
 LHCb GRID SOLUTIONTM

Request Management
System

Ph.Charpentier
CERN, LHCb

5th Dirac User Workshop

May 27-29 2015

R
M

S

Introduction

❍  Aim of the RMS
❏  Asynchronous execution of any operation
❏  Mostly DMS-related operations
❏  … but could be any operation

✰  E.g. ForwardDISET operations for calling any DIRAC service
❍  Current usage of RMS

❏  All centralised DMS operations (including failover)
❏  … also Monitoring and Accounting failover

❍  Completely re-engineered since DIRAC v6r10 (K.Ciba)
❍  Since then maintained and developed by Chris H and PhC
❍  Not much new since last workshop, just a year ago…

Request Management System (PhC) 2

R
M

S

Requests structure

❍  Requests
❏  They are a set of Operations
❏  Status fully driven by a FSM (from status of operations)

✰  Status set artificially Assigned while being owned by an Agent
❍  Operations

❏  They have a Type, a Status, possibly additional parameters
✰  Status driven by an FSM (from Files status) or set otherwise

❏  They may act on Files
❍  Files

❏  In case an Operation acts on a (list of) file(s)
❏  Each file has a Status

Request Management System (PhC) 3

Request name='00036569_00014650_job_77936911' ID=728560 Status='Failed' Job=77936911
Created 2014-05-20 09:58:13, Updated 2014-05-20 12:06:54
Owner: '/DC=es/DC=irisgrid/O=ecm-ub/CN=Ricardo-Graciani-Diaz', Group: lhcb_data
 [0] Operation Type='ReplicateAndRegister' ID=1409859 Order=1 Status='Failed'
 SourceSE: CNAF-FAILOVER - TargetSE: GRIDKA-DST - Created 2014-05-20 09:57:56, Updated 2014-05-20 12:06:54
 [01] ID=1543098 LFN='/lhcb/LHCb/Collision12/SWIMSTRIPPINGD02KSKK.MDST/
00036569/0001/00036569_00014650_4.swimstrippingd02kskk.mdst' Status='Failed' Error='No such file or directory'
 [1] Operation Type='RemoveReplica' ID=1409860 Order=2 Status='Queued'
 TargetSE: CNAF-FAILOVER - Created 2014-05-20 09:57:56, Updated 2014-05-20 12:06:54
 [01] ID=1543099 LFN='/lhcb/LHCb/Collision12/SWIMSTRIPPINGD02KSKK.MDST/
00036569/0001/00036569_00014650_4.swimstrippingd02kskk.mdst' Status='Waiting'

R
M

S

Request execution

❍  A single Agent type is in charge of executing requests:
❏  RequestExecutingAgent

✰  Uses process pools (therefore independent environments)
❏  Note: requests don’t have a type, therefore multiple agents

can be run but not for specific operations
❍  Operations are executed serially

❏  When an Operation is Done, the next one (if any) is
executed (if Failed, execution stops)
✰  If no next operation, the Request is Done

❍  Execution is delegated to Operation Handlers
❏  Mapping between Operation Type and Handler can be defined

in the CS
❏  Easily extendable (new type, new handler)

❍  Operations are executed using the request’s owner
credentials
❏  Exception: if the owner is part of the production team (so-

called shifters)
✰  Then a Data Manager credential is used

Request Management System (PhC) 4

R
M

S

State machine

Request Management System (PhC) 5

Request FileOperation

Waiting

Scheduled

Failed Done

Waiting
Waiting

Scheduled

Failed Done

Scheduled

Failed Done

(For single active Operation)
FT

S

AllAny
AllAny

AnyAny

From handler

AnyAny

R
M

S

Current operation handlers

❍  ReplicateAndRegister
❏  Uses FTS unless otherwise setup (using group owner)
❏  In LHCb: lhcb_user doesn’t use FTS but directly Replica/

