Particle Production and Spectroscopy at HERA

Carsten Niebuhr
DESY, Hamburg

Low x Workshop, Kolimpari, Crete, Greece, July 6-10 2008

Outline

Fragmentation

- charged particle production
- D* fragmentation
- strangeness production
- Spectroscopy
- excited charm mesons
- search for glueballs
- search for pentaquarks

Days of running

Hadron Production at HERA

ep Kinematics:

- Center of Mass Energy
- Hadronic Energy ($\left.\gamma^{*} p\right) \quad W^{2}=(P+q)^{2}$
- Photon Virtuality
- Inelasticity

$$
Q^{2}=-q^{2}=-\left(k-k^{\prime}\right)^{2}=x y s
$$

$$
y=\text { P.q / P.k }
$$

- Non-perturbative hadronisation process leading to hadronic final state
- Different QCD MC models have been developed
- Two regimes
- $\mathrm{Q}^{2} \approx 0 \mathrm{GeV}^{2}$ Photoproduction
- $\mathrm{Q}^{2}>1 \mathrm{GeV}^{2}$ Electroproduction (DIS)

Charged Multiplicity

Global Event Characteristics

- For meaningful comparison of results obtained in different reactions have to chose appropriate frame of reference
- hadronic center of mass
- Breit frame
- purely space like photon momentum
- relatively clean separation from proton remnant
- Current region of ep expected to be similar to one hemisphere of $\boldsymbol{e}^{+} \boldsymbol{e}^{-}$annihilation if proper energy scale is chosen

```
- \(\mathrm{e}^{+} \mathrm{e}^{-} \quad \sqrt{ } \mathbf{s} / \mathbf{2}=\) Ebeam
- ep (HCM) W
- ep (Breit) \(\mathbf{Q}\) or \(\mathbf{E C R}_{\mathrm{B}}\) (available energy)
```

- Variable for comparison: scaled momentum
- $\mathrm{x}_{\mathrm{p}}=\mathrm{p}_{\mathrm{h}} /(\mathrm{Q} / 2)$
- $X_{p}=p_{h} / E_{\text {beam }}$

Charged Particle Multiplicity

- Data enter the plot more than once
- Good agreement between ZEUS and H1
- Reasonable agreement with MC models which are tuned using $\mathrm{e}^{+} \mathrm{e}^{-}$data
- exception at low scales, where additional DIS processes lead to depletion for ep

- much better agreement at low scales if $2 x E^{C R}$ is used instead of Q as energy scale

Charged Particle Multiplicity

- Breit frame
- good agreement between $\mathrm{e}^{+} \mathrm{e}^{-}$and ep when $2 \mathrm{XECR}_{\mathrm{B}}$ is used as energy scale
- for large scales HERWIG is above the ep data
- HCM frame
- overall good agreement with $\mathrm{e}^{+} \mathrm{e}^{-}$and fixed target data when \mathbf{W} is used as energy scale
- some discrepancy for fixed target data for scales above $\sim 15 \mathrm{GeV}$

Scaled Momentum Distributions

- Variable for comparison: scaled momentum
- $x_{p}=p_{h} /(Q / 2)$ for $e p$
- $x_{p}=p_{h} /\left(E^{*} / 2\right)$ for $\mathrm{e}^{+} \mathrm{e}^{-}$

Good agreement between $\mathrm{e}^{+} \mathrm{e}^{-}$and ep supports concept of quark fragmentation universality

Scaling violation is clearly observed

Fragmentation

D^{+}and $\mathrm{D}_{\mathrm{s}}{ }^{+}$Production at HERA

$D^{0} \rightarrow K^{-} \pi^{+}$
$D^{++} \rightarrow D^{0} \pi_{s}^{+}$
$D^{+} \rightarrow K^{-} \pi^{+} \pi^{+}$
$D_{s}^{+} \rightarrow \phi \pi^{+} \rightarrow K^{+} K^{-} \pi^{+}$
$\Lambda_{c}^{+} \rightarrow K^{-} p \pi^{+}$

Signal examples

- Sufficient statistics to study charm fragmentation ratios and fractions in some detail

