Jet Cross Sections and α_s at HERA

Artem Baghdasaryan

Yerevan Physics Institute

<u>Outline</u>

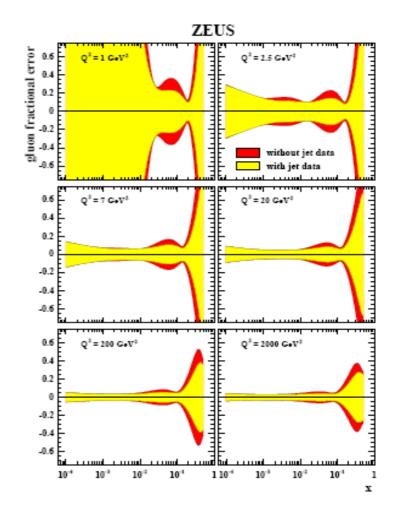
- 1. Cross Sections Dependence on R
- 2. High-E_T Dijet Photoproduction
- 3. Charged Current Multijets
- 4. Inclusive and Multijets Production
- 5. α_s Extraction from Low and High Q² Data

Low X 2008, 6-10 July Kolimpary, Greece

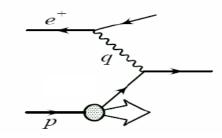
Motivation

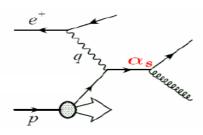
Jets physics is a powerful ground for:

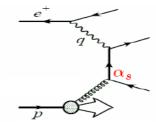
- Testing of QCD predictions in DIS
- Providing new phenomena for very precision α_s and PDF extraction
- Directly sensitive to α_s and PDF → constrain further gluon and parton densities in proton and photon


Inclusive jets:

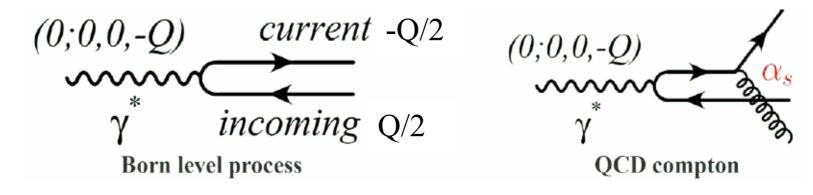
High statistics


- IR safety
- Few non-perturbative complications
- *High Q*²: small theoretical uncertainties \rightarrow


precision extraction of α_s


*Low Q*²: test of QCD, check how low in Q^2 and P_T the theory can be used

NC Jet Production in DIS



Born Level

QCD Compton

Boson Gluon Fusion

In Breit Frame

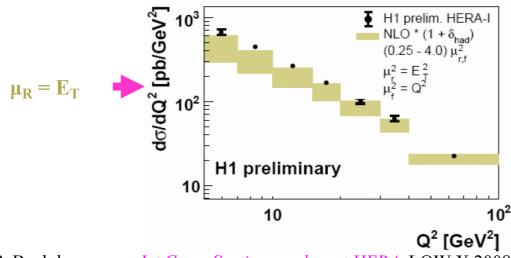
For jets with $E_T (> 5 \text{ GeV})$

- Born level contribution is suppressed
- Jets well separated from the proton remnant ($E_T = 0$)

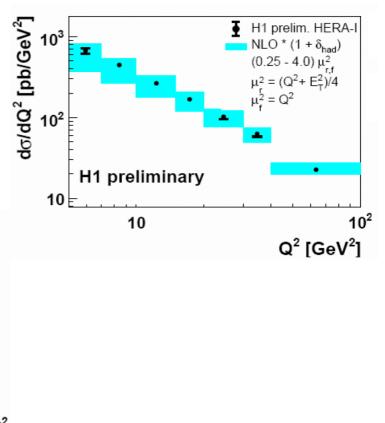
Used Jet Finder:

Longitudinal invariant inclusive \mathbf{k}_{T} algorithm

- infrared and collinear safe
- factorizable


"Merging" parameter R = 1.0 (S.D.Ellis, D.E.Soper ...)

