Request Management

System

GRI
LHCh GRID SOLUTIONI,

Ph.Charpentier
CERN, LHCbH

5" Dirac User Workshop
May 27-29 2015




° Introduction

o Aim of the RMS

1 Asynchronous execution of any operation
a1 Mostly DMS-related operations

a .. but could be any operation
x E.g. ForwardDISET operations for calling any DIRAC service

o Current usage of RMS
2 All centralised DMS operations (including failover)
1 .. also Monitoring and Accounting failover

o> Completely re-engineered since DIRAC v6r10 (K.Ciba)
o Since then maintained and developed by Chris H and PhC
o Not much new since last workshop, just a year ago...

1LHCH
L)

.
m Request Management System (PhC)



° Requests structure

Q
o Requests
a2 They are a set of Operations
2 Status fully driven by a FSM (from status of operations)
x Status set artificially Assigned while being owned by an Agent
o Operations
a2 They have a Type, a Status, possibly additional parameters
x Status driven by an FSM (from Files status) or set otherwise
a2 They may act on Files
o Files
2 In case an Operation acts on a (list of) file(s)
2 Each file has a Status
Request name='00036569 00014650 job 77936911' ID=728560 Status='Failed' Job=77936911
Created 2014-05-20 09:58:13, Updated 2014-05-20 12:06:54
Owner: '/DC=es/DC=irisgrid/O=ecm-ub/CN=Ricardo-Graciani-Diaz', Group: lhcb data
[0] Operation Type='ReplicateAndRegister' ID=1409859 Order=1 Status='Failed'
SourceSE: CNAF-FAILOVER - TargetSE: GRIDKA-DST - Created 2014-05-20 09:57:56, Updated 2014-05-20 12:06:54
[01] ID=1543098 LFN='/lhcb/LHCb/Collisionl2/SWIMSTRIPPINGDO2KSKK.MDST/
00036569/0001/00036569 00014650 4.swimstrippingd02kskk.mdst' Status='Failed' Error='No such file or directory'
[1] Operation Type='RemoveReplica' ID=1409860 Order=2 Status='Queued'
TargetSE: CNAF-FAILOVER - Created 2014-05-20 09:57:56, Updated 2014-05-20 12:06:54
[01] ID=1543099 LFN='/lhcb/LHCb/Collisionl2/SWIMSTRIPPINGDO02KSKK.MDST/
00036569/0001/00036569_ 00014650 _4.swimstrippingd02kskk.mdst' Status='Waiting'
LHCD
N

Request Management System (PhC)



LHCD

O

Request execution

A single Agent type is in charge of executing requests:

o RequestExecutingAgent
x Uses process pools (therefore independent environments)

a2 Note: requests don't have a type, therefore multiple agents
can be run but not for specific operations

Operations are executed serially

a2 When an Operation is Done, the next one (if any) is
executed (if Failed, execution stops)
x If no next operation, the Request is Done

Execution is delegated to Operation Handlers

a2 Mapping between Operation Type and Handler can be defined
in the CS

1 Easily extendable (new type, new handler)
Operations are executed using the request’'s owner
credentials

1 Exception: if the owner is part of the production team (so-
called shifters)

x« Then a Data Manager credential is used

Request Management System (PhC)



. State machine

(For single active Operation)
Waiting An

Waiting Any Waiting

|

Scheduled Any — Scheduled < AnY 1 Scheduled

FTS

Failed Done

@ @ Any

Any All
Failed Done

All

l, From handler

e
Request Management System (PhC)



LHCD

Current operation handlers

ReplicateAndRegister

a1 Uses FTS unless otherwise setup (using group owner)

a1 In LHCb: lhcb_user doesn't use FTS but directly Replica/
DataManager

RegisterFile / RegisterReplica

1 Only register in file catalog(s)

RemoveFile / RemoveReplica

2 Self explanaory

PhysicalRemoval / PutAndRegister / ReTransfer

a2 Implemented, not used by LHCb (but for Online upload)
ForwardDISET

a2 Make any DISET call (arguments passed as a blob)

a2 No "Files”

Extensions for LHCb
a2 LogUpload

Request Management System (PhC)



. New features (I)

o The RMS is now using SQLAIlchemy as DB inerface

a2 Much better control of DB content and access

a2 Was a good exercise for moving other DBs

a2 Not a simple one due to the many getters and setters used
in the RMS

o Available as of vé6ri13

o Delayed retries

a2 When an operation fails, it may be desirable to not retry
immediately

a2 E.g. in case of access problems to an SE that may be caused
by it being down (not Banned) or a network problem
a2 Possible to delay next execution
x Add a waiting time to the Waiting operations
Unless set by the user code
x Set automatically for certain types of “errors” (e.g. when an SE
is banned)

LHCD
Request Management System (PhC)



New features (II)

o Request optimization

]

When requests are created by jobs, operations are created
sequentially
In case a series of operations are identical, they can be
grouped into a single operation

x Advantage: a failing operation will not prevent others to execute

x Example: file removal after a merging job
V\I/i‘l'houf optimization, any failure prevents other removals to take
ace
&/i‘rh optimization, all files will be removed but those that fail
Similarly for the frequent failover pair of operations:
x ReplicateAndRegister (from Failover to destination)
x RemoveReplica (from Failover)

x Whenever possible (same destination, i.e. most cases), group
replication into a single operation

x If same failover SE, group removal (not always possible)

Request Management System (PhC)



° Future plans

o Optimization of optimization...
1 Currently done server-side when calling putRequest()
x« Advantage: the request is directly inserted with optimisation
x Caveat: optimisation is hard-coded, i.e. not flexible

1 Plan to use plugins for optimizing requests

a2 Not yet a clear implementation
% One possibility would be that requests are created as wrapped
within a single "OptimizeRequest” operation
x The OptimizeRequest handler examines the whole request,

expands it with the included operations and sets the
OptimizeRequest operation Done

x« This may have several interesting applications
o Requests linked to jobs
a Currently request done -> job Done
a1 What to do if the request fails?
x Currently the job remains "Completed”: very bad!

x Requires manual intervention...
x Better use plugins as the decision may be VO-dependent

e
Request Management System (PhC)



LHCD

FTS transfers

Part of DMS, but closely related to RMS
As of vbrl13, FTS3 native REST interface is supported

FTS2 command line mode still supported

a1 As FTS2 servers are discontinued, we plan to decommission
it in 2-3 releases

FTS system uses RSS to know the status of servers
a1 Just committed, not yet included in vé6ri3

a Will allow to use a pool of servers without any human
intervention

User transfers
a Currently not supported (jobs submitted with DM proxy)

a2 With REST interface this is supported (credentials can be
associated to FTS jobs)

The changes above imply changes in the CS

a2 See the DIRAC twiki for instructions (FTS3 separate
configuration)

Request Management System (PhC)

10



LHCD

Conclusion

The RMS was a very successful test bench for using
SQLAIchemy for DB interaction

2 Avoid some security flaws (as spotted by EGT)
Easily extendable for any kind of asynchronous operation

Plan to use more plugin functionality

1 Less hard-coded actions (although there will be a baseline
implementation)

2 Request optimization and verification
a1 Job-related requests final status action

FTS replication system moved to FTS3 REST interface
a1 FTS2 frozen but supported until not used any longer

1 Any user credential can be used for transfers
x Allows user file transfers
« Registration using the same credentials

Scalability can be achieved adding more processes in the
process pool

Request Management System (PhC)

11



