Geometric Scaling

David Šálek Charles University, Prague

in collaboration with G. Beuf, R. Peschanski, Ch. Royon arXiv: 0803.2186

Low-x Workshop 07. 07. 2008

First Observation

$$\tau = Q^2 (x/x_0)^{\lambda}$$

- $\sigma(\gamma^*p)$ as a function of τ
- A. M. Stasto, K. Golec-Biernat, J. Kwiecinski, Phys. Rev. Let. 86 (2001) 596

Quality Factor Method

- compare the data $\sigma = \sigma(Q^2, x)$ and the scaling laws $\tau = \tau(Q^2, x; \lambda)$ using the quality factor method:
 - normalise data $v_i = log(\sigma)$ and scalings $u_i = \tau(\lambda)$ between 0 and 1
 - order in u_i
 - define the Quality Factor: (ϵ in case two data points have the same Q^2 and x)

$$QF(\lambda) = \left[\sum_{i} \frac{(v_{i} - v_{i-1})^{2}}{(u_{i} - u_{i-1})^{2} + \epsilon^{2}} \right]^{-1}$$

- fit λ to maximise the QF
- F. Gelis, R. Peschanski, L. Schoeffel, G. Soyez, arXiv: hep-ph/0610435

Scaling Laws

- fixed coupling
- running coupling I
- running coupling II
- running coupling II extended
 - more parameters fitted (λ , Y_0 , Λ_{QCD})
- · diffusive scaling

$$\tau = \log Q^2 - \lambda Y$$

$$\tau = \log Q^2 - \lambda \sqrt{Y}$$

$$\tau = \log(Q^2/\Lambda_{QCD}) - \lambda \frac{\Upsilon}{\log(Q^2/\Lambda_{QCD})}$$

$$\tau = \log(Q^2/\Lambda_{QCD}) - \lambda \frac{Y - Y_0}{\log(Q^2/\Lambda_{QCD})}$$

$$\tau = \frac{\log Q^2 - \lambda Y}{\sqrt{Y}}$$

F₂ Data Sets

- data from H1, ZEUS, NMC, E665
- $3 < Q^2 < 150$, $x < 10^{-2}$
 - stay in perturbative region
 - avoid photoproduction
 - region where gluons dominate
 - 217 data points
- 1 < Q²
 - try to go to lower Q² (saturation region)
 - 308 data points

Results

- running coupling II extended favoured
- diffusive scaling disfavoured

scaling	parameter	value	QF
FC	λ	0.33	1.63
RCI	λ^2	3.39	1.62
	(λ	1.84)	
RC II	λ	3.44	1.69
RC II ext.	λ	3.90	1.82
	Y _o	-1.2	
	$oldsymbol{lambda}_{ extsf{QCD}}$	0.30	
DS	λ	0.36	1.44

non-normalised QF = QF(λ): compare different scaling laws on one data set

Family of Scalings

 λ parameter fit results in running coupling I and running coupling II not similar just by chance

$$\tau = L - \frac{(\lambda Y)^{\delta}}{L^{2\delta - 1}}$$
 $L = \log(Q^2/\Lambda)$

•
$$\delta = \frac{1}{2}$$
 \longrightarrow running coupling I

$$\tau = \log Q^2 - \lambda \sqrt{Y}$$

•
$$\delta = 1 \longrightarrow \text{running coupling II}$$

$$\tau = \log(Q^2/\Lambda_{QCD}) - \lambda \frac{\Upsilon}{\log(Q^2/\Lambda_{QCD})}$$

• we get similar λ whatever the δ parameter is

Low Q² Data

- fits to Q² > 1 data (308 points) and fits to Q² > 3 data (217 points) give similar results
- do the low Q^2 data points ($Q^2 < 1$) satisfy scaling?
- scaling curves plotted using the parameters obtained in the fit to $Q^2 > 1$ data

Q^2 Dependence of λ

- λ fitted in four different Q² bins: [1, 3], [3, 10], [3, 35], [35, 150] (similar numbers of data points)
- diffusive scaling not stable
- fixed coupling changing more than running coupling I (because it does not depend on Q²)
- running coupling II not very good at low Q² (non-perturbative effects)

CTEQ, MRST and GRV98 Parametrisations

- F₂ from CTEQ, MRST and GRV98 parametrisation tested
- the same x, Q^2 values as $Q^2 > 3$ data (217 points)
- smooth scaling curves
- similar values of λ as in the data
- CTEQ parametrisation gives higher QF than MRST
- GRV98 gives the smallest QF
- fixed coupling is favoured

	data	CTEQ	MRST	GRV98
λ	0.33	0.36	0.34	0.33
QF	1.6	16.3	10.4	5.5

 DGLAP shows scaling but it's not naturally explained (saturation explains the scaling naturally)

normalised QF = QF(λ) plot: compare one scaling law on different data sets

Different CTEQ and MRST Versions

CTEQ (fixed coupling)

	65 M 300	66 <i>C</i> 1 450	66 C2 451	66 <i>C</i> 3 452	66 <i>C</i> 4 453	66 M4 400
λ	0.36	0.36	0.36	0.33	0.33	0.36
QF	14.3	12.3	12.1	11.7	13.1	12.4

MRST (fixed coupling)

	2002 NLO	2002 NNLO	2004 NLO	2004 NNLO	data
λ	0.34	0.34	0.34	0.34	0.33
QF	10.4	11.0	11.3	11.2	1.6

- all the CTEQ and MRST versions give similar results
- CTEQ 66 C4 453 is slighly favoured

Charm Data

- data from H1, ZEUS, NMC
- 25 data points
- $Q^2 > 3$ (to be away from charm mass effects)
- charm data fit results similar to F_2 data fits
- MRST cannot be fitted
 - fits give too large λ
 - scaling reappears at higher Q²
- CTEQ 66 C4 453 works the best
 - λ close to data, fits Q^2 stable
- other CTEQ describes the data better than MRST
 - λ values closer to data
 - smooth scaling curves only at higher Q2

HERA DVCS Data

- 34 data points
- fit results similar to the F₂ fit results (stars)

$$\sigma_{DVCS}^{\gamma^*p \to \gamma p}(x,Q^2) \!=\! \sigma_{DVCS}^{\gamma^*p \to \gamma p}(\tau[x,Q^2])$$

Other HERA Data Sets

- vector meson data, diffractive data
- not precise enough to perform fits
- use the values obtained in fits to H1 + ZEUS F_2 data and see whether the scaling works
- vector meson data: replace Q^2 by $Q^2 + M_V^2$, where M_V is the mass of the vector meson
- diffractive data: use $\beta\sigma_{diff}$ and the same definition of τ replacing x by x_{lp}

C. Marquet, L. Schoeffel, arXiv: hep-ph/0606079

HERA Vector Meson Data

HERA Diffractive Data

Summary

- different scalings studied on F₂ and DVCS data
 - fixed coupling, running coupling I and running coupling II lead to a good description of data
 - running coupling I and running coupling II fall into a more general family of scalings
 - diffusive scaling disfavoured
- MRST and CTEQ parametrisations lead to similar results as data
 - CTEQ gives higher QF
- F₂ charm studied
 - similar results as F₂ data
 - MRST and CTEQ parametrisations give larger values of λ
 - MRST shows scaling only at higher Q²
- diffractive and vector meson data show scaling as well (using the values of λ obtained in $F_{_2}$ studies)

Outlook

- study the geometric scaling in DGLAP
- try to obtain a parametrisation to fit the data based on different scalings (numerical solution of BK equation with running $\alpha_{_{\! S}})$