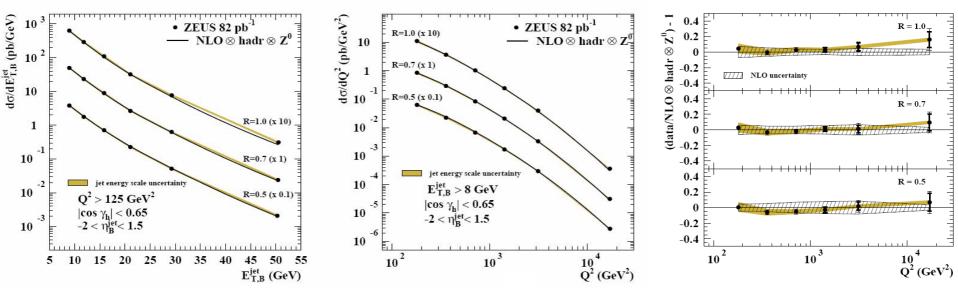
Used Theoretical Models: NLOJET++ / FastNLO with


• PDF CTEQ65M

•
$$\mu_F = Q$$

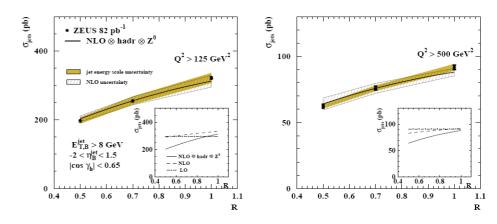
• $\mu_R = \sqrt{Q^2 + E_T^2}/2$ for inclusive jets

$$\mu_R = Q$$
 for 2 & 3- jets



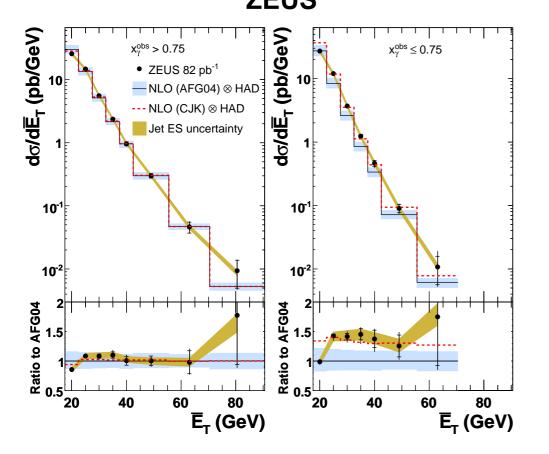
 $\mu_{\rm R} = \sqrt{(Q^2 + E_{\rm T}^2)/2}$

A.Baghdasaryan. Jet Cross Sections and α_s at HERA. LOW X 2008, Kolimpari, Greece, July, 6-10


Cross Section Dependence on R

Good agreement between data and NLO for R = 1, 0.7, 0.5.

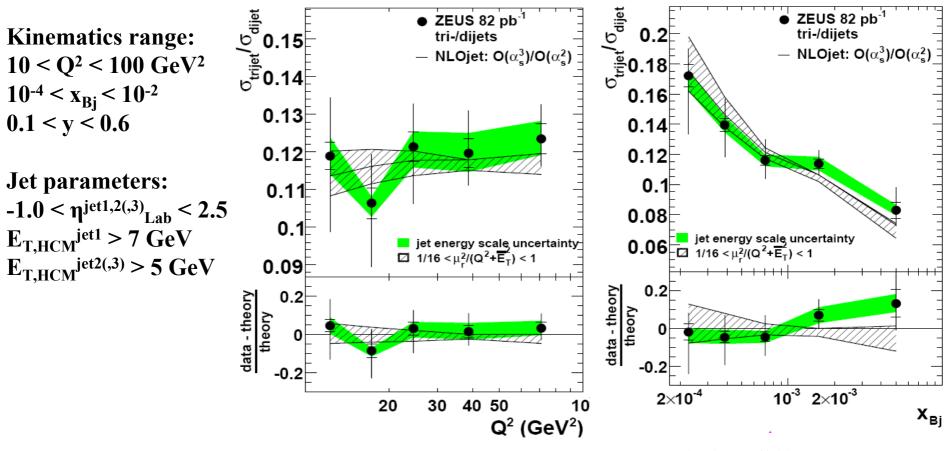
Integrated cross section linearly depends vs. $R \rightarrow R = 1$


