

Target and ion source development report

Tânia Melo Mendonça

EN-STI-RBS

Beam and target developments 2014

TiC-Carbon Black nanocomposite

TiC + Carbon black (50 vol.%) nanostructure, which was stable up to 1800°C, was selected to produce a full target prototype.

João Pedro Ramos

TiC-Carbon Black nanocomposite

Target #527 operated successfully online (November 2014) with a surface ion source

- Successfully extracted isotopes of Li, Na, Al, K
- Very stable yields
- Release curves taken at different temperatures: 1650, 1800 and 2000°C

Preliminary data!!

lsotope	Temp.	Yield (/µC)	Yield Ti foils (/µC)
⁹ Li (178 ms)	2000°C	7.8E5	3.2E5 (SC)
²⁶ Na (1.07 s)	2000°C	8.1E6	1.5E6 (SC)
³⁷ K (1.2 s)	2000°C	1.2E6	7.1E6
³⁹ Ca (860 ms)	2000°C (CF ₄)	1.4E2	2.0E4

³⁹Ca extracted with CF₄

- Target not suitable for ³⁵Ca (25 ms) probable reaction of Ca with carbon black?
- nanoTiC-C ½ Production rate (lower density of Ti atoms)

João Pedro Ramos

LaC₂–MWCNT Spallation Target Material

Development

Julien Guillot, Wonjoo Hwang Alexander Gottberg

#526 nano LaC₂ – Re Online Tests

limits

The at <	relea 1900	ase o [.])°C (n	f Cs is ano-U	limite C2 re	ed presults	esum)	ably	beca	use o	of effusi	on
ty	1.0 -	•	116Cs 116In total b	eam	•		•		•	- 1000 - 800	
lative Intesi	0.8 -			•	٠	•	•	•	٠	- 600	Total Bea
Isotope Re	0.4	•	•	•	•	•			•	- 400	ım (nA)
	0.2	•	•	•		. 1	. 1	. 1		- 200	Fi
	185	5 190) 195	200	205	210	215	220	225	230	CS
Julie Alexa	n Gu ande	illot r Got	tberg.	Lir Woni	ne He oo Hi	ating (van g	(A)			6	

The target material could be tested with and without fluorination by CF_4 injection at 2 different temperatures (1700°C and 1900°C)

The material was found to sublimate LaC2 significantly at 1900°C

and above, and the total beam intensity starts limiting the ion

Isotopes of Li, Na, In, Cs, Ba could be assessed.

source efficiency

Isotope	#526 [μC⁻¹]	Reference
115Cs (1.4 s)	2	delayed p
116Cs (3.5 s)	110	delayed p
118Cs (14 s)	2×10 ⁶	Gamma
120Cs (57 s)	5×10 ⁷	Gamma
124Cs (30.8 s)	6×10 ⁸	Gamma
126Cs (1.6 min)	2×10 ⁹	Gamma
128Cs (3.8 min)	9×10 ⁹	Gamma
114Ba (0.42 s)	0.2	delayed p
117Ba (1.6 s)	3	delayed p
119Ba (5.4 s)	6×10 ²	delayed p
120Ba (24 s)	>1×10 ⁴	Gamma
124Ba (11.9 min)	1×10 ⁷	Gamma
126Ba (100 min)	2×10 ⁸	Gamma

Figure: Systematic control and optimization of Cs vs. In vs. total ionization efficiency

ENSAR-ActILab: Nano Uranium Carbide at ISOLDE

- Within ENSAR FP7 ActILab a new material was developed
- New material (Target#525 tested in December 2014):
 - consists of nanometric uranium carbide particles immerged in a MWCNT fiber matrix
 - increases isotope yield of most investigated elements (Li, Na, K, Ca, Cu, Ga, Rb, In, Ra, Fr)
 - reduced ageing effects (reduction of yield over time)
 - reduces actinide waste by 60%

Ageing of nano UC_x (red) vs. ISOLDE reference (blue) for 30 Na

ISOLDE conventional powder 16 160nm 18um 14 two orders 12 oowder fraction [%] of magnitude 10 0.01 0.1 10 100 1000 uranium dioxide particle size [µm] #466 conventional UC_ 2000°C -3x10 #440 high density UC 2000°C #525 nano UC, 2000°C #525 nano UC, 1900°C #525 nano UC, 1700°C ⁵⁵Na ion rate [s⁻¹] 2x10⁸ 1x10⁸ 100 1000 10000 10 time after proton impact [ms]

