Transformation
System report

Luisa Arrabito!, Federico Stagni?

1) LUPM CNRS/IN2P3, France
2) CERN

5th DIRAC User Workshop 27th -
29th May 2015, Ferrara

ODIRAC

THE INTERWARE

IDIRAC

THE INTERWARE I Ian

What's the Transformation System?

Transformation System architecture

How it works in practice?

Proposal for a new design

O DI RAC What's the Transformation System?

ADIRAC System as usually comprising:
MySQL tables, Services, Agents, Clients, Scripts and Plugins

A system for handling “repetitive work”, i.e. many identical tasks with a
varying parameter

2 main usages:

Productions: the “same” job — i.e. the same workflow - is executed
Client for the Workload Management System
Data handling: replications, removal
Client for Request Management System
Handles input datasets (if present)
It interacts with Replica and Metadata catalogs (e.g. DFC or external catalogs)

Plugins are grouping input files into tasks according to various criteria

LHCb ‘Production System’ is built on top of it and CTA is going to do
same

ODIRAC

THE INTERWARE

Application |- - >

8.

Product\io:
Manager

Transformation System architecture

Catalog
—

N

/ -
— N

Files

-2

J InputDataQuery

<
N
X\

Data

t

[Tra nsformation System]

Tra ns,

rmatlon - -

nt

Transformations

_

Database
table

ﬂoduction Manager \

defines the transformations
* TransformationAgent

and creates tasks given a
Transformation Plugin

* InputDataAgent

files to be ‘transformed’
* WorkflowTaskAgent
transforms tasks into job
workflows, given a
TaskManager Plugin
* RequestTaskAgent

T;i@;;:;t e
V Y
[Rms | | wivis

transforms tasks into

wquests

processes the transformations

queries the Catalog to obtain

/

ODIRAC

THE INTERWARE

Transformation Plugins

 Standard():
o Group files by replicas (tasks created based on the file location)
* BySize():
o Group files until they reach a certain size (Input size in Gb)
* ByShare()
o Group files given the share (specified in the CS) and location
For replication:
» Broadcast()
oTakes files at the source SE and broadcast to a given number of locations

ODIRAC

THE INTERWARE

TaskManager Plugins (from v6ril3)

* BySE():
o Default plugin
o Set jobs destination depending from the location of its input data
* ByJobType():
o By default, all sites are allowed to do every job
o The actual rules are freely specified in the CS Operation
JobTypeMapping section

ODIRAC

How it works in practice (I)?

See documentation at:

http://diracgrid.org/files/docs/AdministratorGuide/Systems/Transfor
mation/index.html

Installation

Need to have the Transformation System installed and running.
The minimum is:

Service: TransformationManagerHandler
Database: TransformationDB
Agents:
TransformationAgent
WorkflowTaskAgent
RequestTaskAgent
InputDataAgent
TransformationCleaningAgent

0 DlRAC How it works in practice (I1)?

Configuration

Add the transformation types in the Operations/[VO]/Transformations
section, e.g.:

Transformations

{
DataProcessing = MCSimulation
DataProcessing += Merge
DataProcessing += Analysis
DataProcessing += DataReprocessing
DataManipulation = Removal
DataManipulation += Replication

Eventually configure the WorkflowTaskAgent and the RequestTaskAgent
to treat a particular transformation type

ODIRAC How it works in practice (l11)?

Create your transformation defining:
Type (e.g.: MCSimulation, DataReprocessing, Replication)
Body (the job workflow to execute, or the request type to execute)
Plugin (e.g.: ByReplica, BySize, Broadcast, default is Standard)

Example for a “processing” transformation:

from DIRAC.TransformationSystem.Client.Transformation import Transformation

from DIRAC.TransformationSystem.Client.TransformationClient import TransformationClient
from DIRAC.Interfaces.API.Job import Job

j = myJob()

t = Transformation()
tc = TransformationClient() set Type
.setTransformationName{”ReprocE;E1gg_1l;_#—$h%3‘ﬂﬂif’ﬁﬁ’ﬂﬁ{aag——_
.setType("DataReprocessing")
.setDescription("repro example")
.setLongDescription("This is the(lﬂjﬁs set Body | reprocessing”) #nandatory
.setBody (j.workflow.toXmML())
-addTransfornation() <- transformation is created here
.setStatus("Active")
t.setAgentType("Automatic") set Inputdata
transID = t.getTransformationID() Ar””'

#tc.addFilesToTransformation(transID['Value'],infileList)
tc.creageTransformationInputDataQuery(transID['Value'], {'particle': 'proton','zenith':20., outputType':'corsikaData'})

+ + + 7+ + + +

ODpl

Monitor (and manage) your transformation

RAC

INTERWARE

THE

How it works In practice

(IV)?