 \bullet Integrated jet cross sections for the regions $Q^2>125~{\rm GeV^2}$ and $Q^2>500~{\rm GeV^2}$

A.Baghdasaryan. Jet Cross Sections and α_s at HERA. LOW X 2008, Kolimpari, Greece, July, 6-10

High-E_T Dijet Photoproduction

 $\begin{aligned} \int L &= 81.8 \text{ pb}^{-1}, \text{ } \text{Q}^2 < 1 \text{GeV}^2, 142 < \text{W}_{\gamma p} < 293 \text{ } \text{GeV} \\ \text{Jet paremeters: } E^{\text{jet1}}_{\text{T}} &> 20 \text{ } \text{GeV}, \text{ } E^{\text{jet2}}_{\text{T}} > 15 \text{ } \text{GeV}, -1 < \eta^{\text{jet1},2} < 3 \text{ } (\text{at least one } -1 < \eta^{\text{jet}} < 2.5) \\ x_{\gamma}^{\text{ } \text{obs}} &= (E_{\text{T}}^{\text{jet1}} \text{ } e^{-\eta 1} + E_{\text{T}}^{\text{jet2}} \text{ } e^{-\eta 2})/2yE_{\text{e}} \qquad \overline{E}_{\text{T}} = (E_{\text{T}}^{\text{jet1}} + E_{\text{T}}^{\text{jet2}})/2 \\ \textbf{ZEUS} \end{aligned}$


Good description over 4 orders of magnitude for $x_{\gamma}^{obs} > 0.75$.

For $x_{\gamma}^{obs} < 0.75 \gamma$ PDF differ by up to 40% \rightarrow potentially to constrain γ PDF.

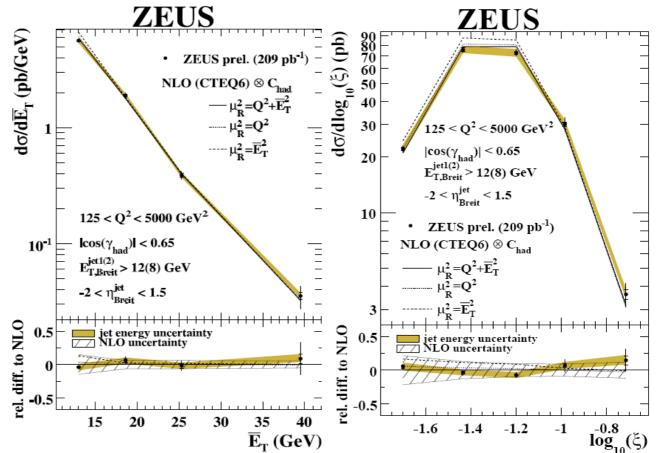
In many cases: CJK (Cornet et al.) described data the best..

A.Baghdasaryan. Jet Cross Sections and α_s at HERA. LOW X 2008, Kolimpari, Greece, July, 6-10