Charm Fragmentation

- Charm fragmentation ratios
- u and d produced roughly equally in charm fragmentation
- fraction of charged D‘s in vector state somewhat below naive expectation from spin counting (3/4)
- strangeness suppression factor
- Charm fragmentation fractions
- generally consistent with expectations

$R_{u / d}=\frac{D_{\text {neutral }}}{D_{\text {charged }}}=\frac{\mathbf{c} \overline{\mathbf{u}}}{\mathbf{c} \overline{\mathbf{d}}}$
$P_{V}^{d}=\frac{V_{D}}{V_{D}+P_{S}}$
$\gamma_{\mathrm{s}}=\frac{\mathbf{c} \overline{\mathrm{s}}}{\mathbf{c} \overline{\mathrm{d}}+\mathbf{c} \overline{\mathbf{u}}}$

Observe good agreement between

- H1 and ZEUS (DIS)
- \quad p and DIS
- ep and $\mathrm{e}^{+} \mathrm{e}^{-}$

Charm fragmentation ~ independent of the hard sub process

Variables to extract Fragmentation Functions

$$
\sigma_{H}=\sum_{i} \sum_{k} f_{i / p}\left(x, \mu_{\mathrm{f}}\right) \otimes \hat{\sigma}_{i \gamma \rightarrow k X}\left(\alpha_{\mathrm{s}}\left(\mu_{\mathrm{r}}\right), \mu_{\mathrm{r}}, \mu_{\mathrm{f}}\right) \otimes D_{k}^{H}\left(z, \mu_{\mathrm{f}}\right)
$$

Function

$$
\mathbf{z}_{\mathbf{j e t}}=\frac{\left(\mathbf{E}+\mathbf{p}_{\mathbf{L}}\right)_{\mathbf{D}^{\star}}}{(\mathbf{E}+\mathbf{p})_{\mathrm{jet}}}
$$

- Jet method
- momentum of c-quark approximated by momentum of reconstructed D*-jet
 (perturbative)

$$
\mathbf{z}_{\text {hem }}=\frac{\left(\mathbf{E}+\mathbf{p}_{\mathbf{L}}\right)_{\mathbf{D}^{\star}}}{\sum_{\mathbf{h e m}}(\mathbf{E}+\mathbf{p})_{\mathbf{i}}}
$$

- Hemisphere method
- momentum of c-quark approximated by momentum of reconstructed D*-hemisphere
- The two methods may have different sensitivity to the hadronisation process =>
- Distributions expected to look differently, but extracted fragmentation functions should be the same

Details of Charm Fragmentation

- Non perturbative fragmentation function is only defined within a given model
- LO+PS MC models RAPGAP and CASCADE
- massive NLO calculation HVQDIS
- Results for events with jet $\left[\mathrm{E}_{\mathrm{T}}\left(\mathrm{D}^{*} \mathrm{jet}\right)>3 \mathrm{GeV}\right]$
- good agreement for extracted fragmentation parameters for jet and hemisphere methods
- both QCD models lead to compatible results
- good fit also obtained for comparison to HVQDIS at parton level
- ep and e+e- parameters (Peterson, not shown) are consistent with each other => universal frag. function
- Investigation of threshold region using events which have no D*jet
- can be studied using hemisphere method
- observed spectrum significantly harder
- extracted fragmentation parameters $\approx 4 \sigma$ away from nominal ones
- Discrepancy due to improper description of underlying physics close to the charm production threshold in QCD models

Strangeness

Strangeness Production at HERA

Details of Strangeness Production

A Polarisation

$$
\begin{aligned}
& \frac{1}{N} \frac{\mathrm{~d} N}{\mathrm{~d} \cos \theta}=\frac{1}{2}\left[1+\alpha \mathcal{P}^{\Lambda} \cos \theta\right] \\
& \frac{1}{N} \frac{\mathrm{~d} N}{\mathrm{~d} \cos \theta}=\frac{1}{2}\left[1-\alpha \mathcal{P}^{\bar{\Lambda}} \cos \theta\right]
\end{aligned}
$$