Alexander Gottberg

ENSAR-ActILab: Nano Uranium Carbide at ISOLDE

Alexander Gottberg

Boron beams - Multi walled carbon nano tubes target

- Investigate extraction of boron and identify suited materials & target unit (Extraction of ⁸B desired)
- Diffusion studies of Boron in different target materials (Graphite, MWCNT, Y2O3) – implantation of ¹⁰BF₂⁺

¹⁰B(n, α)⁷Li: highest mobility in MWCNT

Formation of molecules

Boron beams - Multi walled carbon nano tubes target

Target unit #499 (online September 2014)

- Target material MWCNT, ρ=0.43 g/cm³
- Cold transfer line, VADIS ion source with gas leak (SF₆, leak rate: 0.37×10^{-4} mbar·l/s)
- Activity on mass A=8 originating from ⁸Li and positron emitter
- Positron activity corresponds to 300 / μ C extraction of ⁸B to be validated
- Activity below detection limit of Boron in fluoride (⁸BF_n) and oxofluoride (BOF) form

Molten NaF:LiF salt

Validation of results obtained in 2012 (1st prototype #478):

- Reproducibility of $8 \times 10^8 \, {}^{11}CO/\mu C$
- Diffusion coefficient of neon in molten salts

- Material: Haynes 242 (corrosion resistant alloy)

- VADIS ion source

 $\epsilon_{Ne}^{21.8\%}$ (via cold transfer line)

- Three thermocouples

(container, chimney, cold line)

- Salt fills up ¾ of the container volume

D(Ne) in NaF:LiF is 8 orders of magnitude higher than oxide targets (CaO, AI_2O_3 with D~10⁻¹⁷ m²/s)

Tânia Melo Mendonça

11

Molten NaF:LiF salt

Target #520 (online 27th October to 2nd November 2014)

Despite several problems at the start of the run (no thermocouples, HV trippings...) we could successfully validate the results obtained in 2012.

Systematic measurement of release curves for Ne diffusion coefficient in fluoride salts. Data analysis ongoing.

Isotope	Temp.	Yield (/µC)	10 ⁸ -	> 1x10 ¹² ppp	• 3x10 ¹² ppp	• 6x10 ¹² ppp	☆ 8x10 ¹² ppp
⁶ He (807 ms)	760°C (6x10 ¹² ppp)	2E5	-			•	-
¹⁸ Ne (1.67 s)	720°C (6x10 ¹² ppp)	6.4E4	(ions/µC)	•	•	P	
¹⁹ Ne (17.22 s)	760°C (6x10 ¹² ppp)	2.9E7	Ne yield (000			-
¹¹ CO (20.38 min)	715°C (8x10 ¹² ppp)	6.6E8	÷				
			10 -	680	720	760	0
					Target temperation	ature (°C)	

Tânia Melo Mendonça

Liquid eutectic Pb/Bi loop for EURISOL LIEBE project

Target design review – June 2014

Complex unit and many challenges to overcome – online tests postponed to 2016

Liquid eutectic Pb/Bi loop for EURISOL LIEBE project

Shower at start.

Shower at the end.

- Shower feasibility proven: smallest spacing between holes of 0,5 mm for 0,1 mm holes
- Oxidation prevent a proper operation of the grid (analysis of the grid foreseen)
- Size of droplets vary between the start and the end of the shower – from 0.3 to 0.5 mm

Melanie Delonca Tânia de Melo Mendonça

Liquid eutectic Pb/Bi loop for EURISOL LIEBE project

Radioisotope inventory (collaboration with SINP-India)

- Irradiation of Pb/Bi samples using RaBBIT setup (2012)
- Measurements performed in different campaigns (2012/2013)