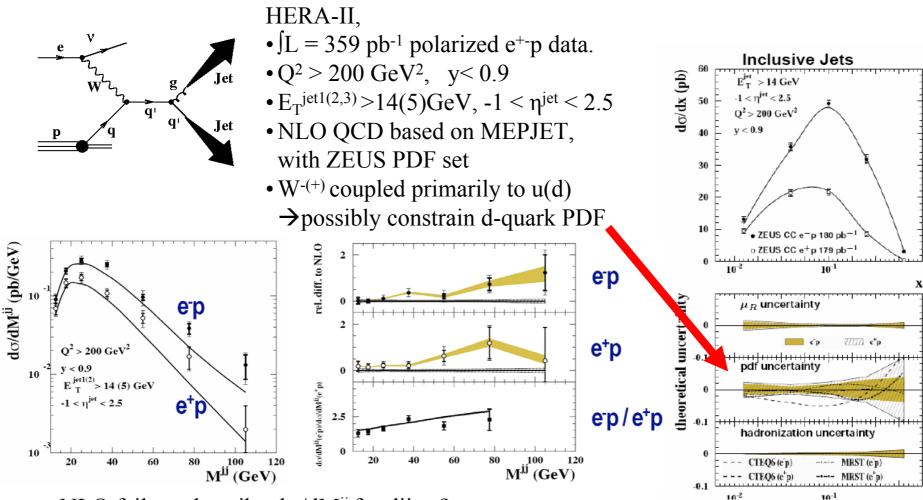
Multijet Production at Low x_{Bj}

- Hatched band QCD renormalization scale uncertainty
- Green band jet energy scale uncertainty

Relative difference between the data and theory

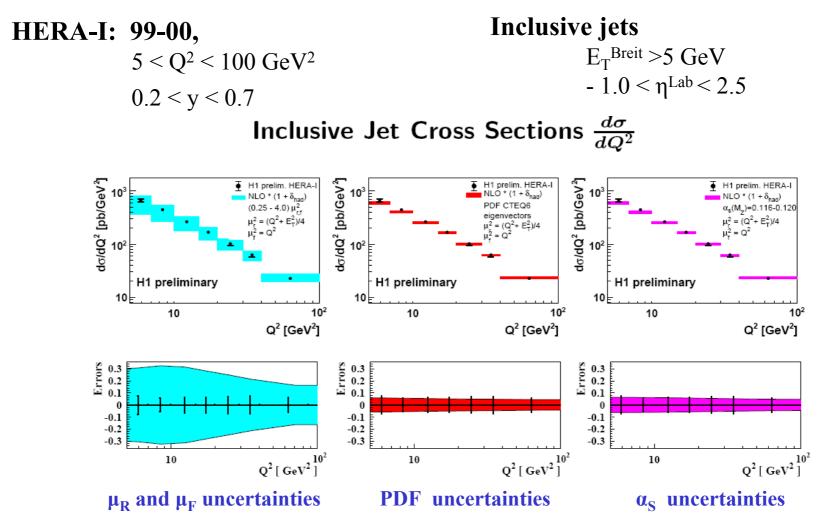

High E_T Neutral Current Dijets

HERA-II:

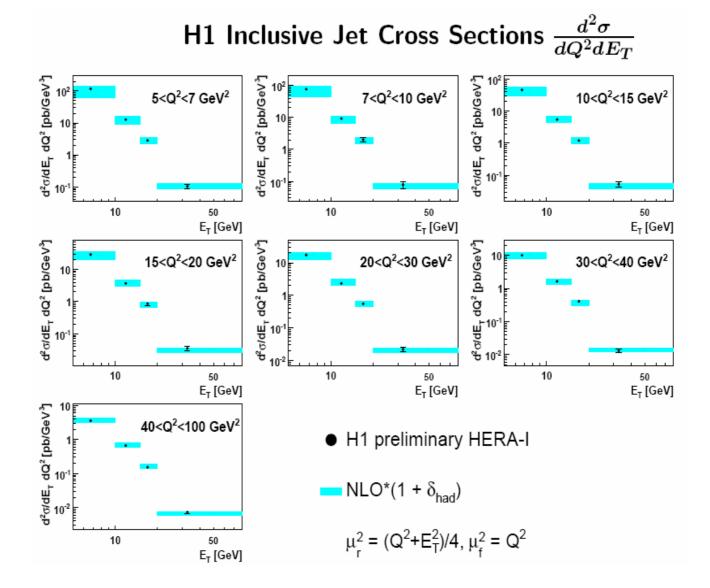

- $125 < Q^2 < 5000 \text{ GeV}^2$
- $E_T^{jet1(2)} > 12(8) \text{ GeV}$

 $\xi = x (1 + M_{ij}^2/Q^2)$

The data well described with NLO. Theoretical uncertainties dominate in many bins.