		Polarization (\%)	
	High- Q^{2} DIS	Low- Q^{2} DIS	Photoproduction
Λ	-1.3 ± 4.3 (stat.) $)_{-0.8}^{+4.0}$ (syst.)	-4.0 ± 5.3 (stat.) ${ }_{-4.0}^{+4.7 \text { (syst.) }}$	-2.4 ± 2.2 (stat.)
$\bar{\Lambda}$	-2.2 ± 4.2 (stat.) $)_{-1.3}^{+2.4}$ (syst.)	-8.5 ± 5.5 (stat.) ${ }_{-2.1}^{+4.7}$ (syst.)	-5.8 ± 2.2 (stat.)
K_{S}^{0}	-1.5 ± 1.1 (stat.)	-0.05 ± 1.5 (stat.)	-0.5 ± 0.2 (stat.)

- Λ^{\prime} s are expected to inherit polarisation from the s-quark which get partially polarised due to elastic scattering in the colour field
- decay asymmetry parameter $\alpha=0.642 \pm 0.013$ (PDG)
- θ is angle between the proton momentum boosted to the rest frame of the Λ and the polarisation axis
- All fitted values are compatible with zero
- No evidence for non-zero transverse polarisation in inclusive Λ or $\bar{\Lambda}$ production.

Spectroscopy

Excited Charm and Charm-Strange States

- Large charm production cross section at HERA allows to search for excited charm states
- Lowest-mass states with spin-0 (D) and spin-1 (D*) and L=0 are well established
- Look for these decay modes

Results on Excited Charm States

	$f\left(c \rightarrow D_{1}^{0}\right)[\%]$	$f\left(c \rightarrow D_{2}^{* 0}\right)[\%]$	$f\left(c \rightarrow D_{s 1}^{+}\right)[\%]$
ZEUS (prel.)	$3.5 \pm 0.4_{-0.6}^{+0.4} \pm 0.2$	$3.8 \pm 0.7 \pm 0.6 \pm 0.2$	$1.1 \pm 0.2 \pm 0.1 \pm 0.1$
CLEO [17]	1.8 ± 0.3	1.9 ± 0.3	
OPAL [18]	$2.1 \pm 0.7 \pm 0.3$	$5.2 \pm 2.2 \pm 1.3$	$1.6 \pm 0.4 \pm 0.3$
ALEPH [19]			$0.94 \pm 0.22 \pm 0.07$

CLEO measured smaller resonance widths

- ep fragmentation fractions \sim consistent
with those from $\mathrm{e}^{+} \mathrm{e}^{-}$
- No significant production of radially excited D*" observed. 95\% C.L. limit:

$$
\mathbf{f}\left(\mathbf{c} \rightarrow \mathbf{D}^{* /+}\right) \cdot \mathbf{B} \mathbf{R}_{\mathbf{D}^{* /+} \rightarrow \mathbf{D}^{*+\pi^{+}} \pi^{-}}<\mathbf{0 . 4 5} \%
$$

Exotica

$\mathrm{K}_{\mathrm{s}}{ }_{\mathrm{s}} \mathrm{K}^{0}$ Resonant States

- Existence of glueballs is expected in QCD
- Lattice calculations predict
- lightest one in mass range 1550-1750 MeV
- quantum numbers $\mathrm{JPC}^{\mathrm{JPC}} \mathrm{O}^{++}=>$can mix with scalar mesons with $I=0$
- the well established $f_{0}(1710)$ is considered to be glueball candidate
- $\mathrm{K}_{\mathrm{s}} \mathrm{K}_{\mathrm{s}}$ system can couple to $\mathrm{JP}^{+} \mathrm{O}^{+}$(scalar) and 2^{+} (tensor)
- => good place to search for lowest lying 0+ glueball

- SU(3) symmetry motivated fit function
- Breit Wigner functions with interference terms included
- 3 visible enhancements correspond to $\mathrm{f}_{2}(1270) / \mathrm{a}_{2}(1320), \mathrm{f}_{2}^{\prime}(1525)$ and $\mathrm{f}_{0}(1710)$

Summary of Fit Results

- State $\mathrm{f}_{0}(1710)$

- observed at 5 σ significance
- 4058 ± 820 events
- fitted mass slightly below PDG value
- consistent with JPC=0++
- glueball candidate
- if same state as seen in $\gamma \gamma \rightarrow \mathrm{K}_{\mathrm{s}} \mathrm{K}_{\mathrm{s}}$ then unlikely to be pure glueball state

