Particle Production and Spectroscopy at HERA

Carsten Niebuhr

DESY, Hamburg

Low x Workshop, Kolimpari, Crete, Greece, July 6-10 2008

Low x Workshop: Particle Production and Spectroscopy at HERA

carsten,niebuhr@desy.de

Outline

Hadron Production at HERA

ep Kinematics:• Center of Mass Energy $s = (P+k)^2$ • Hadronic Energy (γ *p) $W^2 = (P+q)^2$ • Photon Virtuality $Q^2 = -q^2 = -(k-k')^2 = xys$ • Inelasticityy = P.q / P.k

 Non-perturbative hadronisation process leading to hadronic final state

- Different QCD MC models have been developed
- Two regimes
 - $Q^2 \approx 0 \text{ GeV}^2$ Photoproduction
 - Q² > 1 GeV² Electroproduction (DIS)

Charged Multiplicity

Low x Workshop: Particle Production and Spectroscopy at HERA

carsten.niebuhr@desy.de

Global Event Characteristics

- For meaningful comparison of results obtained in different reactions have to chose appropriate frame of reference
 - hadronic center of mass
 - Breit frame
 - purely space like photon momentum
 - relatively clean separation from proton remnant
- Current region of *ep* expected to be similar to one hemisphere of *e+e-* annihilation if proper energy scale is chosen
 - $e^+e^ \sqrt{s/2} = E_{beam}$
 - ep (HCM) W
 - ep (Breit) **Q** or **E**^{CR}_B (available energy)
- Variable for comparison: scaled momentum
 - $x_p = p_h / (Q/2)$
 - x_p = p_h / E_{beam}

Charged Particle Multiplicity

Charged Particle Multiplicity

Scaled Momentum Distributions

- Variable for comparison: scaled momentum
 - $x_p = p_h / (Q/2)$ for ep
 - x_p = p_h / (E*/2) for e+e⁻
- Good agreement between e⁺e⁻ and ep supports concept of quark fragmentation universality
- Scaling violation is clearly observed

Fragmentation

Low x Workshop: Particle Production and Spectroscopy at HERA

carsten.niebuhr@desy.de

D+ and Ds+ Production at HERA

Low x Workshop: Particle Production and Spectroscopy at HERA

carsten.niebuhr@desy.de

Charm Fragmentation

e+e-

R_{u/d}

▲ P_v^d

γ_s

HERA

1.6

1.4

1.2

1.0

0.8

0.6

0.4

- Charm fragmentation ratios
 - u and d produced roughly equally in charm fragmentation
 - fraction of charged D's in vector state somewhat below naive expectation from spin counting (3/4)
 - strangeness suppression factor

Charm fragmentation fractions

generally consistent with

expectations

$$egin{aligned} \mathbf{R_{u/d}} &= rac{\mathbf{D_{neutral}}}{\mathbf{D_{charged}}} = rac{\mathbf{c}ar{\mathbf{u}}}{\mathbf{c}ar{\mathbf{d}}} \ \mathbf{P_V^d} &= rac{\mathbf{V_D}}{\mathbf{V_D} + \mathbf{PS_D}} \ \gamma_\mathbf{s} &= rac{\mathbf{2c}ar{\mathbf{s}}}{\mathbf{c}ar{\mathbf{d}} + \mathbf{c}ar{\mathbf{u}}} \end{aligned}$$

- Observe good agreement between
 - H1 and ZEUS (DIS)
 - γp and DIS
 - ep and e+e-
- Charm fragmentation ~ independent of the hard sub process

- The two methods may have different sensitivity to the hadronisation process =>
- Distributions expected to look differently, but extracted fragmentation functions should be the same

Details of Charm Fragmentation

Kartvelishvili: $\mathbf{D}_{\mathbf{Q}}^{\mathbf{H}}(\mathbf{z}) \propto \mathbf{z}^{\alpha}(\mathbf{1}-\mathbf{z})$

