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Attack plan
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} The good
} New error mechanism
} Component profiling/monitoring
} Connection retry
} RFC proxies

} The bad
} Externals

} The very bad: openssl

} The nice
} Future monitoring and NoSQL profiling



New error mechanism

20150528 Ferrara5th DIRAC User Workshop3

} The good ol’ S_OK/S_ERROR has some drawbacks:
} Programmatically difficult to react depending on errors
} Bad traceability (where was the error generated?)

} Could be improved by using exceptions instead of
S_*
} At the beginning it was decided we weren't going to use

them
} Adding now exceptions is really painful (try/catch

everywhere)



Error handling improvement
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} Add a numeric value with semantic meaning to
errors
} Allows devs to react to different types of errors easily
} Less typo prone, case insensitive

} Include the stack-trace of the error creation point in
the error itself

} BUT replacing S_* is a pain in the a**
} Has to be backwards compatible



Enter DError
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} Includes error number and originating callstack
} print of the error will show the stack directly

} There’s a method to check error type that’s backwards
compatible with S_ERROR

} Will land in somewhere in the next releases

} For more info Chris Haen is the person to nag :)

return DError( ENOENT, “File {} does not exist”.format( fileName ) ) 



System Administration
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} Currently shows running components in each host of
a an installation
} Act on components/hosts

} Increasing number of hosts and DIRAC components

} Keeping track manually of big installations is an
increasing problem



Static component monitoring
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} Keep track of
} What was installed removed on each host
} When was it done
} Who did it

} In sync with actions taken from the system
administrator

} Also keep track of non-DIRAC components via
extensions
} RabbitMQ, squid, vcycle…

} Will land in v6r13



Dynamic component monitoring
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} Profiling information of hosts and components
} Metrics from non-DIRAC components also

} Updated regularly

} Host status stored in MySQL
} Faster than query system administrator

} Profiling info is stored in ElasticSearch via RabbitMQ
consumers



Dynamic component monitoring
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} For more info talk to Sergio Balbuena or to Federico



Connection retries
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} Currently if there’s a connection error the client
returns an error

} Implemented a connection retry BEFORE ANY DATA
HAS ACTUALLY BEEN TRANSMITTED
} Could delay a bit initialization of execution if configuration

server is down but small price to pay compared with auto
retries

} Ask Zoltan for more details



RFC proxies
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} Up until now we’ve been using “grid” proxies
} First implementation of certificate proxies
} Not standard outside WLCG/EMI/UMD/gLite

} A standardized format for proxies was created later
} RFC3820 à RFC proxies
} L Require ASN.1 (de)serialization (Check out PR2272)
} J OpenSSL supports them!

} Everyone is moving towards using RFC proxies since
some time ago



DIRAC & RFC proxies
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} DIRAC supports now RFC proxies
} (well, starting from v6r14 I guess…)
} Requires new version of pyGSI

} Already included in the newest externals

} Since RFC proxies require decoding ASN.1 data
DIRAC now can decode ASN.1 DER encoded data:
} We can read VOMS extensions natively!

} NO need for voms-proxy-info

} We can’t generate VOMS extensions
} STILL NEED voms-proxy-init



The bad 
(aka Externals)
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Externals
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} A pain to maintain
} But we require pyGSI so they are needed
} pyGSI requires OpenSSL

} I f***ng hate OpenSSL
} I invite anyone to have a walk amongst OpenSSL code

} Like someone punching you in the eyes and kicking your brain
at the same time



OpenSSL security issues
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} One of the most heavily used crypto/tls toolkits
around

} Lots security issues
} Heartbleed, POODLE, plenty of TLS errors/DoS, Mitm…
} https://www.openssl.org/news/vulnerabilities.html
} This is good

} Require using new versions of OpenSSL
continuously



BUT
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} OpenSSL also changes stuff between versions
} Some nasty ones that exploded on us:

} Changed requirements when decoding CSRs
} usigned ones failed miserably

} Changed some TLS config that prevents connecting to
CASTOR2/DPM SRMs
} But dCache/STORM is OK (:?)

} Also other toolkits change and they blame us that we
can’t connect
} Java 1.7 (I think) only allows a subset of EC ciphers and OSSL

wanted to use parameters out of the allowed ones by Java



OpenSSL
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} As you can imagine dealing with this stuff is
reeeeally fun

} There’s no easy alternative
} Changing OpenSSL to GnuTLS or something like that

requires rewriting pyGSI/DIRAC sec code

} We’re stuck with it

} Somebody should start looking into pyGSI/OpenSSL
code as I may not have much time in the near future



The nice 
(aka NoSQL monitoring profiling)
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Motivation
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} Develop a system for real time monitoring
} Why?

} Current monitoring system (Accounting)
} Not designed for real time monitoring
} Hard to scale to hundred million records

} Goals:
} Optimized for time series
} Efficient data storage, data analysis and retrieval
} Easy to maintain
} Scale Horizontally
} Easy to create complex dashboards



Take advantage of new tech
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} Studied storage, retrieval and analysis technologies
} OpenTSDB
} InfluxDB
} Elasticsearch

} Communication:
} Broker: RabbitMQ, ActiveMQ, …
} Protocol: AMQP (pika) or STOMP (stomppy)

} Data visualization:
} Grafana for InfluxDB and OpenTSDB
} Kibana for Elasticsearch



Test setup
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} Based on loosely coupled components



Test setup (2)
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} 12 VMs provided by CERN OpenStack (3x4 nodes 4core
8GB RAM 80GB HD)

} Test conditions
} Approximately 600 million records recorded during 1.5 month
} 5 different queries using random query intervals
} 10, 50 and 100 clients (python threads) are used to generate

high query load

} REST APIs are used to retrieve the data from the DB
} All clients are used a random query and a random period
} All clients are continuously running parallel during 2h



Results with 10 clients
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Results with 50 clients
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Results with 100 clients
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Response time of all experiments
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Throughput of all experiments
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Outcome
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} Settled on ElasticSearch
} Faster than OpenTSDB and InfluxDB
} Easy to maintain
} Marvel is very good tool for monitoring the cluster, but it

required license when the cluster is used in production
(elastichq can be used instead)

} It can be easily integrated to the DIRAC portal
} Kibana is fulfilling our needs



Onwards
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} Authentication has to be designed and implemented
} Evaluate ActiveMQ and STOMP
} Migration from the current system
} Integrate to the current Accounting web application
} Implement a "bucketing" algorithm for old data

} This is low priority


