
Core, Framework &
Externals

Adrià Casajús & Zoltan Mathe
University of Ferrara

20150528

Attack plan

20150528 Ferrara5th DIRAC User Workshop2

} The good
} New error mechanism
} Component profiling/monitoring
} Connection retry
} RFC proxies

} The bad
} Externals

} The very bad: openssl

} The nice
} Future monitoring and NoSQL profiling

New error mechanism

20150528 Ferrara5th DIRAC User Workshop3

} The good ol’ S_OK/S_ERROR has some drawbacks:
} Programmatically difficult to react depending on errors
} Bad traceability (where was the error generated?)

} Could be improved by using exceptions instead of
S_*
} At the beginning it was decided we weren't going to use

them
} Adding now exceptions is really painful (try/catch

everywhere)

Error handling improvement

20150528 Ferrara5th DIRAC User Workshop4

} Add a numeric value with semantic meaning to
errors
} Allows devs to react to different types of errors easily
} Less typo prone, case insensitive

} Include the stack-trace of the error creation point in
the error itself

} BUT replacing S_* is a pain in the a**
} Has to be backwards compatible

Enter DError

20150528 Ferrara5th DIRAC User Workshop5

} Includes error number and originating callstack
} print of the error will show the stack directly

} There’s a method to check error type that’s backwards
compatible with S_ERROR

} Will land in somewhere in the next releases

} For more info Chris Haen is the person to nag :)

return DError(ENOENT, “File {} does not exist”.format(fileName))

System Administration

20150528 Ferrara5th DIRAC User Workshop6

} Currently shows running components in each host of
a an installation
} Act on components/hosts

} Increasing number of hosts and DIRAC components

} Keeping track manually of big installations is an
increasing problem

Static component monitoring

20150528 Ferrara5th DIRAC User Workshop7

} Keep track of
} What was installed removed on each host
} When was it done
} Who did it

} In sync with actions taken from the system
administrator

} Also keep track of non-DIRAC components via
extensions
} RabbitMQ, squid, vcycle…

} Will land in v6r13

Dynamic component monitoring

20150528 Ferrara5th DIRAC User Workshop8

} Profiling information of hosts and components
} Metrics from non-DIRAC components also

} Updated regularly

} Host status stored in MySQL
} Faster than query system administrator

} Profiling info is stored in ElasticSearch via RabbitMQ
consumers

Dynamic component monitoring

20150528 Ferrara5th DIRAC User Workshop9

} For more info talk to Sergio Balbuena or to Federico

Connection retries

20150528 Ferrara5th DIRAC User Workshop10

} Currently if there’s a connection error the client
returns an error

} Implemented a connection retry BEFORE ANY DATA
HAS ACTUALLY BEEN TRANSMITTED
} Could delay a bit initialization of execution if configuration

server is down but small price to pay compared with auto
retries

} Ask Zoltan for more details

RFC proxies

20150528 Ferrara5th DIRAC User Workshop11

} Up until now we’ve been using “grid” proxies
} First implementation of certificate proxies
} Not standard outside WLCG/EMI/UMD/gLite

} A standardized format for proxies was created later
} RFC3820 à RFC proxies
} L Require ASN.1 (de)serialization (Check out PR2272)
} J OpenSSL supports them!

} Everyone is moving towards using RFC proxies since
some time ago

DIRAC & RFC proxies

20150528 Ferrara5th DIRAC User Workshop12

} DIRAC supports now RFC proxies
} (well, starting from v6r14 I guess…)
} Requires new version of pyGSI

} Already included in the newest externals

} Since RFC proxies require decoding ASN.1 data
DIRAC now can decode ASN.1 DER encoded data:
} We can read VOMS extensions natively!