DataManager
❍  RegisterFile / RegisterReplica

❏  Only register in file catalog(s)
❍  RemoveFile / RemoveReplica

❏  Self explanaory
❍  PhysicalRemoval / PutAndRegister / ReTransfer

❏  Implemented, not used by LHCb (but for Online upload)
❍  ForwardDISET

❏  Make any DISET call (arguments passed as a blob)
❏  No “Files”

❍  Extensions for LHCb
❏  LogUpload

Request Management System (PhC) 6

R
M

S

New features (I)

❍  The RMS is now using SQLAlchemy as DB inerface
❏  Much better control of DB content and access
❏  Was a good exercise for moving other DBs
❏  Not a simple one due to the many getters and setters used

in the RMS
❏  Available as of v6r13

❍  Delayed retries
❏  When an operation fails, it may be desirable to not retry

immediately
❏  E.g. in case of access problems to an SE that may be caused

by it being down (not Banned) or a network problem
❏  Possible to delay next execution

✰  Add a waiting time to the Waiting operations
❄  Unless set by the user code

✰  Set automatically for certain types of “errors” (e.g. when an SE
is banned)

Request Management System (PhC) 7

R
M

S

New features (II)

❍  Request optimization
❏  When requests are created by jobs, operations are created

sequentially
❏  In case a series of operations are identical, they can be

grouped into a single operation
✰  Advantage: a failing operation will not prevent others to execute
✰  Example: file removal after a merging job

❄  Without optimization, any failure prevents other removals to take
place

❄  With optimization, all files will be removed but those that fail

❏  Similarly for the frequent failover pair of operations:
✰  ReplicateAndRegister (from Failover to destination)
✰  RemoveReplica (from Failover)
✰  Whenever possible (same destination, i.e. most cases), group

replication into a single operation
✰  If same failover SE, group removal (not always possible)

Request Management System (PhC) 8

R
M

S

Future plans

❍  Optimization of optimization…
❏  Currently done server-side when calling putRequest()

✰  Advantage: the request is directly inserted with optimisation
✰  Caveat: optimisation is hard-coded, i.e. not flexible

❏  Plan to use plugins for optimizing requests
❏  Not yet a clear implementation

✰  One possibility would be that requests are created as wrapped
within a single “OptimizeRequest” operation

✰  The OptimizeRequest handler examines the whole request,
expands it with the included operations and sets the
OptimizeRequest operation Done

✰  This may have several interesting applications
❍  Requests linked to jobs

❏  Currently request done -> job Done
❏  What to do if the request fails?

✰  Currently the job remains “Completed”: very bad!
✰  Requires manual intervention…
✰  Better use plugins as the decision may be VO-dependent

Request Management System (PhC) 9

R
M

S

FTS transfers

❍  Part of DMS, but closely related to RMS
❍  As of v6r13, FTS3 native REST interface is supported
❍  FTS2 command line mode still supported

❏  As FTS2 servers are discontinued, we plan to decommission
it in 2-3 releases

❍  FTS system uses RSS to know the status of servers
❏  Just committed, not yet included in v6r13
❏  Will allow to use a pool of servers without any human

intervention
❍  User transfers

❏  Currently not supported (jobs submitted with DM proxy)
❏  With REST interface this is supported (credentials can be

associated to FTS jobs)
❍  The changes above imply changes in the CS

❏  See the DIRAC twiki for instructions (FTS3 separate
configuration)

Request Management System (PhC) 10

R
M

S

Conclusion

❍  The RMS was a very successful test bench for using
SQLAlchemy for DB interaction
❏  Avoid some security flaws (as spotted by EGI)

❍  Easily extendable for any kind of asynchronous operation
❍  Plan to use more plugin functionality

❏  Less hard-coded actions (although there will be a baseline
implementation)

❏  Request optimization and verification
❏  Job-related requests final status action

❍  FTS replication system moved to FTS3 REST interface
❏  FTS2 frozen but supported until not used any longer
❏  Any user credential can be used for transfers

✰  Allows user file transfers
✰  Registration using the same credentials

❍  Scalability can be achieved adding more processes in the
process pool

Request Management System (PhC) 11