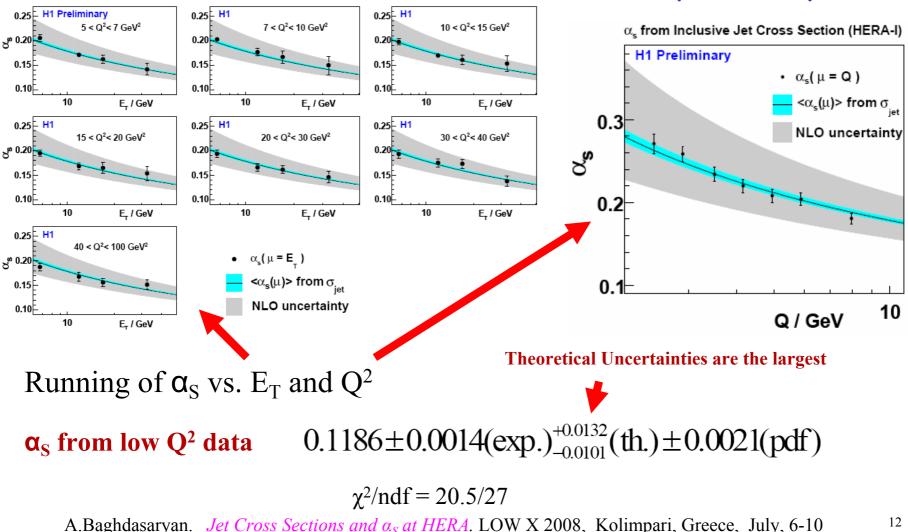
Charged Current Multijets



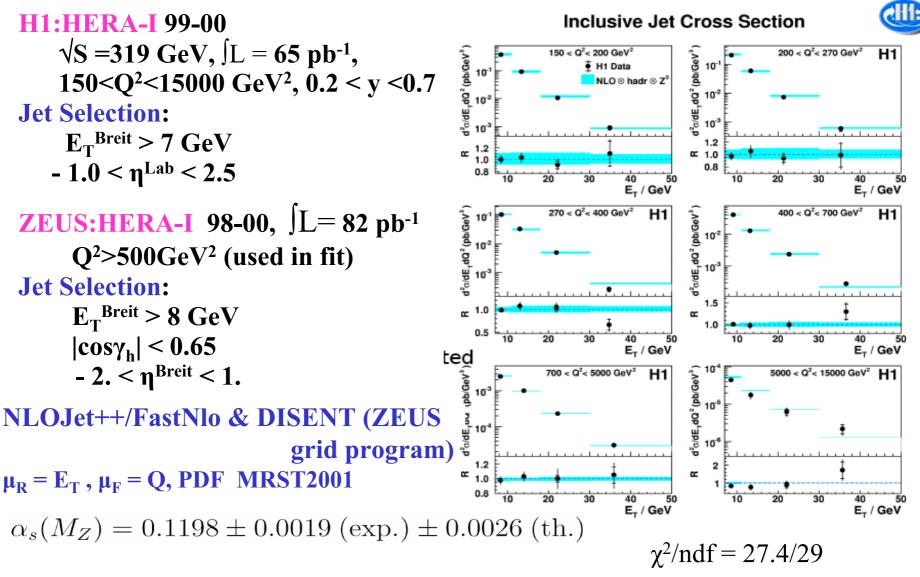
- NLO fails to describe $d\sigma/dM^{jj}$ for dijets?
- Ratio e-p/e+p described reasonably well.

Inclusive Jet Cross Sections at Low Q²

Scale uncertainties dominated over experimental errors and other theoretical uncertanties → theory improvement needed.


Data well described by NLO QCD. Large scale uncertainties.