- Non perturbative fragmentation function is only defined within a given model
 - LO+PS MC models RAPGAP and CASCADE
 - massive NLO calculation HVQDIS
- Results for events with jet $[E_T(D^*jet) > 3 \text{ GeV}]$
 - good agreement for extracted fragmentation parameters for jet and hemisphere methods
 - both QCD models lead to compatible results
 - good fit also obtained for comparison to HVQDIS at parton level
 - ep and e+e- parameters (Peterson, not shown) are consistent with each other => universal frag. function
- Investigation of threshold region using events which have no D*jet
 - can be studied using hemisphere method
 - observed spectrum significantly harder
 - extracted fragmentation parameters ≈4σ away from nominal ones
- Discrepancy due to improper description of underlying physics close to the charm production threshold in QCD models

Low x Works

Strangeness

Low x Workshop: Particle Production and Spectroscopy at HERA

Strangeness Production at HERA H1 Prelim. Entries 10000 $S \overline{S}$ 5000 $S \overline{S}$ QCD models S o LEPTQ₄₅(direct) CDM 0.5 0.55 ^/_+ _-\ 「G b) Boson-gluon fusion a) Hard scattering of s sea quark (BGF) first order QCD matrix element parton shower DGLAP γ CDM $S \overline{S}$ С q

c) Parton pure fragmentation d) Heavy quark decay

Matrix Element Parton Shower

Low x Workshop: Particle Production and Spectroscopy at HERA

carsten.niebuhr@desy.de

Color Dipole Model

Details of Strangeness Production

Low x Workshop: Particle Production and Spectroscopy at HERA

Spectroscopy

Low x Workshop: Particle Production and Spectroscopy at HERA

carsten.niebuhr@desy.de

Excited Charm and Charm-Strange States

- Large charm production cross section at HERA allows to search for excited charm states
- Lowest-mass states with spin-0 (D) and spin-1 (D*) and L=0 are well established
- Look for these decay modes

Results on Excited Charm States

	$f(c \to D_1^0) \ [\%]$	$f(c \to D_2^{*0}) \ [\%]$	$f(c \to D_{s1}^+) \ [\%]$
ZEUS (prel.)	$3.5 \pm 0.4^{+0.4}_{-0.6} \pm 0.2$	$3.8 \pm 0.7 \pm 0.6 \pm 0.2$	$1.1 \pm 0.2 \pm 0.1 \pm 0.1$
CLEO [17]	1.8 ± 0.3	1.9 ± 0.3	
OPAL [18]	$2.1\pm0.7\pm0.3$	$5.2 \pm 2.2 \pm 1.3$	$1.6\pm0.4\pm0.3$
ALEPH $[19]$			$0.94 \pm 0.22 \pm 0.07$

CLEO measured smaller resonance widths OPAL used PDG values

- ep fragmentation fractions ~ consistent with those from e+e-
- No significant production of radially excited D*'[±] observed. 95% C.L. limit:

 $\mathbf{f}(\mathbf{c}
ightarrow \mathbf{D}^{*\prime +}) \cdot \mathbf{BR}_{\mathbf{D}^{*\prime +}
ightarrow \mathbf{D}^{*+} \pi^+ \pi^-} < 0.45\%$

Exotica

Low x Workshop: Particle Production and Spectroscopy at HERA

carsten.niebuhr@desy.de

K⁰s K⁰s Resonant States

- Existence of glueballs is expected in QCD
- Lattice calculations predict
 - lightest one in mass range 1550-1750 MeV
 - quantum numbers J^{PC} = 0⁺⁺ => can mix with scalar mesons with *I* = 0
 - the well established f₀(1710) is considered to be glueball candidate
- K⁰_s K⁰_s system can couple to J^P=0⁺(scalar) and 2⁺ (tensor)
 - = => good place to search for lowest lying 0+ glueball