M. Maiti et al., J Radioanal Nucl Chem 302 (2014) 1003

- Comparison with simulations (FLUKA, MCNPX) to be published

Isotopes (T _{1/2})	Activity (Bq)	Isotopes (T _{1/2})	Activity (Bq)	Isotopes (T _{1/2})	Activity (Bq)
⁷⁴ As (17.77 d)	130±6	^{114m} In (49.5 d)	61±7	⁸⁵ Sr (64.84 d)	34±1
¹³¹ Ba (11.5 d)	89±2	¹⁷¹ Lu (8.24 d)	2507±447	¹⁸³ Ta (5.1 d)	1544±125
⁷ Be (53.12 d)	236±50	⁵⁴ Mn (0.85 yr)	3±0.4	¹²¹ Te (16.78 d)	85±9
²⁰⁵ Bi (15.31 d)	2783±99	⁹⁵ Nb (34.975 d)	150±5	^{121m} Te (154 d)	1±0.1
²⁰⁷ Bi (31.55 yr)	7±0.8	¹⁸⁵ Os (93.6 d)	286±5	²⁰² Tl (12.23 d)	965±34
¹³⁹ Ce (137.6d)	5±0.05	¹⁴³ Pm (265 d)	7±0.8	¹⁶⁷ Tm (9.25 d)	517±91
¹⁴⁷ Eu (24.1 d)	308±45	²⁰⁶ Po (8.8 d)	609±18	¹²⁷ Xe (36.4 d)	13±2
¹⁴⁹ Eu (93.1 d)	66±6	¹⁸⁸ Pt (10.2 d)	1753±78	⁸⁸ Y (106.65 d)	65±0.8
⁵⁹ Fe (44.5 d)	23±1	⁸³ Rb (86.2 d)	45±1	¹⁶⁹ Yb (32.02 d)	83±6
¹⁴⁶ Gd (48.27 d)	3±0.2	¹⁰³ Ru (39.26 d)	71±13	⁶⁵ Zn (244.3 d)	4±0.9
¹⁴⁹ Gd (9.28 d)	145±9	⁴⁶ Sc (83.8 d)	7±0.3	⁹⁵ Zr (64.02 d)	31±0.7
¹⁵³ Gd (240.4 d)	l±0.2	⁷⁵ Se (119.8 d)	2±0.1		
¹⁷² Hf (1.87 yr)	3±0.9	^{117m} Sn (13.6 d)	11±4		

Prof. Susanta Lahiri et al.

ISOLDE Yield database

User yield database updated with new values in December 2014

He-Helium

4ore informatio	n available after n	ogin.					
Element	Yield	PSB/SC	Energy	Target	Target thickness	Ion Source	Reference
	(ions/µC)		(GeV)		(g/cm²)		
⁶ He	2.8E+06	PSB	1.0	TiO2 (TiOx fibers)	7.3	MK7	[Koe03]
⁶ He	2.1E+07	PSB	1.0	ThC _x (ThC2/graphite)	57	MK7	[Ber03]
⁶ He	5.4E+07	PSB	1.4	BeO (pellets)	30.75	VD7	[Sto12]
⁶ He	4.7E+07	PSB	1.4	UC _x (UC2/graphite)	54	MK7	[Ber03]
⁶ He	5.2E+05	PSB	1.0	ZrO ₂ (ZrO2 fibers)	8	MK7	[Per03]
⁶ He	2.6E+06	PSB	1.4	CaO (CaO powder)	5	MK7	[Koe03]
⁶ He	4.6E+06	PSB	1.4	CeO _x (CeOx fibers)	14	МК7	[Koe03]
⁶ He	4.0E+05	PSB	1.4	SrO (SrO powder)	18	МК7	[Per03]
⁶ He	3.0E+06	PSB	1.4	MgO (MgO powder)	2.5	MK7	[Koe03]
⁶ He	1.9E+06	PSB	1.4	La ₂ 03 (La2O3 powder)	64	MK7	[Koe03]
⁸ He	2.4E+04	PSB	1.4	CeO _x (CeOx fibers)	14	MK7	[Koe03]
⁸ He	6.0E+03	PSB	1.0	TiO2 (TiOx fibers)	7.3	MK7	[Koe03]
⁸ He	1.1E+04	PSB	1.4	CaO (CaO powder)	5	MK7	[Koe03]

Graphical restoration ongoing

Nuclear Chart for ISOLDE

Hayley Osman Tânia Melo Mendonça

The TISD team:

- Thierry Stora
- Tania M. Mendonça
- Alexander Gottberg
- João Pedro Ramos
- Melanie Delonca
- Jochen Ballof
- Basil Gonsalves

Thank you for the attention!