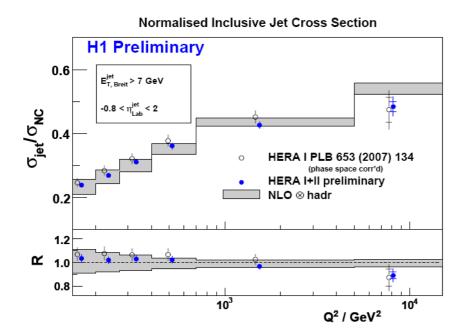
A.Baghdasaryan. Jet Cross Sections and α_s at HERA. LOW X 2008, Kolimpari, Greece, July, 6-10


α_s extraction from Low Q² DIS

α_s from Inclusive Jet Cross Section (HERA I)

Fit over 28 experimental points

H1-ZEUS combined QCD fit


A.Baghdasaryan. Jet Cross Sections and α_s at HERA. LOW X 2008, Kolimpari, Greece, July, 6-10¹³

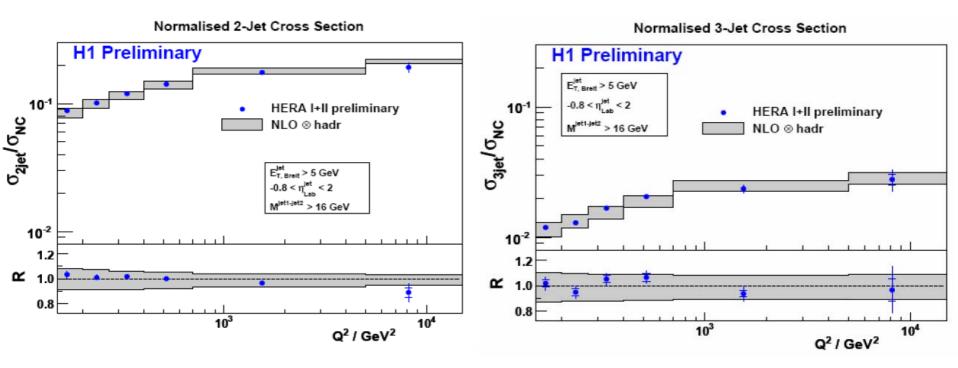
Inclusive and Multi Jet Cross Sections at High Q²

HERA-I+II: $\sqrt{S} = 319 \text{ GeV}, \ \int L = 395.0 \text{ pb}^{-1}$

 $150 < Q^2 < 15000 \text{ GeV}^2, \ 0.2 < y < 0.7$

Normalization to σ_{NC} used for reducing errors

Inclusive Jets:


- $E_T^{Breit} > 7 \text{ GeV}$
- $0.8 < \eta^{Lab} < 2.0$

Multijets:

- $E_T^{Breit} > 5 \text{ GeV}$
- $-0.8 < \eta^{Lab} < 2.0$
- $M_{jj} > 16 \text{ GeV}$

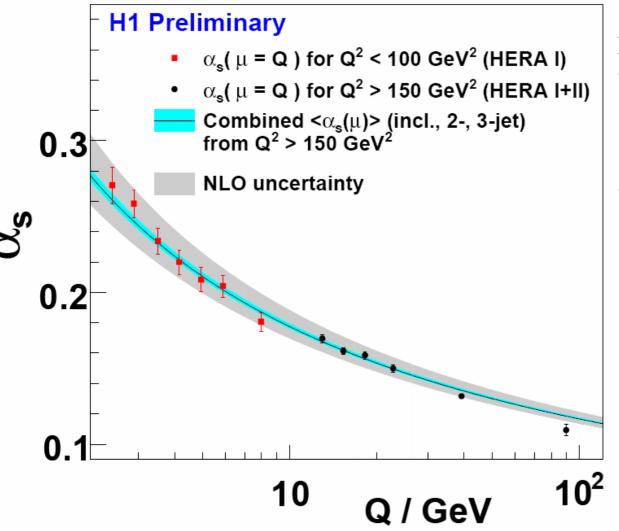
A.Baghdasaryan. Jet Cross Sections and α_s at HERA. LOW X 2008, Kolimpari, Greece, July, 6-10

Normalized Inclusive and Multijets Jet Cross Sections at High Q²

Well described by NLO QCD prediction. Experimental uncertainties (2-6%) smaller than the theoretical ones (5-10%).

Trijets experimental uncertainties dominated by statistical errors and model dependence uncertainties. They are less than NLO QCD uncertainties.