- SU(3) symmetry motivated fit function
 - Breit Wigner functions with interference terms included
 - 3 visible enhancements correspond to $f_2(1270)/a_2(1320)$, $f'_2(1525)$ and $f_0(1710)$

Summary of Fit Results

• State f₀(1710)

- observed at 5σ significance
 - ► 4058 ± 820 events
- fitted mass slightly below PDG value
- consistent with J^{PC}=0⁺⁺
- glueball candidate
 - if same state as seen in γ γ → K⁰_s K⁰_s then unlikely to be pure glueball state

	Fit		PDG 2007 Values	
·	$\chi^2/ndf = 86/97$			
in MeV	Mass	Width	Mass	Width
$f_2(1270)$	1268 ± 10	176 ± 17	1275.4 ± 1.1	$185.2^{+3.1}_{-2.5}$
$a_2^0(1320)$	1257 ± 9	114 ± 14	1318.3 ± 0.6	107 ± 5
$f_2'(1525)$	$1512\pm3^{+2}_{-0.6}$	$83 \pm 9^{+5}_{-4}$	1525 ± 5	73^{+6}_{-5}
$f_0(1710)$	$1701 \pm 5^{+5}_{-3}$	$100 \pm 24^{+8}_{-19}$	1724 ± 7	137 ± 8

Strange Pentaquark Θ + in HERA I Data

- Q² > 20 GeV², 0.04 < y < 0.95: $\sigma(\mathbf{ep} \to \mathbf{e}\,\theta\mathbf{X} \to \mathbf{eK^0pX}) = \mathbf{125} \pm \mathbf{27^{+38}_{-28}} \text{ pb}$
- No signal seen in H1
 - upper limit [σ(M=1.52 GeV) < 100 pb (95%C.L.)] does not support ZEUS observation
- HERA II data should clarify

Search for Double Strange Pentaquark Ξ_{5q}

- Search motivated by evidence for two baryonic resonances reported by NA49 in 2004
- Established baryon state $\Xi^{0}(1530)$ clearly seen by ZEUS and H1

No signal of new baryonic state found in the mass range 1600-2300 MeV

NA49 observation not confirmed by HERA data

D*p Resonance - Charmed Pentaquark

• H1 reported evidence for state at 3099 MeV in HERA I data (75 pb⁻¹)

- anti-charm baryon with minimum quark content uuddc
- No excess observed in other experiments
 - BaBar, CDF, ZEUS, ALPEPH, FOCUS

uuddīc

Search for D*p Resonance in HERA II Data

- Slightly reduced phase space after HERA II upgrade
- Compare data for high proton momentum selection (pp > 2 GeV) without dE/dx cut
 - reanalysed HERA I data: signal clearly observed also in reduced phase space
 - ► N(D*p) / N(D*) = 0.81 ± 0.21 %
 - no excess observed in HERA II data
 - upper limit of 16.3 events (95% C.L.)
 - ► N(D*p) / N(D*) < 0.10 % (95% C.L.)</p>
 - in both cases background well described by D* MC and wrong charge D

Check for sensitivity by observing $D_1(2420)^0$ and $D_2^*(2460)^0 \rightarrow D^*\pi$: same D* selection and ΔM technique.

L_{HERA II} = 384 pb⁻¹

20

10

0 2.9

3

3.1

3.2

3.3

3.5

M(D*p) [GeV]

3.6

3.4

Summary

Fragmentation

- In general find good agreement of fragmentation properties between ep and e+e-
 - supports concept that fragmentation is independent of the hard sub-process
- But a number of issues need clarification
 - details of production of strangeness
 - charm fragmentation at kinematic threshold

Spectroscopy

- Several interesting (non)-observations
 - excited charm and charm-strange mesons observed
 - evidence for glueball candidate f₀(1710)
 - pentaquarks (not confirmed with HERA II data)
- Most results shown still based on HERA I data only
 - more results expected in near future from analyses of full data sets