wide kinematic region, say $Q^2 > 10 \text{ GeV}^2$ the geometric scaling seen at HERA seems indeed a DGLAP-based scaling
- 5 GeV² $\lesssim Q^2 \lesssim 10$ GeV²: perturbative resummations may provide an explanation for GS (Handle with care!)
- For yet lower Q^2 G.S. may provide genuine evidence for parton saturation

How can we improve these results?

- ullet Focus on the small Q^2 region
- Subasymptotic corrections in order to disentangle DGLAP and saturation—based scaling

Backup slides

A note on the running coupling derivation

Consider again the DGLAP solution in the dual form

$$G(\xi,t)pprox \int rac{dM}{2\pi i} \exp\left(Mt + \sqrt{\xi rac{-2\int_{M_0}^M \chi(lpha_s,M')dM'}{eta_0lpha_s}}
ight)$$

- The running coupling solution in the dual form is valid only if the kernel χ is linear in α_s
- OK in the collinear approximation
- ullet OK if χ is a generic LO BFKL kernel
- Not OK with a generic LO DGLAP kernel! Less general than the fixed coupling case

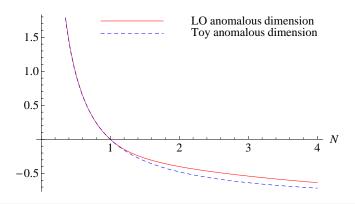
The toy model

Consider a LO DGLAP evolution with anomalous dimension $\boldsymbol{\gamma}$ given by

$$\gamma(\alpha_s, N) = \alpha_s \frac{N_c}{\pi} \left(\frac{1}{N} - 1\right)$$

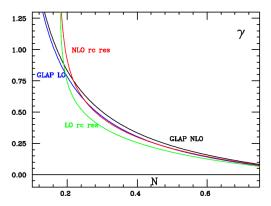
- Simple pole at $N = 0 \rightarrow \mathsf{OK}$ for not so small x (see e.g. Guido Altarelli's talk)
- $\gamma(\alpha_s,1)=0 o \mathsf{OK}$ with momentum conservation
- No saturation at all
- Can be solved analytically

Not so bad for a toy model!



Quite accurate in a wide kinematic region (say $x \lesssim 0.1$, $Q^2 \gtrsim 10 \text{ GeV}^2$)

The toy model and resummations



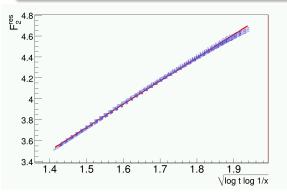
[Altarelli, Ball, Forte, NPB 742:1-40,2006.]

OK down to $x \sim 10^{-4}$

LO DGLAP evolution: a comparison with data

Only one eigenvector

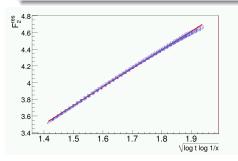
QCD prediction: $F_2 \approx f\left(t, \log(1/x)\right) \exp\left[2\gamma \sqrt{\log t \log(1/x)}\right]$ Define $F_2^{res} \equiv \log(F_2/f)$ and plot the experimental F_2^{res}



$$\gamma_{fit} = 2.22 \pm 0.004$$
 $\gamma_{th} = 2.4 \ (n_f = 4)$

Both eigenvectors

This time
$$F_2^{res} \equiv \log \left[(F_2 - \bar{G})/f \right]$$
.



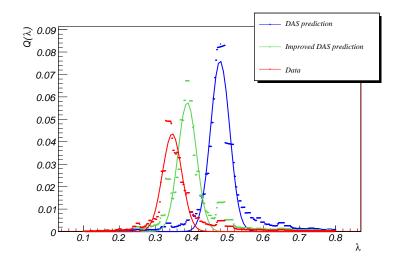
$$\gamma_{fit} = 2.42 \pm 0.004$$

 $\gamma_{th} = 2.4 \ (n_f = 4)$

Good agreement theory/phenomenology

Up to our level of accuracy, the (improved) toy model is in good agreement with data

The quality factor: Comparison with data



GS and resummations: the Airy case

Consider a quadratic BFKL kernel

$$\chi(\alpha_s, M) = \alpha_s \left[c + k/2 \left(M - M_0 \right)^2 \right]$$

then the r.c. resummed anomalous dimension reads

$$\gamma_{A} = \frac{3\beta_{0}N_{0}^{2}\alpha_{s}(t)}{4\pi\beta_{0} + 8\pi c\alpha_{s}(t)} \frac{1}{N - N_{0}} + O\left[(N - N_{0})^{0}\right]$$

Leading behaviour of the solution

$$\mathcal{M}^{-1}\left[\exp(\textit{A}/(\textit{N}-\textit{N}_0)
ight] pprox \exp\left[\textit{N}_0\xi + 2\sqrt{\textit{A}\xi}
ight]$$

Approximate GS (modulo logarithmic deviations)

$$\sigma \approx \exp(-t + N_0 \xi)$$

Taking into account the (leading) Q^2 dependence of N_0

$$N_0: \qquad \left(\frac{2\beta_0 N_0}{4\pi k}\right)^{1/3} \frac{4\pi}{\beta_0} \left[\frac{1}{\alpha_s(t)} - \frac{c}{N_0}\right] = z_0,$$

with $z_0 = -2.338$ the first zero of the Airy Function. At large t:

$$N_0(t) = c\alpha_s(t) \left[1 + z_0 \left(\frac{\beta_0^2}{32\pi^2} \frac{k}{c} \right)^{1/3} \alpha_s(t)^{2/3} + ... \right]$$

Search for the "geometric line" $N_0(t_s)\xi - t_s = 0$:

$$t_s(\xi) = \sqrt{4\pi c/\beta_0}\sqrt{\xi} + O\left(\xi^{1/6}\right)$$

R.c. geometric scaling with $\lambda = \sqrt{4\pi c/\beta_0}$

◆ロト ◆団 ト ◆ 豆 ト ◆ 豆 ・ 夕 ○ ○

DGLAP evolution: subleading contributions

Low x – moderate Q^2 data for F_2 rescaled by the theoretical DGLAP prediction

