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Introduction and Motivations

o+~ for large photon virtualities is fully under the control of perturbative QCD

@ Fixed-order calculations
e LO (quark box) [V.M. Budnev et al. (1974)] [I. Schienbein (2002)]

e NLO [M. Cacciari et al. (2001)]

@ All-order resummations
e Double logs [J. Bartels and M. Lublinsky (2003), (2004)]

)
o Leading log BFKL [J. Bartels, A. De Roeck and H. Lotter (1996)]
[A. Bialas, W. Czyz and W. Florkowski (1998)]

[S.J. Brodsky, F. Hautmann and D.E. Soper (1997)]

[J. Kwiecinski and L. Motyka (1999), (2000)]

[M. Boonekamp et al. (1999)]

[J. Bartels, C. Ewerz and R. Staritzbichler (2000)]
[N.N. Nikolaev, J. Speth and V.R. Zoller (2001), (2002)]
(

o Next-to-leading log BFKL [S.J. Brodsky et al. (1999), (2002)]
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The BFKL approach

Forward scattering v* + ~* for s — oo

@ BFKL approach: convolution of the Green’s
function of two interacting Reggeized gluons
and of the impact factors for the v* — ~*
transition

@ Valid both in
LLA (resummation of all terms (asIn s)”)
NLA (resummation of all terms as(asIns)™)

@ The Green'’s function is determined through the BFKL equation
[Ya.Ya. Balitsky, V.S. Fadin, E.A. Kuraev, L.N. Lipatov (1975)]

@ The forward kernel of the BFKL equation is completely known in the NLA
[V.S. Fadin, L.N. Lipatov (1998)] [G. Camici, M. Ciafaloni (1998)]

@ The calculation of the v* — ~* impact factors has been completed
[V.S. Fadin, D.Yu. Ivanov, M.I. Kotsky (2003)]
[J. Bartels et al. (2001-2004)]
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Build-up of the amplitude
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BFKL equation: 52(61 — 62) =w Gw(a1 s (_:ig) — f dza K((_j1 N a) Gw(a, 62)

With operator notation in the transverse momentum space:
i=(w-K)G, — Go = (w— R)!
- - A N,
K = asK® + a2K' | as = 2slte

LO eigenfunctions of the LLA kernel: {|v)}
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o+« in leading log BFKL
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Next-to-leading log BFKL Green’s function

Go = (w — @K% + (w — ask®)~" (agfd) (w—ask% '+ 0 [(aﬁk‘ﬂ

Action of the full NLA kernel on the LLA eigenfunctions:

Ry = asur)x()v) +a2(un) (ﬂ”wwfw‘:x(unn(ué)) V)
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+ am) gix) (50 ) ), o= gt - B



Next-to-leading log BFKL Green’s function
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Action of the full NLA kernel on the LLA eigenfunctions:
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a.=~+ With next-to-leading log BFKL Green’s function

+oo iv
1 @2 s\ @s(ra)x(¥)
Iy (271')201 Q / dv (QS) (SO) Z (V) k

i k=T,L
2
x{1+&§(ﬂﬂ)ln(sso> ’2(”)4-55/\30)((”)( ()+1;+2|n0102>]}




a.=~+ With next-to-leading log BFKL Green’s function
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Invariance under renormalization group and under change of the energy scale s, in the
NLA —
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Series representation
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Series representation
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Series representation

Qi Qo oyxq = ﬁ {bo + ZO‘S(#R) bn [In ( SO) + dn(So, #g) In"! (%)} }
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Inclusion of low-energy terms

Ug;g:((s’ Q, Q) = Z 6’3 (0‘77— + 2075 + USS)
q
[V.M. Budnev et al. (1974)]

o ,
o hsox (S, Q1, Q2) ~ ag(Ins)/s



Numerical analysis - The “pure” BFKL regime

Q=Q=Q “pure” BFKL regime

Series representation
LLA: by coefficients (Q-independent)

by =875.90 by =1977.90 by, =2400.76 bz =1997.37 by =1270.78
bs =654.99 bg =284.05 by =106.34 bg = 35.04

NLA: dn(so, ur) coefficients (sg = Q% = p2, ny = 4)

di = 0. th=-424 dy=-1316 d;=—26.78
ds = —4515 o= —6828 oy =-9620 dy=—128.91

Large NLA corrections!
dp coefficients negative and increasingly large in absolute value.

Optimization of the perturbative expansion needed!



PMS method

@ Principle of minimal sensitivity (PMS) [P.M. Stevenson (1981)]:
require the minimal sensitivity to the change of both sy and ng.

@ Strategy: for each fixed s calculate the amplitude for varying sy and g, up to
finding the optimal values for which the amplitude is least sensitive to variations
of them.

@ In practice, there are wide regions in sy and pg where the amplitude is very
weekly dependent on sy and p.g; the stationary point in the (sg, 1g)-plane is
typically a (local) maximum.



BLM method

@ [S.J. Brodsky, G.P. Lepage, P.B. Mackenzie (1983)] optimization method:
perform a finite renormalization to a physical scheme and then choose the
renormalization scale in order to remove the 3y-dependent part.

Strategy:
@ finite renormalization to the MOM-scheme (£=0)

«
as — as [1 + Tmom (€ = 0)73]
Tuom (& = 0) = TE8 + Thioy

No 17 B 2
conf _ NC 8 _ 0
e T =-—=114+ = | ~ 2.3439
MoM = g o MoM > [ 3}

@ sy and ppg chosen in order to make the term proportional to 3y in the resulting
amplitude vanish (the 3p-dependence in the series representation of the
amplitude is hidden into the dj coefficients)

@ optimal values for sy and pz determined according to “minimum sensitivity”
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Discussion and conclusions

The approximation of using LO impact factors + NLO BFKL Green'’s function is not

new:
@ +*~* — VV, with V a light vector meson [Enberg et al. (2005)]
@ ~*~* total cross section [Brodsky et al. (2002)]

Novelties in our approach w.r.t. the latter:

@ optimization procedures performed on the amplitude itself and not on the NLO
Pomeron intercept

@ LO impact factors with “mandatory” NLO terms
@ two optimization methods used to have a control of systematic effects

The reason for being PMS systematic higher than BLM could be that the stationary
points in the space of parameters (sg, g) turn to be always maxima.



Discussion and conclusions

The approximation of using LO impact factors + NLO BFKL Green'’s function is not

new:
@ +*~* — VV, with V a light vector meson [Enberg et al. (2005)]
@ ~*~* total cross section [Brodsky et al. (2002)]

Novelties in our approach w.r.t. the latter:

@ optimization procedures performed on the amplitude itself and not on the NLO
Pomeron intercept

@ LO impact factors with “mandatory” NLO terms
@ two optimization methods used to have a control of systematic effects

The reason for being PMS systematic higher than BLM could be that the stationary
points in the space of parameters (sg, g) turn to be always maxima.

Looking forward to v*~* collisions in NLO BFKL
(instead of NLO BFKL in v*~* collisions!)
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