α_s extraction from High Q² DIS

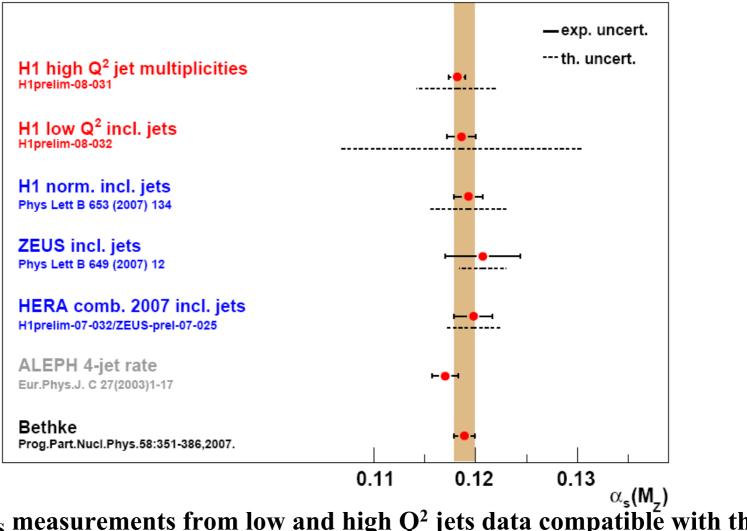

 α_{S} extracted for DIS normalized inclusive jets, dijets, trijets. Theoretical uncertainties are larger then experimental ones.

Observable	α _s	Exp. error	Theory err.		X ² /NDF
			Scales	PDF	X /NDI
$\frac{\sigma_{3JET}}{\sigma_{NC}} = f\left(Q^2\right)$	0.1179	0.0014	+0.0056 - 0.0034	0.0009	4.53/5
$\frac{\sigma_{2JET}}{\sigma_{NC}} = \mathbf{f}\left(\mathcal{Q}^2, \left\langle E_T \right\rangle\right)$	0.1171	0.0010	+0.0048 - 0.0036	0.0018	28.1/23
$\frac{\sigma_{JET}}{\sigma_{NC}} = f\left(Q^2, E_T\right)$	0.1196	0.0010	+0.0049 - 0.0036	0.0019	26.8/23
$rac{\sigma_{IJET}}{\sigma_{DIS}} & rac{\sigma_{2JET}}{\sigma_{DIS}} & rac{\sigma_{3JET}}{\sigma_{DIS}}$	0.1182	0.0008	+0.0041 - 0.0031	0.0018	54.8/53

A.Baghdasaryan. Jet Cross Sections and α_s at HERA. LOW X 2008, Kolimpari, Greece, July, 6-10

Running α_s (Q²=5-15000 GeV²)

$\alpha_{\rm s}$ from Jet Cross Sections



Running α_S (from high Q²).
• NLO and <α_S(μ)>
extrapolated from high
(>150GeV²) to low (<100GeV²)
Q² region.

 α₈ from Low Q² added to high Q² curves. A striking agreement between low and high Q² data observed.

A.Baghdasaryan. Jet Cross Sections and α_s at HERA. LOW X 2008, Kolimpari, Greece, July, 6-10

Comparison of $\alpha_s(M_Z)$ values

New α_s measurements from low and high Q^2 jets data compatible with the world average

A.Baghdasaryan. Jet Cross Sections and α_s at HERA. LOW X 2008, Kolimpari, Greece, July, 6-10

Summary

- 1. Presented new measurements on jet data
 - multijet production at low x_{Bj}
 - high- E_T dijet photoproduction
 - multijet production in charged current
 - differential and double differential cross sections at low and high Q²
 - α_s extraction at low and high Q^2
- 2. The jet data could constrain further the parton densities in proton and photon
- 3. Data well described with NLO.
- 4. $\alpha_{\rm S}$ running verified over two orders of magnitude in Q (5<Q²<15000GeV²). A striking agreement between the low and high Q².
- 5. Theory scale uncertainties dominated over experimental ones → theory improvements needed
- 6. HERA-II new data analysis are in progress → new high precision measurements are expected.