	Fit		PDG 2007 Values		
	$\chi^{2} / n d f=86 / 97$				
in MeV	Mass	Width	Mass	Width	
$f_{2}(1270)$	1268 ± 10	176 ± 17	1275.4 ± 1.1	$185.2_{-2.5}^{+3.1}$	
$a_{2}^{0}(1320)$	1257 ± 9	114 ± 14	1318.3 ± 0.6	107 ± 5	
$f_{2}^{\prime}(1525)$	$1512 \pm 3_{-0.6}^{+2}$	$83 \pm 9_{-4}^{+5}$	1525 ± 5	73_{-5}^{+6}	
$f_{0}(1710)$	$1701 \pm 5_{-3}^{+5}$	$100 \pm 24_{-19}^{+8}$	1724 ± 7	137 ± 8	

Strange Pentaquark $\Theta+$ in HERA I Data

Evidence for signal at 1522 MeV found in ZEUS

- $\mathbf{Q}^{2}>20 \mathrm{GeV}^{2}, 0.04<\mathrm{y}<0.95: \quad \sigma\left(\mathbf{e p} \rightarrow \mathbf{e} \theta \mathbf{X} \rightarrow \mathbf{e K}^{\mathbf{0}} \mathbf{p} \mathbf{X}\right)=125 \pm \mathbf{2 7}_{-28}^{+38} \mathrm{pb}$
- No signal seen in H1
- upper limit $[\sigma(\mathrm{M}=1.52 \mathrm{GeV})<100 \mathrm{pb}(95 \% \mathrm{C} . \mathrm{L})$.$] does not support ZEUS observation$
- HERA II data should clarify

Search for Double Strange Pentaquark $\Xi_{5 q}$

upper limit on ratio to $\Xi^{0}(1530)$

- Search motivated by evidence for two baryonic resonances reported by NA49 in 2004
- Established baryon state $\Xi^{0}(1530)$ clearly seen by ZEUS and H1

No signal of new baryonic state found in the mass range $1600-2300 \mathrm{MeV}$

- NA49 observation not confirmed by HERA data

D*p Resonance - Charmed Pentaquark

ZEUS

- H1 reported evidence for state at 3099 MeV in HERA I data ($75 \mathrm{pb}^{-1}$)
- anti-charm baryon with minimum quark content uudd \bar{c}
- No excess observed in other experiments
- BaBar, CDF, ZEUS, ALPEPH, FOCUS

Search for D*p Resonance in HERA II Data

- Slightly reduced phase space after HERA II upgrade
- Compare data for high proton momentum selection ($\mathrm{p}_{\mathrm{p}}>2 \mathrm{GeV}$) without $\mathrm{dE} / \mathrm{dx}$ cut
- reanalysed HERA I data: signal clearly observed also in reduced phase space
- $N\left(D^{*} p\right) / N\left(D^{*}\right)=0.81 \pm 0.21 \%$
- no excess observed in HERA II data
- upper limit of 16.3 events (95% C.L.)
- $N\left(D^{*} p\right) / N\left(D^{*}\right)<0.10$ \% (95\% C.L.)
- in both cases background well described by D* MC and wrong charge D

Check for sensitivity by observing $D_{1}(2420)^{0}$ and $D_{2}{ }^{*}(2460)^{0} \rightarrow D^{*}$: same D^{*} selection and ΔM technique.

Lherail $=384 \mathrm{pb}^{-1}$

Summary

Fragmentation

- In general find good agreement of fragmentation properties between ep and $\mathrm{e}^{+} \mathrm{e}^{-}$
- supports concept that fragmentation is independent of the hard sub-process
- But a number of issues need clarification
- details of production of strangeness
- charm fragmentation at kinematic threshold

Spectroscopy

- Several interesting (non)-observations
- excited charm and charm-strange mesons observed
- evidence for glueball candidate $f_{0}(1710)$
- pentaquarks (not confirmed with HERA II data)
- Most results shown still based on HERA I data only
- more results expected in near future from analyses of full data sets

