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 Proposal for a new design
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What‟s the Transformation System?

 A DIRAC System as usually comprising:

 MySQL tables, Services, Agents, Clients, Scripts and Plugins

 A system for handling “repetitive work”, i.e. many identical tasks with a
varying parameter

 2 main usages:

 Productions: the “same” job – i.e. the same workflow - is executed

 Client for the Workload Management System

 Data handling: replications, removal

 Client for Request Management System

 Handles input datasets (if present)

 It interacts with Replica and Metadata catalogs (e.g. DFC or external catalogs)

 Plugins are grouping input files into tasks according to various criteria

 LHCb „Production System‟ is built on top of it and CTA is going to do
same
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Transformation System architecture

• Production Manager 
defines the transformations

• TransformationAgent
processes the transformations    
and creates tasks given a 
Transformation Plugin

• InputDataAgent
queries the Catalog to obtain  

files to be ‘transformed’

• WorkflowTaskAgent
transforms tasks into job 
workflows, given a 
TaskManager Plugin

• RequestTaskAgent
transforms tasks into   

requests 
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• Standard(): 

oGroup files by replicas (tasks created based on the file location) 

• BySize(): 

oGroup files until they reach a certain size (Input size in Gb) 

• ByShare() 

oGroup files given the share (specified in the CS) and location 

For replication: 

• Broadcast() 

oTakes files at the source SE and broadcast to a given number of locations 

Transformation Plugins
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TaskManager Plugins (from v6r13)

• BySE(): 

oDefault plugin

o Set jobs destination depending from the location of its input data

• ByJobType(): 

o By default, all sites are allowed to do every job 

o The actual rules are freely specified in the CS Operation 

JobTypeMapping section



How it works in practice (I)?

 See documentation at:

 http://diracgrid.org/files/docs/AdministratorGuide/Systems/Transfor
mation/index.html

 Installation

 Need to have the Transformation System installed and running.
The minimum is:

 Service: TransformationManagerHandler

 Database: TransformationDB

 Agents:

 TransformationAgent

 WorkflowTaskAgent

 RequestTaskAgent

 InputDataAgent

 TransformationCleaningAgent
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How it works in practice (II)?

 Configuration

 Add the transformation types in the Operations/[VO]/Transformations  
section, e.g.:

 Eventually configure the WorkflowTaskAgent and the RequestTaskAgent
to treat a particular transformation type

Transformations

{

DataProcessing = MCSimulation

DataProcessing += Merge

DataProcessing += Analysis

DataProcessing += DataReprocessing

DataManipulation = Removal

DataManipulation += Replication

}
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How it works in practice (III)?

 Create your transformation defining:

 Type (e.g.: MCSimulation, DataReprocessing, Replication) 

 Body (the job workflow to execute, or the request type to execute)

 Plugin (e.g.: ByReplica, BySize, Broadcast, default is Standard) 

 Example for a “processing” transformation:

set Type

set Body

transformation is created here

set Inputdata
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How it works in practice (IV)?

 Monitor (and manage) your transformation
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Proposal for a new design (I)

 See RFC #21:

 https://github.com/DIRACGrid/DIRAC/wiki/Transformation-System-evolution

 Motivations for improvement:

 Large catalog queries may be a bottleneck (experience from LHCb)

 Proposal to make the TS fully „data-driven‟ by implemeting „meta-filters‟ (see 
next slide)

 Job submission could be improved using bulk submission as done for 
„parametric jobs‟

 Need to support „chained transformations‟

 Example: in LHCb chained transformations, e.g. Re-processing -> Merging  -> 
Removal, are handled by a dedicated Production System

 Proposal to extend the TS to support chained transformations as basis for each 
community to build its own 'Production System‟

 Agents in the TS work in „polling‟ mode

 Proposal to use a Message Queueing System complementary to polling
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Proposal for a new design (II)
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• Use the Catalog interface 
of the TS

• When new files are 
registered, a filter based 
on meta-data is applied

• No need anymore to  
perform large Catalog 
queries 
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Conclusions

 The Transformation System allows to handle 

massive „production‟ operations (large number of 

jobs or requests)

 Successfully used by LHCb, ILC, CTA…

 LHCb experience shows some scalability problem, 

essentially due to large queries on the catalog

 Development work has started to make the TS fully 

„data-driven‟

 RFC #21 waits for your comments!

13



BACKUP
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Job Workflows

Job 

description

Application Step 1

Application Step 2

Finalization Step

(for users AND 

production jobs)

• Job description format

• Enables running “complex” jobs
 e.g. multiple applications, linked 

together via input/output data

 I/O chaining

• description in different formats: 
XML, JDL, python
 JDL executable: dirac-jobexec

 Argument: jobDescription.xml 
(which is in the Input Sandbox)

• A workflow is composed of steps
 that are made of modules

 workflow modules are instantiated 
by python modules
 that do the real job

 parameters at any level

15



Task_1  Job_1

Task_2  Job_2

…

Task_n Job_n
App Step 1

App Step 2
Finalization Step

Transformation
Job workflow

16


