
Transformation

System report

Luisa Arrabito1, Federico Stagni2

1) LUPM CNRS/IN2P3, France

2) CERN

5th DIRAC User Workshop 27th –
29th May 2015, Ferrara

Plan

 What‟s the Transformation System?

 Transformation System architecture

 How it works in practice?

 Proposal for a new design

2

What‟s the Transformation System?

 A DIRAC System as usually comprising:

 MySQL tables, Services, Agents, Clients, Scripts and Plugins

 A system for handling “repetitive work”, i.e. many identical tasks with a
varying parameter

 2 main usages:

 Productions: the “same” job – i.e. the same workflow - is executed

 Client for the Workload Management System

 Data handling: replications, removal

 Client for Request Management System

 Handles input datasets (if present)

 It interacts with Replica and Metadata catalogs (e.g. DFC or external catalogs)

 Plugins are grouping input files into tasks according to various criteria

 LHCb „Production System‟ is built on top of it and CTA is going to do
same

3

Transformation System architecture

• Production Manager
defines the transformations

• TransformationAgent
processes the transformations
and creates tasks given a
Transformation Plugin

• InputDataAgent
queries the Catalog to obtain

files to be ‘transformed’

• WorkflowTaskAgent
transforms tasks into job
workflows, given a
TaskManager Plugin

• RequestTaskAgent
transforms tasks into

requests

WMS

Production
Manager

Transformation System

Catalog

Plugins

Transformations

Transformation
Agent

InputData
Agent

Workflow
Task Agent

Database
table

Agent

Tasks

Files

InputDataQuery

Request
Task Agent

RMS

Application

4

• Standard():

oGroup files by replicas (tasks created based on the file location)

• BySize():

oGroup files until they reach a certain size (Input size in Gb)

• ByShare()

oGroup files given the share (specified in the CS) and location

For replication:

• Broadcast()

oTakes files at the source SE and broadcast to a given number of locations

Transformation Plugins

5

6

TaskManager Plugins (from v6r13)

• BySE():

oDefault plugin

o Set jobs destination depending from the location of its input data

• ByJobType():

o By default, all sites are allowed to do every job

o The actual rules are freely specified in the CS Operation

JobTypeMapping section

How it works in practice (I)?

 See documentation at:

 http://diracgrid.org/files/docs/AdministratorGuide/Systems/Transfor
mation/index.html

 Installation

 Need to have the Transformation System installed and running.
The minimum is:

 Service: TransformationManagerHandler

 Database: TransformationDB

 Agents:

 TransformationAgent

 WorkflowTaskAgent

 RequestTaskAgent

 InputDataAgent

 TransformationCleaningAgent

7

How it works in practice (II)?

 Configuration

 Add the transformation types in the Operations/[VO]/Transformations
section, e.g.:

 Eventually configure the WorkflowTaskAgent and the RequestTaskAgent
to treat a particular transformation type

Transformations

{

DataProcessing = MCSimulation

DataProcessing += Merge

DataProcessing += Analysis

DataProcessing += DataReprocessing

DataManipulation = Removal

DataManipulation += Replication

}

8

How it works in practice (III)?

 Create your transformation defining:

 Type (e.g.: MCSimulation, DataReprocessing, Replication)

 Body (the job workflow to execute, or the request type to execute)

 Plugin (e.g.: ByReplica, BySize, Broadcast, default is Standard)

 Example for a “processing” transformation:

set Type

set Body

transformation is created here

set Inputdata

9

How it works in practice (IV)?

 Monitor (and manage) your transformation

10

Proposal for a new design (I)

 See RFC #21:

 https://github.com/DIRACGrid/DIRAC/wiki/Transformation-System-evolution

 Motivations for improvement:

 Large catalog queries may be a bottleneck (experience from LHCb)

 Proposal to make the TS fully „data-driven‟ by implemeting „meta-filters‟ (see
next slide)

 Job submission could be improved using bulk submission as done for
„parametric jobs‟

 Need to support „chained transformations‟

 Example: in LHCb chained transformations, e.g. Re-processing -> Merging ->
Removal, are handled by a dedicated Production System

 Proposal to extend the TS to support chained transformations as basis for each
community to build its own 'Production System‟

 Agents in the TS work in „polling‟ mode

 Proposal to use a Message Queueing System complementary to polling

11

https://github.com/DIRACGrid/DIRAC/wiki/Transformation-System-evolution
https://github.com/DIRACGrid/DIRAC/wiki/Transformation-System-evolution
https://github.com/DIRACGrid/DIRAC/wiki/Transformation-System-evolution
https://github.com/DIRACGrid/DIRAC/wiki/Transformation-System-evolution
https://github.com/DIRACGrid/DIRAC/wiki/Transformation-System-evolution

Proposal for a new design (II)

WMS

Production
Manager

Transformation System

Catalog

Plugins

Transformations

Transformation
Agent

InputData
Agent

Workflow
Task Agent

Database
table

Agent

Tasks

Files

InputDataQuery

Request
Task Agent

RMS

Application

• Use the Catalog interface
of the TS

• When new files are
registered, a filter based
on meta-data is applied

• No need anymore to
perform large Catalog
queries

12

Conclusions

 The Transformation System allows to handle

massive „production‟ operations (large number of

jobs or requests)

 Successfully used by LHCb, ILC, CTA…

 LHCb experience shows some scalability problem,

essentially due to large queries on the catalog

 Development work has started to make the TS fully

„data-driven‟

 RFC #21 waits for your comments!

13

BACKUP

14

Job Workflows

Job

description

Application Step 1

Application Step 2

Finalization Step

(for users AND

production jobs)

• Job description format

• Enables running “complex” jobs
 e.g. multiple applications, linked

together via input/output data

 I/O chaining

• description in different formats:
XML, JDL, python
 JDL executable: dirac-jobexec

 Argument: jobDescription.xml
(which is in the Input Sandbox)

• A workflow is composed of steps
 that are made of modules

 workflow modules are instantiated
by python modules
 that do the real job

 parameters at any level

15

Task_1  Job_1

Task_2  Job_2

…

Task_n Job_n
App Step 1

App Step 2
Finalization Step

Transformation
Job workflow

16