} NO need for voms-proxy-info

} We can’t generate VOMS extensions
} STILL NEED voms-proxy-init

The bad
(aka Externals)

20150528 Ferrara5th DIRAC User Workshop13

Externals

20150528 Ferrara5th DIRAC User Workshop14

} A pain to maintain
} But we require pyGSI so they are needed
} pyGSI requires OpenSSL

} I f***ng hate OpenSSL
} I invite anyone to have a walk amongst OpenSSL code

} Like someone punching you in the eyes and kicking your brain
at the same time

OpenSSL security issues

20150528 Ferrara5th DIRAC User Workshop15

} One of the most heavily used crypto/tls toolkits
around

} Lots security issues
} Heartbleed, POODLE, plenty of TLS errors/DoS, Mitm…
} https://www.openssl.org/news/vulnerabilities.html
} This is good

} Require using new versions of OpenSSL
continuously

BUT

20150528 Ferrara5th DIRAC User Workshop16

} OpenSSL also changes stuff between versions
} Some nasty ones that exploded on us:

} Changed requirements when decoding CSRs
} usigned ones failed miserably

} Changed some TLS config that prevents connecting to
CASTOR2/DPM SRMs
} But dCache/STORM is OK (:?)

} Also other toolkits change and they blame us that we
can’t connect
} Java 1.7 (I think) only allows a subset of EC ciphers and OSSL

wanted to use parameters out of the allowed ones by Java

OpenSSL

20150528 Ferrara5th DIRAC User Workshop17

} As you can imagine dealing with this stuff is
reeeeally fun

} There’s no easy alternative
} Changing OpenSSL to GnuTLS or something like that

requires rewriting pyGSI/DIRAC sec code

} We’re stuck with it

} Somebody should start looking into pyGSI/OpenSSL
code as I may not have much time in the near future

The nice
(aka NoSQL monitoring profiling)

20150528 Ferrara5th DIRAC User Workshop18

Motivation

20150528 Ferrara5th DIRAC User Workshop19

} Develop a system for real time monitoring
} Why?

} Current monitoring system (Accounting)
} Not designed for real time monitoring
} Hard to scale to hundred million records

} Goals:
} Optimized for time series
} Efficient data storage, data analysis and retrieval
} Easy to maintain
} Scale Horizontally
} Easy to create complex dashboards

Take advantage of new tech

20150528 Ferrara5th DIRAC User Workshop20

} Studied storage, retrieval and analysis technologies
} OpenTSDB
} InfluxDB
} Elasticsearch

} Communication:
} Broker: RabbitMQ, ActiveMQ, …
} Protocol: AMQP (pika) or STOMP (stomppy)

} Data visualization:
} Grafana for InfluxDB and OpenTSDB
} Kibana for Elasticsearch

Test setup

20150528 Ferrara5th DIRAC User Workshop21

} Based on loosely coupled components

Test setup (2)

20150528 Ferrara5th DIRAC User Workshop22

} 12 VMs provided by CERN OpenStack (3x4 nodes 4core
8GB RAM 80GB HD)

} Test conditions
} Approximately 600 million records recorded during 1.5 month
} 5 different queries using random query intervals
} 10, 50 and 100 clients (python threads) are used to generate

high query load

} REST APIs are used to retrieve the data from the DB
} All clients are used a random query and a random period
} All clients are continuously running parallel during 2h

Results with 10 clients

20150528 Ferrara5th DIRAC User Workshop23

Results with 50 clients

20150528 Ferrara5th DIRAC User Workshop24

Results with 100 clients

20150528 Ferrara5th DIRAC User Workshop25

Response time of all experiments

20150528 Ferrara5th DIRAC User Workshop26

Throughput of all experiments

20150528 Ferrara5th DIRAC User Workshop27

Outcome

20150528 Ferrara5th DIRAC User Workshop28

} Settled on ElasticSearch
} Faster than OpenTSDB and InfluxDB
} Easy to maintain
} Marvel is very good tool for monitoring the cluster, but it

required license when the cluster is used in production
(elastichq can be used instead)

} It can be easily integrated to the DIRAC portal
} Kibana is fulfilling our needs

Onwards

20150528 Ferrara5th DIRAC User Workshop29

} Authentication has to be designed and implemented
} Evaluate ActiveMQ and STOMP
} Migration from the current system
} Integrate to the current Accounting web application
} Implement a "bucketing" algorithm for old data

} This is low priority