Ov System v Jobs * Views * Tools v

ProductionMonitor
Selections
Status:
All
AgentType:
All
Type:
All
Group
All

«

Select Al [] Select None

[J Request: 0

(0]

231

]

226

25

224

23

Status

W Active
B Active
[stopped
O stopeed
[] Cleaned

[] Cleaned

AgentT...

Automatic
Automatic
Manual
Manual
Manual

Manual

Type

MCSimulation
MCSimulation
MCSimulation
MCSimulation
MCSimulation

MCSimulation

Armazones2K_proton_South
Armazones2K_proton_North
Armazones2K_protonS
Armazones2K_protonN
Armazones2K

Armazones_tests

Files

Processed (%)

Created

Submitted

Waiting

Running

Selected setup: CTA »

Start Stop Flush Complete Clean

Done Completed
98343 0

120210 16

3343 0

3088 0

0 0

0 0

Failed

18360

14720

527

598

10

O DlRAC Proposal for a new design (1)

See RFC #21:
https://qithub.com/DIRACGrid/DIRAC/wiki/Transformation-System-evolution

Motivations for improvement:
Large catalog queries may be a bottleneck (experience from LHCb)

Proposal to make the TS fully ‘data-driven’ by implemeting ‘meta-filters’ (see
next slide)

Job submission could be improved using bulk submission as done for
‘parametric jobs’

Need to support ‘chained transformations’

Example: in LHCb chained transformations, e.g. Re-processing -> Merging ->
Removal, are handled by a dedicated Production System

Proposal to extend the TS to support chained transformations as basis for each
community to build its own 'Production System’

Agents in the TS work in ‘polling” mode
Proposal to use a Message Queueing System complementary to polling

11

https://github.com/DIRACGrid/DIRAC/wiki/Transformation-System-evolution
https://github.com/DIRACGrid/DIRAC/wiki/Transformation-System-evolution
https://github.com/DIRACGrid/DIRAC/wiki/Transformation-System-evolution
https://github.com/DIRACGrid/DIRAC/wiki/Transformation-System-evolution
https://github.com/DIRACGrid/DIRAC/wiki/Transformation-System-evolution

O DlRAC Proposal for a new design (ll)

Catalog
Application |- - > i

2 '%(. N [Tra nsformation System]

\

4)

* Use the Cataloginterface

\ AL of the TS
Q - * When new files are
_-== . .
<o ' registered, a filter based
Productioq (oo iibataouery on meta-data is applied
Manager | ~_ * No need anymore to

perform large Catalog

)\ = Tranigémation___
- nt .
gueries
Transformations (N (

R@At;est Warkflow

K TaskKAgent| |Task gent/

. } J _ } J

1/

e v N\ Q “
| RMS | | WMS |

12

C DIRAC Conclusions

THE INTERWARE

The Transformation System allows to handle
massive ‘production’ operations (large number of
jobs or requests)

Successfully used by LHCDb, ILC, CTA...

LHCDb experience shows some scalability problem,
essentially due to large queries on the catalog

Development work has started to make the TS fully
‘data-driven’

RFC #21 waits for your comments!

13

14

EEEEEEEEEEEE

BACKUP

O DIRAC Job Workflows

THE INTERWARE

Job description format

Enables running "complex” jobs

o e.g. multiple applications, linked
together via input/output data

o I/O chaining
descriptionin different formats:

A
XML, JDL, python Application Step 1
o JDL executable: dirac-jobexec Job - Application Step 2
o Argument: jobDescription.xml description Finalization Step

(which is in the Input Sandbox) v A
A workflow is composed of steps
(for users AND

o that are made of modules

o workflow modules are instantiated
by python modules
= that do the real job

o parameters at any level

production jobs)

15

ODIRAC

THE INTERWARE

Transformation—

—

Task 1 > Job 1
Task 2 > Job 2

16

Task n 2> Job h—<
~—

Job workflow
-

App Step 1
App Step 2

Finalization Step
\

